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Plan

@ The Stieltjes—Fekete problem and classical orthogonal polynomials
@ Solution to the Stieltjes—Fekete problem and degenerate orthogonal polynomials

o Exactly solvable quartic anharmonic oscillator, Shapiro-Tater conjecture and
Painlevé Il equation

Based on " Exactly solvable anharmonic oscillator, degenerate orthogonal polynomials
and Painlevé 11", arXiv:2203.16889

and " The Stieltjes—Fekete problem and degenerate orthogonal polynomials”,
http://arxiv.org/abs/2206.06861 Joint work with Marco Bertola and Eduardo
Chavez-Heredia
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Stiltjes-Fekete problem

Find the configuration of points (z1,...,2n) € C™ that we call weighted Fekete points,
that provides the maximum of the weighted Fekete functional

n n Q<zj)+Q(Zk>
F(21y...,2n) = l_[ 1_[ ‘Zj—zk‘e 2(n—1)
j=1 k=1
k)

where Q(z,%), z € C, is a real-valued external potential. Equivalently, the weighted
Fekete points provide the minimum of the energy functional

n n
E(z1,- 2m) = =2 >, loglzj — 2kl — Y, Q(z).
I<i<j<n j=1

Depending on the setup, one may require that the points belong to some assigned
domain D.
The critical points of the energy functional satisfy the equation

1
2 —— =-0Q(2), j=1,...,m,
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Classical cases

e D =R and Q(z) = —z2. The Fekete points are the zeros of the Hermite
polynomials and are the global minimum of the energy

n n
2
E(xy,...,zn) = —2 Z log |z; — x| + ij.
1<i<j<n j=1
The variational equations yield
n 1 )
— =Xy, J = 1, PR
k=1 :cj — Tk
k#j

@ The domain D = (—1,1) and the weight
Q(z) = (a+ 1)log(l —z) + (B + 1) log(l + =), o, 8 > —1. The Fekete points are
the zeros of the Jacobi polynomials and are the global minimum of the energy

n n n
1 1
E(xy,...,xn) = —2 Z log|z; — x| — log(l—atj)o‘Jr - Z log(l-&-rj)ﬁJr .
1<i<j<n j=1 j=1
The variational equations yield
2 1 a+1 B+1 )
= — , Jg=1,...,n.
=iri e 2(0—=35) 201+ )
k#3
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@ The domain D = (0, ®) and the weight Q(z) = -z + (o + 1) logz , « > —1. The

Fekete points are the zeros of the Laguerre polynomials and are the global
minimum of the energy

n

n
E(xy. ., xn) =—2 Z log |z; — x| + Z[zjf(aJrl)loga:j].

1<i<j<sn j=1

The variational equations yield

Remark. For the three above particular choices of Q(x) the weighted Fekete points
are the zeros of (classical) orthogonal polynomials and give the global minimum to the

energy £(x1,...,Tn).

o Why the global minimum of the energy should be considered? Which other types

of equilibria described above could be linked to the zeros of polynomials?

@ What is the appropriate model for the complex zeros (when they exist)?
Marcelldan—Martinez-Finkelshtein—Martinez-Gonzalez, J. comp. Appl. Math (2007)
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Generalization

We consider a holomorphic version of the condition of criticality in the form
1 _ A(zj)
"~ 2B(zj)

s d=1...,n, 1)
k#j 59Tk

where A, B are two relatively prime polynomials. The solutions of the above equation
turn out to be the critical points for the energy

n n
E(z1,...,2n) = —2 2 log |25 — zx| — ZQ(Z]-)
1<i<j<n j=1
where Q(z) = —R(A(z)) with 0 real-analytic, except for finite number of singularities
" /
and branch cuts, and 6(z) = §* ggz/g dz’. Equations (1) are also sometimes referred to

as Stieltjes—Bethe equations because of their appearance in the Bethe-Ansatz for
spin-chains. When

A(z) Lo v
B(z) =07
with ajeC all distinct and v; real, one obtains the Heine-Stieltjes electrostatic
problem
n n p
o@(zl,...,zn):—Q Z 10g|2j—zk|—z Zuglog\ag—Zj\.
1<i<j<n j=1£=0

that was studied by T.J. Stiltjes (1885), H.E.Heine (1878), E.B.Van Vleck (1898),
F.Klein (1894), G. Polya (1912), D. Dimitrov and W. Van Assche (2000),

D.Dimitrov-B.Shapiro (2018), A.Varchenko (1995).
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FIRST MAIN RESULT yJ
Given two relatively prime polynomials A(z) and B(z) with deg A > deg B, there is a
one-to-one correspondence between the solutions of the Stiltjes-Bethe equations

1 Az

ST i R R
k£j Zj — 2k 2B(Zj)

and the zeros of maximally degenerate orthogonal polynomials of degree n for a
semiclassical moment functional of type (A, B). )
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Bethe equations and integrable systems

@ Bethe ansatz equations is an ansatz method for finding the exact spectrum of
integrable quantum many-body models in the form E =}, e(u;) where u; satisfy
a system of algebraic or transcendental equations known as Bethe equations.

@ Bethe ansatz equations comes out naturally when solving the following problem:
" when a linear equation with rational (trigonometric, elliptic) coefficients has
rational (trigonometric elliptic) solution?’ For example

wn+1(I)=wn(w+1)7vn,¢}n($)’ nez
() = Pn@¥ni1 @+ 1)
n yn(z + l)yn+1(a:)

where yn(z) = Hfgl(z — ugn)) has rational solution vy (z) with poles at the zeros
of yn (z) if and only if

Y1 (@™ + 1)y ( ) — 1)y ()
( ))

=-1

Yn— 1(“ Zln(“j 1)3/n+1(“;n) -1)

that are the Bethe ansatz equation for the sipy XXX quantum integrable model
(Krichever, Lipan, Wigner Zabrodin 2016, Krichever-Varchenko 2021).
Connection with discrete mKdV and Ruijsenaars-Schneider systems is obtained. )

@ Connection of solutions of ODEs with rational (trigonometric, elliptic) coefficients
and the theory of Calogero-Moser and Ruijsenaars-Schneider systems was
pioneered by Krichever.

8/36



FIRST MAIN RESULT yJ
Given two relatively prime polynomials A(z) and B(z) with deg A > deg B, there is a
one-to-one correspondence between the solutions of the Stiltjes-Bethe equations

1 Az

ST i R R
k£j Zj — 2k 2B(Zj)

and the zeros of maximally degenerate orthogonal polynomials of degree n for a
semiclassical moment functional of type (A, B). )
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Semiclassical Moment Functionals

o A moment functional is a linear map on the space of polynomials M : C[z] — C.
@ A moment functional M : C[z] — C is semiclassical of type (A, B) where
A = A(z), B = B(z) are two relatively prime polynomials of degree a and b
respectively if

M[B(2)p'(2)] = M[A(2)p(2)],  Vp(2) € C[z].
Studied by Maroni ['87], Ismail-Masson-Rahman ['91], Marcellan-Rocha ['98]:

any such moment functional can be represented as:

d ’
= s z 0(2) z "(2) = _M
M{p] z:§1(éfw p(z)e’ " dz , 0"(2) 5C)

with d = max{a,b — 1}, s, are arbitrary complex parameters and ~, are contours
that approach the poles of #/(z) in C along steepest descent directions
(%9 — 700).

0(z) = —2°, namely B(z) =1, A(z) = 5z" and d = 4
o0i) are the asymptotic directions arg(z) = Zforj=0,..., 9
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Figure: The contours in the case B(z) = (z — po)(z — p1)*(z — p2) and A(z) = 25.
’ _ _A(=)+B(») ’ ’
0'(2) = == 57—, and Res;—p, 0'(2) > —1 and Res._;,0'(2) < -1,
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Orthogonal polynomais

The polynomials py(z) = 2™ + ..., that are orthogonal with respect to the
semiclassical moment functional M of type (A, B), are determined by the condition

d
M[Pn(z)zk] =, sjf pn(2)2e dz = 0,
Jj=1 kY]
k=0,...,n—1.

Let up(s) = M[zk], s=(51,---554)

n—1

Dy (s) := det [Hj+k(s)]j,k:0

Notice that Dy, (s) is a homogeneous polynomial of degree n in the paramaters

S1y--.,54-
The monic orthogonal polynomial p,, () of degree n is then given by

Ho M1 s Hn
Bl 2 T T
1
z) = —— det
RN
Hn—1 .- H2n—1
1 z L 2™
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Degenerate orthogonality

The polynomial p,, is called ¢~degenerate orthogonal if, in addition

M[pn(z)z"““] =0, k=0,1,...,6—1, £> 1.

Lemma

The orthogonal polynomial p,, is ¢—degenerate if and only if

.

Dpyi1k(s)i=detHpyq =0, k=0,1,...,0-1,
Ho H1 Hn
H1 K2 Hn+1
Hpy1,k =
Hn—1 so- H2n—1
Hn+k  Hnt+k+1l -+ Hontk
Dy, 41,5 (s) is a homogeneous polynomials of degree n + 1 is the parameters sy, ... sg.
Maximal degeneracy: D, j(s) =0 for k = 0,...d — 2 gives d — 1 homogeneous
polynomial relations on the “weights” sq,...,sg,

.
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Let & = {z1,...,zn} be a critical configuration satisfying the Stilties-Bethe equations
1 A(z;
= (J), i=1,...,n,

where A(z), B(z) are relatively prime arbitrary polynomials with deg A > deg B. Then

(1) the polynomial pp(z) = ;L:l(z — zj) is a maximally degenerate orthogonal
polynomial for a semiclassical moment functional M of type (A, B).

(2) The polynomial pn(z) satisfies the ODE

B(2)y"(2) — A=)y’ (2) + Q(2)y(2) = 0

" / /
where the polynomial Q = B(Z—z + 0'2—2) + B’Z—Z has degree at most d — 1 with
d = max{deg A, deg B — 1}.
Viceversa, if p,, is a semiclassical, maximally degenerate orthogonal polynomial of
degree n for a semiclassical moment functional M of type (A, B) then its zeroes
satisfy the Stilties-Bethe equations and the ODE as above.
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Example

6(z) = —2*/2, and look for the critical points of the energy

u..;;.

n n z
E(z1,--52n) = =2 ), loglz; — z| + Z -
1<i<j<n
on the real axis. Our theorem says that the corresponding polynomlal
pn(z) = H;L:1(Z — zj), with z; solution of the Stieltjes—Bethe equation, is indeed an
orthogonal polynomial, not for the orthogonality on the real axis but
4 4 . _
M[zk] :f zke_% dz + Sf zke_zT dz, o~ 0‘00001349595716 - n = 10
R iR —3.79352745107°¢ mn = 11.
Note that p,(z) is a 2-degenerate orthogonal, polynomial, namely

M[zkpn(z)]:O, k=0,...,n,n+1

-2 - 1 2
I DT S AT R P §
-2 -1 1 2

Figure: The numerically computed Fekete points with n = 10, 11 on the real axis for the Freud
4
weight e % 2,
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Remarks, open problems

@ Technical issue: count the number of solution of the Stieltjes—Bethe equations.
This corresponds to count the number of solutions of

Dpi1,k(s) =0, k=0,...d—2

with Dy, 11 1(s) homogeneous polynomials of degree n + 1 in s1,...,s4. However
there are some degeneracies, for example the equations

Dpy1,0(s) =0 = Dy o(s),

implies that pn(z) = 0.

o Extend the analysis to the case deg A < deg B. In this case the contours of the
semiclassical moment functional are Pochhammer contours.

1
@ The function F(z) = «/B(Z)Pn(z)e?(’(z) solves the differential equation
F"(z) =W (2)F(2) =0

where the potential W (z) is a rational function with poles only at the zeros of
B(z) at most of twice the order. In the case B = 1, A(z) = 2 — ¢, the potential
W (z) is a quartic polynomial. The condition that P, (z) is a degenerate
orthogonal polynomial is equivalent to the condition that the spectrum of the
quartic anharmonic oscillator is exactly solvable.
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EXACTLY SOLVABLE ANHARMONIC OSCILLATOR
DEGENERATE ORTHOGONAL POLYNOMIALS AND PAINLEVE II
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Quartic Anharmonic Oscillators

By this we mean the spectrum of a Sturm—Liouville problem :

Ly(y(2)) :=y"(z) — (24 +t22 + 2Jz) y(z) = Ay(z) (2)

y(z) > 0 as x — o and arg(z) = +7/3, 3)

Quasi—Exactly—Solvable spectrum

Bender—Boettcher ['98] showed that part of the spectrum (the " Exactly—Solvable™) is
explicit for J = n + 1 € N. The eigenfunctions are quasi-polynomials

3
0G0 \where 0(z;t) = % + %Z “

y(2) = pn(2)e

L,,+1 maps the space of quasi-polynomials {p(2)e? (z,t),degp < n} to itself.
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Eigenvalues

q 2 q q
For J = n + 1 the rescaled eigenvalues A = A — tf are obtained from the eigenvalue of
the operator

= d? 5 t\ d
Ly:= 2 - ) —-2(J-1
J 2 4F (z + 2) P (J )z (5)

acting on the space of polynomials of degree up to n. The spectrum X\ = (%) is
determined by det(A\1 — My (t)) = 0 with M, (t) a (n + 1) X (n + 1) matrix

0 —2n
t 0 —2(n — 1)
2 2t 0
6 3t 0 .
Mp (t) := (6)
12 —4
0 —2
n(n—1) nt 0

The spectrum is real for t < tén) (Bender—Boettcher) and for t € C the spectrum is
complex and can have repeated eigenvalues.
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The discriminant locus

Shapiro-Tater ~'18 (formalized in '22)

What are the (complex) values of t € C for which the spectrum is not simple?

Dy (t) := Discy (det(A1 — My (t))) =0

The problem is non self-adjoint and the spectrum is complex (particularly so for ¢ € C).
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The numerics

Figure: Scaled roots of the discriminant D,L(n2/3s) in black, for n = 30 and the rescaled roots of

the Vorob'ev-Yablonsky polynomials Yn(nZ/Ss) in red. This connection and particular scaling was
conjectured by B.Shapiro—M.Tater '22.
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n | Dn(t)
1 t

27
2 | B+ 2

8

35 243
3| 84232

4

215 7 89 4 4084101

4 | 104 22,7 =2 —
Tt e

255 76211 3730405 8700637815 125005275

5 | ¢15p 222412 4 £+ 6_ 5
2 32 64 4096 32

n Y (t)
1 t
2 | 3+4
3 | 5 +20t3 —80
4 | ¢19 4+ 60t7 + 11200t
5 | ¢1% 4 140t12 + 2800t° + 78400t% — 3136000t3 — 6272000

Table: The first five monic discriminant polynomials D,, (t) and Vorob’ev—Yablonskii polynomials
Yo (t).
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Rational solutions of PlI

d2u(t)
dt?
Rational solution iff « = n € Z;

= 2u(t)® + tu(t) + a, (7)

d . Y,_
un (t) = o log #t()t) (8)

with Y;, the Vorob'ev—Yablonski polynomials of degree n(n + 1)/2.

Y1 (8)Yno1(t) = tY,2(t) — 4[Y7’L'(t)Yn(t) - (y;(t))2], n>1,teC (VY)
with Yy (t) = 1, Yy (¢) = t. Or otherwise

(n+1)/6 [ n !
Ya(t) = (f)" ! (H (2k — 1)!!) Strn—1,....1) (—ﬁ)g £,0,1,0,0,... .
3 Pralie 4

The regularity of the pattern of zeroes
of Yy, (t) observed numerically by Clark-
son ['03], and explained (asymptoti-
cally and analytically ) by Buckingham—
Miller ['14], Bertola-Bothner ['14];
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Quartic Anharmonic Oscillators

y”(z) — (z4 +t22 4 2Jz> y(z) = Ay(z) 9)

y(z) > 0 as z — oo and arg(z) = «, £7/3, (10)

Quasi—Exactly—Solvable spectrum

If there are only two boundary conditions = Bender—Boettcher ['98]. Part of the
spectrum (the " Exactly—Solvable™) is explicit for J € N.

Exactly—Solvable spectrum

Three boundary conditions = J € N and all the spectrum is explicit.
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Structural results: Exactly Solvable spectrum |

The boundary value problem
v (2) — (z4 +t22 + 272 + ANy(z) =0 (11)

y(sekm/g) — 0, s— 40w, k=1,3,5, (12)

has solution if and only if J =n + 1€ N and y(z) = pn(z)e‘g(z‘t)7 with
3 . . e
0(zt) = &5 + %Z, with pp(2) a polynomial of degree n satisfying
£2

R (P T I —Apn(z), A=A
d22+ z+2 dz—nz pn(2) = Apn(2), SAS
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Structural results: Exactly Solvable spectrum I

Proposition

If pn(z) is a polynomial as above then

@ p, is a degenerate orthogonal polynomial

Q0. 0
(I{f 3 +%f 3) pn(z)zkeZQ(z;t) dz=0 k=0,1,--- ,n—1,n. (13)

01 Q5

@ The coefficients x, % are

jOOO e 20(=5t) g, - J'°O4 e—20(z5t) g,
K = —_— K= —_—
9 P%(Z) ©Q p%(z)
(o e]) o001
’Y
03 0
Yy
004 005

Figure: Directions at infinity 00 of argument k%
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Structural results: degenerate spectrum

If pr(z) is a polynomial as above then

@ p, is a degenerate orthogonal polynomial

03 03 5
<HJ +Ef )pn(z)zke29<z’t) dz=0 k=0,1,---,n—1,n. (14)
01 05

@ The zeros of py(z) satisfies the Fekete type relation

ACHESDY

:
KAy kT

1

j=1...,n.

@ t e C is such that the Exactly Solvable spectrum of (11)-(12) has a repeated
eigenvalue iff the degenerate orthogonal polynomial p, (x) additionally satisfies

o 0
j 3 2 (2)e20=9) 4p — o, f B 2 (2)e2®9) 4, = . (15)
71 3 y
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Second main result: the Shapiro-Tater conjecture )
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From Lax pair to scalar ODE

Proposition

The point ¢ is a pole with residue —1 of the rational Pll function u(t) with parameter
a =n (i.e. a zero of Y, (t)) if and only if there is b such that the ODE
(Its-Novokshenov)

F2)" =V (ztb) f(2) =0

1 T2
VJM(z;t,b) = 4 2 +2(n + E)Z + (% + 10b)

manifests the Stokes’ phenomenon indicated below [Buckingham—Miller '14]

10 1 i
SQ*L‘ 1} SI*[O 1]

FY Nl

Figure: Stokes data for the Lax pair corresponding to rational solutions of Painlevé Il
29/36



Proposition

The values ¢, A belong to the Exactly Solvable spectrum iff the solutions to
v (2) — (2t + 22 +2(n + 1)z + A)y(z) =0 (16)

have the Stokes' phenomenon below. In addition the parameter ¢ is in the discriminant
locus if and only if

€og) 03
f y2(z) dz =0 = f y2(z) dz
o @5

Figure: Stokes matrices and Stokes sectors for the Shapiro-Tater eigenvalue problem: the condition
sj € Cand s1 + s3 + s5 = 0 holds.
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Strategy

@ Scale t, A (and z) with i = (n + D lorh=(n+ %)*1 to bring the equation to
standard WKB form:

h2y”(z) —Q(z;s,E)y(z) =0, Q(z;s, E) = 24 + 522 +2z+ E (17)

2 4
s=h3t, E=h3A (18)

@ Use WKB to compute Stokes’ data
© Match Stokes’ data with the one in the figure.

@ For the VY case the Stokes' parameters are completely determined and this (implicitly)
fixes the pair (s, E);

@ For the ST case we need to additionally impose the degeneracy condition, which is
equivalent to

sz y3(z)dz =0 = Jwg y2(2) dz
©1

©5

These integrals must be estimated using the WKB approximation.

I
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Stokes' complex of the ST problem
compatible with all the conditions

Figure: Labelled regions in the WKB Riemann-Hilbert problem.
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Quantization conditions (leading order)

ST case
2(n+1) JTO A/ Q(z4;s, E)dz = 1n (ﬁ) — 2im(my + 1)
Tl )
2(n + 1) JTO A/ Q(z4;8,E)dz =1n (—1 — ﬁ) — 2im(mg + 1)
o T (s,
2(n + 1) fTO Q(z1:5, B)dz = In (r(s, E)) — 2im(mg + 1)
73

0 dz

(s, B) = ANV W, S(r(s,B)) > 0

s VQ(2435, E)

my +mgo +mg =n—1. (19)

VY case

70

(2n + l)f A/ Q245 8, B)dz = —im — 2imk;
.
J

k1 + ko + ks =n—1. (20)
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Geometry of the lattices |

W= o dz o ZJT¥ (21)
s Q(Z-H&E)’ Q24 s, E)

Theorem

Let (sg, Eg) correspond to the first-order quantization conditions (19) or (20) in the
bulk, namely, m;/n ~ c; # 0. Then the neighbour points in the s—plane form a slowly
modulated hexagonal lattice in the sense that the six closest neighbours of sy are

so + 2h (wAml — wlAmQ) (22)
where w and w' are the half periods of the holomorphic differentials in (21) and
Amj; e {-1,0,1}, |Amy + Amg| < 1, |[Amq| + |Amg| = 1.

Near the origin

If (s, E) = O(h), the rescaled lattices of the zeroes of the VY Polynomials, and of the
ST problem coincide within order O (k%) = O(n~2) in a O(n) neighbourhood of the
origin in the s—plane.
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Figure: Scaled roots of the Vorob'ev-Yablonsky polynomials Y;, (n2/3s) in red, and roots of the

discriminant D,, (n?3s) in black, for n = 30.
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