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Stiltjes-Fekete problem

Find the configuration of points pz1, . . . , znq P Cn that we call weighted Fekete points,
that provides the maximum of the weighted Fekete functional

Fpz1, . . . , znq “
n
ź

j“1

n
ź

k“1
k‰j

ˇ

ˇ

ˇ
zj ´ zk

ˇ

ˇ

ˇ
e

Qpzjq`Qpzkq

2pn´1q ,

where Qpz, zq, z P C, is a real–valued external potential. Equivalently, the weighted
Fekete points provide the minimum of the energy functional

Epz1, . . . , znq “ ´2
n
ÿ

1ďiăjďn

log |zj ´ zk| ´
n
ÿ

j“1

Qpzjq.

Depending on the setup, one may require that the points belong to some assigned
domain D.
The critical points of the energy functional satisfy the equation

2
ÿ

k‰j

1

zj ´ zk
“ ´BQpzjq, j “ 1, . . . , n,

where B “ 1
2

´

B
Bx ´ i

B
By

¯

, z “ x` iy.
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Classical cases

D “ R and Qpxq “ ´x2. The Fekete points are the zeros of the Hermite
polynomials and are the global minimum of the energy

Epx1, . . . , xnq “ ´2
n
ÿ

1ďiăjďn

log |xj ´ xk| `
n
ÿ

j“1

x
2
j .

The variational equations yield

n
ÿ

k“1
k‰j

1

xj ´ xk
“ xj , j “ 1, . . . , n.

The domain D “ p´1, 1q and the weight
Qpxq “ pα` 1q logp1´ xq ` pβ ` 1q logp1` xq, α, β ą ´1. The Fekete points are
the zeros of the Jacobi polynomials and are the global minimum of the energy

Epx1, . . . , xnq “ ´2
n
ÿ

1ďiăjďn

log |xj ´ xk| ´
n
ÿ

j“1

logp1´ xjq
α`1

´

n
ÿ

j“1

logp1` xjq
β`1

.

The variational equations yield

n
ÿ

k“1
k‰j

1

xj ´ xk
“

α` 1

2p1´ xjq
´

β ` 1

2p1` xjq
, j “ 1, . . . , n.
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The domain D “ p0,8q and the weight Qpxq “ ´x` pα` 1q log x , α ą ´1. The
Fekete points are the zeros of the Laguerre polynomials and are the global
minimum of the energy

Epx1, . . . , xnq “ ´2
n
ÿ

1ďiăjďn

log |xj ´ xk| `
n
ÿ

j“1

rxj ´ pα` 1q log xj s.

The variational equations yield

n
ÿ

k“1
k‰j

1

xj ´ xk
“

1

2
´
α` 1

2xj
, j “ 1, . . . , n.

Remark. For the three above particular choices of Qpxq the weighted Fekete points
are the zeros of (classical) orthogonal polynomials and give the global minimum to the
energy Epx1, . . . , xnq.

Why the global minimum of the energy should be considered? Which other types
of equilibria described above could be linked to the zeros of polynomials?

What is the appropriate model for the complex zeros (when they exist)?
Marcellán–Mart́ınez-Finkelshtein–Mart́ınez-González, J. Comp. Appl. Math (2007)
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Generalization

We consider a holomorphic version of the condition of criticality in the form

ÿ

k‰j

1

zj ´ zk
“

Apzjq

2Bpzjq
, j “ 1, . . . , n, (1)

where A,B are two relatively prime polynomials. The solutions of the above equation
turn out to be the critical points for the energy

E pz1, . . . , znq “ ´2
n
ÿ

1ďiăjďn

log |zj ´ zk| ´
n
ÿ

j“1

Qpzjq

where Qpzq “ ´<ppθpzqq with pθ real–analytic, except for finite number of singularities

and branch cuts, and pθpzq “
şz Apz

1q

Bpz1q
dz1. Equations (1) are also sometimes referred to

as Stieltjes–Bethe equations because of their appearance in the Bethe-Ansatz for
spin-chains. When

Apzq

Bpzq
“ ´

p
ÿ

`“0

ν`
z ´ a`

with aj P C all distinct and νj real, one obtains the Heine-Stieltjes electrostatic
problem

E pz1, . . . , znq “ ´2
n
ÿ

1ďiăjďn

log |zj ´ zk| ´
n
ÿ

j“1

p
ÿ

`“0

ν` log |a` ´ zj |.

that was studied by T.J. Stiltjes (1885), H.E.Heine (1878), E.B.Van Vleck (1898),
F.Klein (1894), G. Polya (1912), D. Dimitrov and W. Van Assche (2000),
D.Dimitrov-B.Shapiro (2018), A.Varchenko (1995).
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First main result

Given two relatively prime polynomials Apzq and Bpzq with degA ě degB, there is a
one-to-one correspondence between the solutions of the Stiltjes-Bethe equations

ÿ

k‰j

1

zj ´ zk
“

Apzjq

2Bpzjq
, j “ 1, . . . , n,

and the zeros of maximally degenerate orthogonal polynomials of degree n for a
semiclassical moment functional of type pA,Bq.
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Bethe equations and integrable systems

Bethe ansatz equations is an ansatz method for finding the exact spectrum of
integrable quantum many-body models in the form E “

ř

i epuiq where ui satisfy
a system of algebraic or transcendental equations known as Bethe equations.

Bethe ansatz equations comes out naturally when solving the following problem:
”when a linear equation with rational (trigonometric, elliptic) coefficients has
rational (trigonometric elliptic) solution?” For example

ψn`1pxq “ ψnpx` 1q ´ vnψnpxq, n P Z

vnpxq “
ynpxqyn`1px` 1q

ynpx` 1qyn`1pxq

where ynpxq “
śkn
i“1px´ u

pnq
i q has rational solution ψnpxq with poles at the zeros

of ynpxq if and only if

yn´1pu
pnq
j ` 1qynpu

pnq
j ´ 1qyn`1pu

pnq
j q

yn´1pu
pnq
j qynpu

pnq
j ` 1qyn`1pu

pnq
j ´ 1q

“ ´1

that are the Bethe ansatz equation for the slN XXX quantum integrable model
(Krichever, Lipan, Wigner Zabrodin 2016, Krichever-Varchenko 2021).
Connection with discrete mKdV and Ruijsenaars-Schneider systems is obtained. )

Connection of solutions of ODEs with rational (trigonometric, elliptic) coefficients
and the theory of Calogero-Moser and Ruijsenaars-Schneider systems was
pioneered by Krichever.
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First main result

Given two relatively prime polynomials Apzq and Bpzq with degA ě degB, there is a
one-to-one correspondence between the solutions of the Stiltjes-Bethe equations

ÿ

k‰j

1

zj ´ zk
“

Apzjq

2Bpzjq
, j “ 1, . . . , n,

and the zeros of maximally degenerate orthogonal polynomials of degree n for a
semiclassical moment functional of type pA,Bq.
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Semiclassical Moment Functionals

A moment functional is a linear map on the space of polynomials M : Crzs Ñ C.
A moment functional M : Crzs Ñ C is semiclassical of type pA,Bq where
A “ Apzq, B “ Bpzq are two relatively prime polynomials of degree a and b

respectively if

M
“

Bpzqp
1
pzq

‰

“M
“

Apzqppzq
‰

, @ppzq P Crzs.

Studied by Maroni [’87], Ismail-Masson-Rahman [’91], Marcellán-Rocha [’98]:
any such moment functional can be represented as:

Mrps “
d
ÿ

`“1

s`

ż

γ`

ppzqe
θpzq

dz , θ
1
pzq “ ´

Apzq ` B1pzq

Bpzq

with d “ maxta, b´ 1u, s` are arbitrary complex parameters and γ` are contours
that approach the poles of θ1pzq in C along steepest descent directions
(<θ Ñ ´8q.

8
p0q

8
p1q

8
p2q

8
p3q

8
p4q

8
p5q

8
p6q

8
p7q

8
p8q

8
p9q

γ
1

γ2

γ
3

γ4

θpzq “ ´z5, namely Bpzq “ 1, Apzq “ 5z4 and d “ 4

8pjq are the asymptotic directions argpzq “ jπ
5 for j “ 0, . . . , 9
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Contours

γ1

γ2

γ3γ4

γ5

p1

γ6

γ8

p0

γ7

p2

8
p0q

8
p2q

8
p4q

Figure: The contours in the case Bpzq “ pz ´ p0qpz ´ p1q
4
pz ´ p2q and Apzq “ z8.

θ1pzq “ ´
Apzq`B1pzq

Bpzq , and Resz“p2θ
1
pzq ą ´1 and Resz“p0θ

1
pzq ă ´1,
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Orthogonal polynomais

The polynomials pnpzq “ zn ` . . . , that are orthogonal with respect to the
semiclassical moment functional M of type pA,Bq, are determined by the condition

M
”

pnpzqz
k
ı

“

d
ÿ

j“1

sj

ż

γj

pnpzqz
k

e
θ

dz “ 0,

k “ 0, . . . , n´ 1.

Let µkpsq “Mrzks, s “ ps1, . . . , sdq,

Dnpsq :“ det
”

µj`kpsq
ın´1

j,k“0

Notice that Dnpsq is a homogeneous polynomial of degree n in the paramaters
s1, . . . , sd.
The monic orthogonal polynomial pnpzq of degree n is then given by

pnpzq “
1

Dnpsq
det

»

—

—

—

—

—

—

—

–

µ0 µ1 . . . µn
µ1 µ2 . . . µn`1

...
µn´1 . . . µ2n´1

1 z . . . zn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Degenerate orthogonality

Definition

The polynomial pn is called `–degenerate orthogonal if, in addition

M
”

pnpzqz
n`k

ı

“ 0, k “ 0, 1, . . . , `´ 1, ` ě 1.

Lemma

The orthogonal polynomial pn is `–degenerate if and only if

Dn`1,kpsq :“ detHn`1,k “ 0, k “ 0, 1, . . . , `´ 1,

Hn`1,k :“

»

—

—

—

—

—

—

—

–

µ0 µ1 . . . µn
µ1 µ2 . . . µn`1

...
µn´1 . . . µ2n´1

µn`k µn`k`1 . . . µ2n`k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Dn`1,kpsq is a homogeneous polynomials of degree n` 1 is the parameters s1, . . . sd.
Maximal degeneracy: Dn`1,kpsq “ 0 for k “ 0, . . . d´ 2 gives d´ 1 homogeneous
polynomial relations on the “weights” s1, . . . , sd,
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Theorem

Let Z “ tz1, . . . , znu be a critical configuration satisfying the Stilties-Bethe equations

ÿ

k‰j

1

zj ´ zk
“

Apzjq

2Bpzjq
, j “ 1, . . . , n,

where Apzq, Bpzq are relatively prime arbitrary polynomials with degA ě degB. Then

(1) the polynomial pnpzq “
śn
j“1pz ´ zjq is a maximally degenerate orthogonal

polynomial for a semiclassical moment functional M of type pA,Bq.

(2) The polynomial pnpzq satisfies the ODE

Bpzqy
2
pzq ´ Apzqy

1
pzq `Qpzqypzq “ 0

where the polynomial Q “ Bp
p2n
pn
` θ1

p1n
pn
q ` B1

p1n
pn

has degree at most d´ 1 with
d “ maxtdegA, degB ´ 1u.

Viceversa, if pn is a semiclassical, maximally degenerate orthogonal polynomial of
degree n for a semiclassical moment functional M of type pA,Bq then its zeroes
satisfy the Stilties-Bethe equations and the ODE as above.
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Example

θpzq “ ´z4{2, and look for the critical points of the energy

Epz1, . . . , znq “ ´2
n
ÿ

1ďiăjďn

log |zj ´ zk| `
n
ÿ

j“1

z4j

2
.

on the real axis. Our theorem says that the corresponding polynomial
pnpzq “

śn
j“1pz ´ zjq, with zj solution of the Stieltjes–Bethe equation, is indeed an

orthogonal polynomial, not for the orthogonality on the real axis but

Mrz
k
s “

ż

R
z
k

e
´ z

4

2 dz ` s

ż

iR
z
k

e
´ z

4

2 dz, s »

#

0.00001349595 i n “ 10

´3.79352745 10´6 i n “ 11.

Note that pnpzq is a 2-degenerate orthogonal, polynomial, namely

Mrz
k
pnpzqs “ 0, k “ 0, . . . , n, n` 1

-2 -1 1 2

-1.0

-0.5

0.5

1.0

-2 -1 1 2

-1.0

-0.5

0.5

1.0

Figure: The numerically computed Fekete points with n “ 10, 11 on the real axis for the Freud

weight e´Z
4{2.
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Remarks, open problems

Technical issue: count the number of solution of the Stieltjes–Bethe equations.
This corresponds to count the number of solutions of

Dn`1,kpsq “ 0, k “ 0, . . . d´ 2

with Dn`1,kpsq homogeneous polynomials of degree n` 1 in s1, . . . , sd. However
there are some degeneracies, for example the equations

Dn`1,0psq “ 0 “ Dn,0psq,

implies that pnpzq ” 0.

Extend the analysis to the case degA ă degB. In this case the contours of the
semiclassical moment functional are Pochhammer contours.

The function F pzq “
a

BpzqPnpzqe
1
2 θpzq solves the differential equation

F
2
pzq ´W pzqF pzq “ 0

where the potential W pzq is a rational function with poles only at the zeros of
Bpzq at most of twice the order. In the case B “ 1, Apzq “ z2 ´ t, the potential
W pzq is a quartic polynomial. The condition that Pnpzq is a degenerate
orthogonal polynomial is equivalent to the condition that the spectrum of the
quartic anharmonic oscillator is exactly solvable.
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Exactly solvable anharmonic oscillator
degenerate orthogonal polynomials and Painlevé II
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Quartic Anharmonic Oscillators

By this we mean the spectrum of a Sturm–Liouville problem :

LJ pypzqq :“ y
2
pzq ´

´

z
4
` tz

2
` 2Jz

¯

ypzq “ Λypzq (2)

ypzq Ñ 0 as xÑ 8 and argpzq “ ˘π{3, (3)

Quasi–Exactly–Solvable spectrum

Bender–Boettcher [’98] showed that part of the spectrum (the ”Exactly–Solvable”) is
explicit for J “ n` 1 P N. The eigenfunctions are quasi-polynomials

ypzq “ pnpzqe
θpz;tq where θpz; tq “

z3

3
`
tz

2
(4)

Ln`1 maps the space of quasi-polynomials tppzqeθpz, tq, deg p ď nu to itself.
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Eigenvalues

For J “ n` 1 the rescaled eigenvalues λ “ Λ´ t2

4 are obtained from the eigenvalue of
the operator

yLJ :“
d2

dz2
` 2

ˆ

z
2
`
t

2

˙

d

dz
´ 2pJ ´ 1qz (5)

acting on the space of polynomials of degree up to n. The spectrum λ “ λptq is
determined by detpλ1´Mnptqq “ 0 with Mnptq a pn` 1q ˆ pn` 1q matrix

Mnptq :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 ´2n
t 0 ´2pn ´ 1q
2 2t 0

6 3t 0

.
.
.

12

.
.
.

.
.
. ´4

.
.
. 0 ´2

npn ´ 1q nt 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6)

The spectrum is real for t ă t
pnq
c (Bender–Boettcher) and for t P C the spectrum is

complex and can have repeated eigenvalues.
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The discriminant locus

Shapiro-Tater »’18 (formalized in ’22)

What are the (complex) values of t P C for which the spectrum is not simple?

Dnptq :“ Discλ pdetpλ1´Mnptqqq “ 0

The problem is non self-adjoint and the spectrum is complex (particularly so for t P C).
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The numerics

Figure: Scaled roots of the discriminant Dnpn
2{3sq in black, for n “ 30 and the rescaled roots of

the Vorob’ev-Yablonsky polynomials Ynpn
2{3sq in red. This connection and particular scaling was

conjectured by B.Shapiro–M.Tater ’22.
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n Dnptq

1 t

2 t
3
`

27

8

3 t
6
`

35

2
t
3
´

243

4

4 t
10
`

215

4
t
7
`

89

8
t
4
`

4084101

512
t

5 t
15
`

255

2
t
12
`

76211

32
t
9
`

3730405

64
t
6
´

8700637815

4096
t
3
´

125005275

32

n Ynptq

1 t

2 t3 ` 4

3 t6 ` 20t3 ´ 80

4 t10 ` 60t7 ` 11200t

5 t15 ` 140t12 ` 2800t9 ` 78400t6 ´ 3136000t3 ´ 6272000

Table: The first five monic discriminant polynomials Dnptq and Vorob’ev–Yablonskii polynomials
Ynptq.
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Rational solutions of PII

d2uptq

dt2
“ 2uptq

3
` tuptq ` α, (7)

Rational solution iff α “ n P Z;

unptq “
d

dt
log

Yn´1ptq

Ynptq
(8)

with Yn the Vorob’ev–Yablonski polynomials of degree npn` 1q{2.

Yn`1ptqYn´1ptq “ tY
2
n ptq ´ 4

”

Y
2
n ptqYnptq ´

`

Y
1
nptq

˘2
ı

, n ě 1, t P C (VY)

with Y0ptq “ 1, Y1ptq “ t. Or otherwise

Ynptq “

ˆ

´
4

3

˙npn`1q{6
˜

n
ź

k“1

p2k ´ 1q!!

¸

Spn,n´1,...,1q

¨

˝

ˆ

´
3

4

˙ 1
3
t, 0, 1, 0, 0, . . .

˛

‚.

The regularity of the pattern of zeroes
of Ynptq observed numerically by Clark-
son [’03], and explained (asymptoti-
cally and analytically ) by Buckingham–
Miller [’14], Bertola-Bothner [’14];

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
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Quartic Anharmonic Oscillators

y
2
pzq ´

´

z
4
` tz

2
` 2Jz

¯

ypxq “ Λypzq (9)

ypzq Ñ 0 as z Ñ 8 and argpzq “ π,˘π{3, (10)

Quasi–Exactly–Solvable spectrum

If there are only two boundary conditions ñ Bender–Boettcher [’98]. Part of the
spectrum (the ”Exactly–Solvable”) is explicit for J P N.

Exactly–Solvable spectrum

Three boundary conditions ñ J P N and all the spectrum is explicit.
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Structural results: Exactly Solvable spectrum I

Proposition

The boundary value problem

y
2
pzq ´ pz

4
` tz

2
` 2Jz ` Λqypzq “ 0 (11)

ypse
kπi{3

q Ñ 0, sÑ `8, k “ 1, 3, 5, (12)

has solution if and only if J “ n` 1 P N and ypzq “ pnpzqe
θpz;tq, with

θpz; tq “ z3

3 ` tz
2 , with pnpzq a polynomial of degree n satisfying

˜

d2

dz2
` 2

ˆ

z
2
`
t

2

˙

d

dz
´ 2nz

¸

pnpzq “ λpnpzq, λ “ Λ´
t2

4
.
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Structural results: Exactly Solvable spectrum II

Proposition

If pnpzq is a polynomial as above then

pn is a degenerate orthogonal polynomial

˜

κ

ż83

81

`rκ

ż83

85

¸

pnpzqz
k

e
2θpz;tq

dz “ 0 k “ 0, 1, ¨ ¨ ¨ , n´ 1,n. (13)

The coefficients κ, rκ are

κ “

ż80

82

e´2θpz;tq dz

p2npzq
rκ “

ż84

80

e´2θpz;tq dz

p2npzq

∞0

∞1∞2

∞3

∞4 ∞5

γ

γ̃

Figure: Directions at infinity 8k of argument k iπ3 .
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Structural results: degenerate spectrum

Proposition

If pnpzq is a polynomial as above then

pn is a degenerate orthogonal polynomial

˜

κ

ż83

81

`rκ

ż83

85

¸

pnpzqz
k

e
2θpz;tq

dz “ 0 k “ 0, 1, ¨ ¨ ¨ , n´ 1,n. (14)

The zeros of pnpzq satisfies the Fekete type relation

θ
1
pzjq “

ÿ

k‰j

1

zk ´ zj
, j “ 1, . . . , n.

t P C is such that the Exactly Solvable spectrum of (11)-(12) has a repeated
eigenvalue iff the degenerate orthogonal polynomial pnpxq additionally satisfies

ż83

81

p
2
npzqe

2θpz;aq
dz “ 0,

ż85

83

p
2
npzqe

2θpz;aq
dz “ 0. (15)
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Second main result: the Shapiro-Tater conjecture
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From Lax pair to scalar ODE

Proposition

The point t is a pole with residue ´1 of the rational PII function uptq with parameter
α “ n (i.e. a zero of Ynptq) if and only if there is b such that the ODE
(Its-Novokshenov)

fpzq
2
´ V

JM
pz; t, bqfpzq “ 0

V
JM

pz; t, bq “ z
4
` tz

2
` 2pn`

1

2
qz `

˜

7t2

36
` 10b

¸

manifests the Stokes’ phenomenon indicated below [Buckingham–Miller ’14]

S0 =

[
1 0
i 1

]

S1 =

[
1 i
0 1

]
S2 =

[
1 0
i 1

]

S3 =

[
−1 −i
0 −1

]

S4 =

[
1 0
i 1

]
S5 =

[
1 i
0 1

]

Figure: Stokes data for the Lax pair corresponding to rational solutions of Painlevé II

29 / 36



Proposition

The values t,Λ belong to the Exactly Solvable spectrum iff the solutions to

y
2
pzq ´ pz

4
` tz

2
` 2pn` 1qz ` Λqypzq “ 0 (16)

have the Stokes’ phenomenon below. In addition the parameter t is in the discriminant
locus if and only if

ż83

81

y
2
pzq dz “ 0 “

ż83

85

y
2
pzq dz

[
1 0
0 1

]

[
1 s1
0 1

][
1 0
0 1

]

[
1 s3
0 1

]

[
1 0
0 1

] [
1 s5
0 1

]

S1

S2

S3

S4

S5

S0

Figure: Stokes matrices and Stokes sectors for the Shapiro-Tater eigenvalue problem: the condition
sj P C and s1 ` s3 ` s5 “ 0 holds.
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Strategy

1 Scale t,Λ (and z) with ~ “ pn` 1q´1 or ~ “ pn` 1
2 q
´1 to bring the equation to

standard WKB form:

~2y2pzq ´Qpz; s, Eqypzq “ 0, Qpz; s, Eq “ z
4
` sz

2
` 2z ` E (17)

s “ ~
2
3 t, E “ ~

4
3 Λ (18)

2 Use WKB to compute Stokes’ data
3 Match Stokes’ data with the one in the figure.

1 For the VY case the Stokes’ parameters are completely determined and this (implicitly)
fixes the pair ps, Eq;

2 For the ST case we need to additionally impose the degeneracy condition, which is
equivalent to

ż

83

81

y
2
pzq dz “ 0 “

ż

83

85

y
2
pzq dz

These integrals must be estimated using the WKB approximation.
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Stokes’ complex of the ST problem
compatible with all the conditions

Figure: Labelled regions in the WKB Riemann-Hilbert problem.
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Quantization conditions (leading order)

ST case

2pn` 1q

ż τ0

τ1

b

Qpz`; s, Eq dz “ ln

ˆ

´1

1` τ ps, Eq

˙

´ 2iπpm1 ` 1q

2pn` 1q

ż τ0

τ2

b

Qpz`; s, Eq dz “ ln

ˆ

´1´
1

τ ps, Eq

˙

´ 2iπpm2 ` 1q

2pn` 1q

ż τ0

τ3

b

Qpz`; s, Eq dz “ ln pτ ps, Eqq ´ 2iπpm3 ` 1q

τ ps, Eq “

ż τ0

τ1

dz
a

Qpz`; s, Eq
ż τ0

τ2

dz
a

Qpz`; s, Eq

, =pτ ps, Eqq ą 0

m1 `m2 `m3 “ n´ 1. (19)

VY case

p2n` 1q

ż τ0

τj

b

Qpz`; s, Eq dz “ ´iπ ´ 2iπkj

k1 ` k2 ` k3 “ n´ 1. (20)

33 / 36



Geometry of the lattices I

ω :“

ż τ0

τ2

dz
a

Qpz`; s, Eq
, ω

1
:“

ż τ0

τ1

dz
a

Qpz`; s, Eq
(21)

Theorem

Let ps0, E0q correspond to the first-order quantization conditions (19) or (20) in the
bulk, namely, mj{n » cj ‰ 0. Then the neighbour points in the s–plane form a slowly
modulated hexagonal lattice in the sense that the six closest neighbours of s0 are

s0 ` 2~
´

ω∆m1 ´ ω
1
∆m2

¯

(22)

where ω and ω1 are the half periods of the holomorphic differentials in (21) and

∆mj P t´1, 0, 1u, |∆m1 `∆m2| ď 1, |∆m1| ` |∆m2| ě 1.

Near the origin

If ps, Eq “ Op~q, the rescaled lattices of the zeroes of the VY Polynomials, and of the
ST problem coincide within order Op~2q “ Opn´2

q in a Op~q neighbourhood of the
origin in the s–plane.
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Figure: Scaled roots of the Vorob’ev-Yablonsky polynomials Ynpn
2{3sq in red, and roots of the

discriminant Dnpn
2{3sq in black, for n “ 30.
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Happy birthday Igor!
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