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Introduction

Let M be an algebraic variety. According to Atiyah and Hodge,
closed meromorphic p-form ϕ on M is called differential of a
second kind, if it has zero residues on open subsets M \D for
sufficiently large divisors D.
The quotient groups

{p-forms of the second kind}
{exact forms}

have an interpretation in terms of spectral sequences for certain
complex of sheaves of meromorphic forms on M . In particular, one
gets the statement

H1
dR(M,C) ' {1-forms of the second kind}

{exact forms}
.



1. Curves

Let X be compact Riemann surface of genus g, OX — the sheaf of
holomorphic functions on X,MX — the sheaf of meromorphic
functions, andM — the vector space of meromorphic functions on
X. Let d be the exterior derivative on X. The sheaf dMX is a
sheaf of differentials of the 2nd kind and Ω(2nd) = H0(X,dMX) is
the vector space of the differentials of the 2nd kind.
Algebraic de Rham theorem is the statement

H1
dR(X,C) = H1,0(X,C)⊕H0,1(X,C) ' Ω(2nd)/dM, (1)

which is easily proved using a sheaf-theoretic de Rham isomorphism

H1
dR(X,C) ' H1(X,C).

Namely, consider the short exact sequence of sheaves

0 −−−−→ C i−−−−→ MX
d−−−−→ dMX −−−−→ 0,

where C is the constant sheaf. Since H1(X,MX) = {0}, the
corresponding short exact sequence in the cohomology gives (1).



The infinite-dimensional vector space Ω(2nd) has a natural
skew-symmetric bilinear form

ω
(1)
X (θ1, θ2) =

∑
P∈X

ResP (d−1θ1θ2), θ1, θ2 ∈ Ω(2nd).

Theorem 1 (i) The restriction of ω(1)
X to Ω(2nd)/dM is

non-degenerate and

dimC Ω(2nd)/dM = 2g.

(ii) For every choice of non-special divisor D = P1 + · · ·+ Pg,

Ω(2nd)/dM' Ω(2nd) ∩H0(X,KX + 2D).

(iii) For every choice of local coordinates zi = z(Pi) at Pi,
Ω(2nd)/dM has a symplectic basis {ϑi, τi}gi=1, uniquely
characterized by

ϑi = (δij +O(z − zj)) dz and τi =

(
δij

(z − zj)2
+O(z − zj)

)
dz.



2. Remarks

(1) Put
Ω(2nd)(2D) = Cτ1 ⊕ · · · ⊕ Cτg.

The vector space Ω(2nd)(2D) is dual to H0(X,KX) with respect to
the pairing given by the symplectic form ω

(1)
X .

(2) The choice of a non-special effective divisor D with g distinct
points Pi and local coordinates is as an algebraic analogue of the
choice of a-cycles. The differentials ϑi are analogues of differentials
of the first kind with normalized a-periods, and the differentials τi
are analogues of differentials of the second kind with second-order
poles, zero a-periods and normalized b-periods. The symplectic
property of the basis {ϑi, τi}gi=1 is an analogue of the reciprocity
laws for differentials of the first kind and the second kind.
(3) Every choice choice of non-special effective divisor D of degree
g defines the isomorphism

H0,1(X,C) ' Ω(2nd)(2D).



(4) By Dolbeault isomorphism,

Pic0(X) = H0,1(X,C)/H1(X,Z),

so the choice of a non-special effective divisor D of degree g allows
to identify holomorphic tangent space to Jac(X) with Ω(2nd)(2D);
the holomorphic cotangent space is naturally identified with
H1,0(X,C), with the pairing given by ω(1)

X .
(5) Fix a non-special divisor D0 = Q1 + · · ·+Qg and consider the
map

X(g) 3 D → µ(g)(D) ∈ Jac(X),

where µ(g) is the Abel-Jacobi sum: for D = P1 + · · ·+ Pg

µ(g)(D) =

(
g∑
i=1

∫ Pi

Qi

ϑ1, . . . ,

g∑
i=1

∫ Pi

Qi

ϑg

)
, (2)

and {ϑi}gi=1 is the basis of H0(X,KX) from Theorem 1,
specialized to the divisor D0. The 1-forms dzi at the base point
µg(D0) correspond to the differentials of the first kind ϑi, and the

vector fields
∂

∂zi
— to the differentials of the second kind τi.



(6) If divisor D is also non-special, then it follows from the group

law on the Jacobian and Theorem 1 that dzi and
∂

∂zi
at a point

µ(g)(D) are given by the symplectic basis of Ω(2nd)/dM.

(7) The vector fields
∂

∂zi
on Jac(X) can be described using the

formalism of Lax equations on algebraic curves, developed by Igor
Krichever (Commun. Math. Phys. 229, 2002, and Mosc. Math. J.,
2:4, 2002).
(8) Namely, Igor’s meromorphic 1-forms L(z)dz are holomorphic in
case r = 1 and become differentials of the first kind ϑ, while the
analogues of rational functions M(z) are defined as follows.
Consider the vector space

LD+D0 = {f ∈M : (f) +D +D0 ≥ 0}, dimLD+D0 = g + 1.

For any fixed choice of principal parts of f at D0, not all of them
zero, there is a unique f ∈ LD+D0 , at all points of D satisfying

f(z) =
αi

z − zi
+O(1), zi = z(Pi). (3)

Functions f play the role of rational functions M(z) in case r = 1.



(9) We have
df = τ − τ0,

where τ ∈ Ω(2nd)(2D) and (τ0) + 2D0 ≥ 0. By the residue theorem,

−
g∑
i=1

ResPi(fϑ) = ω
(1)
X (ϑ, τ) = ω

(1)
X (ϑ, τ0), ϑ ∈ H0(X,KX),

so the pairing (2.22) in Igor’s papers coincides with the pairing
given by the symplectic form ω

(1)
X . Choosing the symplectic basis of

Ω(2nd)/dM, we see that there is a correspondence

f 7→ Lf = −
g∑
i=1

αi
∂

∂zi

between rational functions f ∈ LD+D0 and vector fields on Jac(X).
(10) Along an integral curve D(t), where D(0) = D, we have

żi(t) = −αi(t), i = 1, . . . , g, (4)

where the dot stands for the t-derivative. In case when X is a
hyperelliptic curve, these are classical Dubrovin equations, arising
in the theory of finite-gap integration for the KdV equation.



(11) Using Dubrovin equations, we see that along the integral curve
equations (3) take the form

ft(z) = − żi(t)

z − zi(t)
+O(1), i = 1, . . . , g. (5)

Thus introducing

Ψ(z) = exp

{∫ T

0
ft(z)dt

}
we see from (5) that Ψ is a meromorphic function on X \D0

having simple poles only at D, simple zeros only at D(T ), and
essential singularities at the points of D0. The function Ψ is
nothing but the celebrated Baker-Akhiezer function, introduced by
Igor Krichever in 1977!



2. Quadratic differentials

In order to formulate an analog of algebraic de Rham theorem for
higher order differentials, one needs to fix a projective structure on
X (or to choose a uniformizer at each P ∈ X). One can assume
that a projective structure is given by the Fuchsian uniformization
X ' Γ\H (or by quasi-Fuchsian uniformization for holomorphic
families).
2.1 Quadratic differentials of the second kind. We have

H0(X,M(K2
X)) 'M4(H,Γ),

the space of weight 4 meromorphic automorphic forms for Γ and

H0(X,K2
X) 'H4(H,Γ),

the subspace of holomorphic automorphic forms of weight 4.
Correspondingly, for the space V of meromorphic vector fields on X

V = H0(X,M(K−1
X )) 'M−2(H,Γ).



It is a classical result

M−2(H,Γ) 3 v 7→ q = v′′′ ∈M4(H,Γ),

which allows (given a choice of a projective atlas) to consider the
sheaf d3M(K−1

X ) as a subsheaf ofM(K2
X).

The infinite-dimensional vector space Ω(2nd) = H0(X,d3M(K−1
X ))

— the space of quadratic differentials of the second kind — is the
subspace of meromorphic automorphic forms of weight 4 whose
singular series at the poles do not contain terms of orders −3,−2
and −1.
Explicitly,

q(z) =

∞∑
n=N

(n3 − n)an(z − z0)n−2 (6)

near each pole z0 ∈ H, where coefficients a−1, a0, a1 can set to be
0. (Though this condition is not well defined for arbitrary choice of
a local parameter, it is stable under the fractional-linear
transformations.)
2.2 Algebraic de Rham theorem I.



Let P2(K−1
X ) be the sheaf of local holomorphic sections of K−1

X ,
which are polynomials of degree ≤ 2 (in a given projective structure
on X).
The formal analogue of the algebraic de Rham theorem for
quadratic differentials is the isomorphism

H1(X,P2(KX)) ' Ω(2nd)/d3V , (7)

which follows from the short exact sequence of sheaves

0 −−−−→ P2(K−1
X )

i−−−−→ M(K−1
X )

d3

−−−−→ d3M(K−1
X ) −−−−→ 0

as before, since H1(X,M(K−1
X )) = 0.

2.3 Symplectic form. The infinite-dimensional vector space Ω(2nd)

has a natural skew-symmetric bilinear form

ω
(2)
X (q1, q2) =

∑
z∈Γ\H

Resz(d
−3q1q2),



It follows from the residue theorem that

ω
(2)
X (q1, q2) = 0 q1 ∈ Ω(2nd), q2 ∈ d3V ,

so ω(2)
X can be restricted to the quotient space Ω(2nd)/d3V .

Theorem 2 (i) The restriction of ω(2)
X to Ω(2nd)/d3V is

non-degenerate and

dimC Ω(2nd)/d3V = 6g − 6.

(ii) For every choice of degree g non-special effective divisor D,

Ω(2nd)/d3V ' Ω(2nd) ∩H0(2KX + 4D).

(iii) Let KX +D =
∑3g−3

i=1 Pi be an effective divisor of degree
3g − 3 with distinct points, The vector space Ω(2nd)/d3V has a
symplectic basis {qi, ri}3g−3

i=1 uniquely characterized by

qi = (δij +O(z − zj))dz2 ri =

(
6

δij
(z − zj)4

+O(z − zj)
)
dz2.

(iv) The subspace Ω(2nd)(4D) = C · r1 ⊕ · · · ⊕ C · r3g−3 is a
complementary isotropic subspace to H0(X,K2

X)⊕ d3E in Ω(2nd).
2.4 Eichler integrals and Eichler cohomology.



For q ∈ Ω(2nd) we have

q(z) = E ′′′(z),

where E is an Eichler integral of weight −1, a meromorphic
function on H which has an expansion

E (z) =

∞∑
n=N

an(z − z0)n+1

near each pole z0 of q and for every γ ∈ Γ satisfies

E (z)− E (γz)

γ′(z)
= χ(γ−1)(z), (8)

where χ(γ)(z) ∈P2, the vector space of polynomials of degree
≤ 2. The Eichler integral E = d−3q is defined up to the addition of
a quadratic polynomial in z.
The mapping χ : Γ→P2 satisfies

χ(γ1γ2) = χ(γ1) + γ1 · χ(γ2), (g · P2)(z) =
P2(g−1z)

(g−1)′(z)

where g ∈ PSL(2,C), P2 ∈P2.



We have χ ∈ Z1(Γ,P2), the space of 1-cocycles for the group Γ
with coefficients in the Γ-module P2. Corresponding coboundaries
B1(Γ,P2) are χ(γ) = γ · P2 − P2 for some P2 ∈P2, and

H1(Γ,P2) = Z1(Γ,P2)/B1(Γ,P2)

is the first Eichler cohomology group of Γ (group cohomology with
coefficients in the Γ-module P2).
We have a standard isomorphism

H1(Γ,P2) ' H1(X,P2(K−1
X )). (9)

2.5 Eichler integrals and Eichler and Bers cocycles.
The solution of the equation E ′′′ = q is

E (z) =
1

2

∫ z

z0

(z − u)2q(u)du, (10)

and corresponding cocycle χ is given by explicit formula

χ(γ)(z) =
1

2

∫ γz0

z0

(z − u)2q(u)du. (11)



In particular, we have a C-linear mapping

H0(X,K2
X) 3 q 7→ ıE(q) = [χ] ∈ H1(Γ,P2),

where χ is given by (11) with holomorphic q.
We call such χ Eichler cocycles and denote by H1

E(Γ,P2) the
image of H0(X,K2

X). This map is injective, so that

dimCH
1
E(Γ,P2) = 3g − 3.

Another C-antilinear mapping ıB : H0(X,K2
X)→ H1(Γ,P2): for

q ∈ H0(X,K2
X) put µ = y2q̄ and consider the following ∂̄-problem

Fz̄ = µ and F = o(|z|2) as |z| → ∞.

The function F is a Bers potential of the harmonic Beltrami
differential µ = y2q̄. We have

F (z) = −1

4

∫ z

z0

(z̄ − u)2q(u)du = −1

4

∫ z

z0

(z − ū)2q(u)dū,



and for γ ∈ Γ,

F (z)− F (γz)

γ′(z)
= σ(γ−1)(z) ∈P2,

where σ ∈ Z1(Γ,P2) is a Bers cocycle,

σ(γ)(z) = −1

4

∫ γz0

z0

(z − ū)2q(u)dū. (12)

Now the mapping ıB is defined by

H0(X,K2
X) 3 q 7→ ıB(q) = [σ] ∈ H1(Γ,P2),

and we denote by H1
B(Γ,P2) the image of H0(X,K2

X).
Comparing formula (12) for the Bers cocycle for q with formula
(11) for the Eichler cocycle for q, we get

σ(γ)(z) = −1

2
χ(z̄). (13)



The injectivity of the map ıB follows from the injectivity of ıE and

dimCH
1
B(Γ,P2) = 3g − 3.

Lemma H1
E(Γ,P2) ∩H1

B(Γ,P2) = {0}.
2.6 Eichler-Shimura periods and bilinear relations.

(q1, q2) =

√
−1

2
ωG(χ1, χ̄2), χ1 = ıE(q1), χ2 = ıE(q2)

and

ω
(2)
X (q1, q2) = − 1

π
ωG(χ1, χ2), χ1 = ıE(q1), χ2 = ıE(q2),

where , ) stands for the Petersson inner product, and ωG is the
Goldman symplectic form on PSL(2,C) character variety.
2.7 Algebraic de Rham theorem II. Every choice of a non-special
effective divisor D of degree g gives an isomorphism

H1(X,P2(K−1
X )) ' H0(X,K2

X)⊕ Ω(2nd)(4D).



Remarks

• Let Tg be the Teichmüller space of compact Riemann surfaces
of genus g > 1. Then its holomorphic tangent space T[X]Tg,
for a choice of a non-special effective divisor D of degree g,
can be identified with the subspace Ω(2nd)(4D) of special
meromorphic quadratic differentials on X, and the holomorphic
cotangent space T ∗[X]Tg — with the subspace H0(X,K2

X) of
holomorphic quadratic differentials. The pairing between
T[X]Tg and T ∗[X]Tg is given by the symplectic form ω

(2)
X .

• In the standard complex-analytic approach, the holomorphic
tangent space T[X]Tg is naturally identified with the space of
harmonic Beltrami differentials.

• Relation with work of Krichever-Phong, and its elaboration by
Grushevsky-Krichever on the algebro-geometric description of
the vector fields on the moduli space of curves (with extra
data)?
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