On algebraic de Rham theorem

Leon A. Takhtajan
Stony Brook University, Stony Brook NY, USA Euler Mathematical Institute, Saint Petersburg, Russia

"Algebraic Geometry, Mathematical Physics, and Solitons" Celebrating the work of Igor Krichever

October 7-9, 2022
Columbia University, New York

Introduction

Let M be an algebraic variety. According to Atiyah and Hodge, closed meromorphic p-form φ on M is called differential of a second kind, if it has zero residues on open subsets $M \backslash D$ for sufficiently large divisors D.
The quotient groups

$$
\frac{\{p \text {-forms of the second kind }\}}{\{\text { exact forms }\}}
$$

have an interpretation in terms of spectral sequences for certain complex of sheaves of meromorphic forms on M. In particular, one gets the statement

$$
H_{\mathrm{dR}}^{1}(M, \mathbb{C}) \simeq \frac{\{1 \text {-forms of the second kind }\}}{\{\text { exact forms }\}}
$$

1. Curves

Let X be compact Riemann surface of genus g, \mathcal{O}_{X} - the sheaf of holomorphic functions on X, \mathcal{M}_{X} - the sheaf of meromorphic functions, and \mathcal{M} - the vector space of meromorphic functions on X. Let d be the exterior derivative on X. The sheaf $\mathrm{d} \mathcal{M}_{X}$ is a sheaf of differentials of the 2 nd kind and $\Omega^{(2 n d)}=H^{0}\left(X, \mathrm{~d} \mathcal{M}_{X}\right)$ is the vector space of the differentials of the 2 nd kind.
Algebraic de Rham theorem is the statement

$$
\begin{equation*}
H_{\mathrm{dR}}^{1}(X, \mathbb{C})=H^{1,0}(X, \mathbb{C}) \oplus H^{0,1}(X, \mathbb{C}) \simeq \Omega^{(2 \mathrm{nd})} / \mathrm{d} \mathcal{M} \tag{1}
\end{equation*}
$$

which is easily proved using a sheaf-theoretic de Rham isomorphism

$$
H_{\mathrm{dR}}^{1}(X, \mathbb{C}) \simeq H^{1}(X, \mathbb{C})
$$

Namely, consider the short exact sequence of sheaves

$$
0 \longrightarrow \mathbb{C} \xrightarrow{i} \mathcal{M}_{X} \xrightarrow{\mathrm{~d}} \mathrm{~d} \mathcal{M}_{X} \longrightarrow 0
$$

where \mathbb{C} is the constant sheaf. Since $H^{1}\left(X, \mathcal{M}_{X}\right)=\{0\}$, the corresponding short exact sequence in the cohomology gives (1).

The infinite-dimensional vector space $\Omega^{(2 n d)}$ has a natural skew-symmetric bilinear form

$$
\omega_{X}^{(1)}\left(\theta_{1}, \theta_{2}\right)=\sum_{P \in X} \operatorname{Res}_{P}\left(\mathrm{~d}^{-1} \theta_{1} \theta_{2}\right), \quad \theta_{1}, \theta_{2} \in \Omega^{(2 \mathrm{nd})}
$$

Theorem 1 (i) The restriction of $\omega_{X}^{(1)}$ to $\Omega^{(2 \mathrm{nd})} / \mathrm{d} \mathcal{M}$ is non-degenerate and

$$
\operatorname{dim}_{\mathbb{C}} \Omega^{(2 \mathrm{nd})} / \mathrm{d} \mathcal{M}=2 g
$$

(ii) For every choice of non-special divisor $D=P_{1}+\cdots+P_{g}$,

$$
\Omega^{(2 \mathrm{nd})} / \mathrm{d} \mathcal{M} \simeq \Omega^{(2 \mathrm{nd})} \cap H^{0}\left(X, K_{X}+2 D\right)
$$

(iii) For every choice of local coordinates $z_{i}=z\left(P_{i}\right)$ at P_{i}, $\Omega^{(2 \text { nd })} / \mathrm{d} \mathcal{M}$ has a symplectic basis $\left\{\vartheta_{i}, \tau_{i}\right\}_{i=1}^{g}$, uniquely characterized by

$$
\vartheta_{i}=\left(\delta_{i j}+O\left(z-z_{j}\right)\right) d z \text { and } \tau_{i}=\left(\frac{\delta_{i j}}{\left(z-z_{j}\right)^{2}}+O\left(z-z_{j}\right)\right) d z
$$

2. Remarks

(1) Put

$$
\Omega^{(2 \mathrm{nd})}(2 D)=\mathbb{C} \tau_{1} \oplus \cdots \oplus \mathbb{C} \tau_{g}
$$

The vector space $\Omega^{(2 \mathrm{nd})}(2 D)$ is dual to $H^{0}\left(X, K_{X}\right)$ with respect to the pairing given by the symplectic form $\omega_{X}^{(1)}$.
(2) The choice of a non-special effective divisor D with g distinct points P_{i} and local coordinates is as an algebraic analogue of the choice of a-cycles. The differentials ϑ_{i} are analogues of differentials of the first kind with normalized a-periods, and the differentials τ_{i} are analogues of differentials of the second kind with second-order poles, zero a-periods and normalized b-periods. The symplectic property of the basis $\left\{\vartheta_{i}, \tau_{i}\right\}_{i=1}^{g}$ is an analogue of the reciprocity laws for differentials of the first kind and the second kind.
(3) Every choice choice of non-special effective divisor D of degree g defines the isomorphism

$$
H^{0,1}(X, \mathbb{C}) \simeq \Omega^{(2 \mathrm{nd})}(2 D)
$$

(4) By Dolbeault isomorphism,

$$
\operatorname{Pic}^{0}(X)=H^{0,1}(X, \mathbb{C}) / H^{1}(X, \mathbb{Z})
$$

so the choice of a non-special effective divisor D of degree g allows to identify holomorphic tangent space to $\operatorname{Jac}(X)$ with $\Omega^{(2 n d)}(2 D)$; the holomorphic cotangent space is naturally identified with $H^{1,0}(X, \mathbb{C})$, with the pairing given by $\omega_{X}^{(1)}$.
(5) Fix a non-special divisor $D_{0}=Q_{1}+\cdots+Q_{g}$ and consider the map

$$
X^{(g)} \ni D \rightarrow \mu^{(g)}(D) \in \operatorname{Jac}(X),
$$

where $\mu^{(g)}$ is the Abel-Jacobi sum: for $D=P_{1}+\cdots+P_{g}$

$$
\begin{equation*}
\mu^{(g)}(D)=\left(\sum_{i=1}^{g} \int_{Q_{i}}^{P_{i}} \vartheta_{1}, \ldots, \sum_{i=1}^{g} \int_{Q_{i}}^{P_{i}} \vartheta_{g}\right), \tag{2}
\end{equation*}
$$

and $\left\{\vartheta_{i}\right\}_{i=1}^{g}$ is the basis of $H^{0}\left(X, K_{X}\right)$ from Theorem 1, specialized to the divisor D_{0}. The 1 -forms $d z_{i}$ at the base point $\mu^{g}\left(D_{0}\right)$ correspond to the differentials of the first kind ϑ_{i}, and the vector fields $\frac{\partial}{\partial z_{i}}-$ to the differentials of the second kind τ_{i}.
(6) If divisor D is also non-special, then it follows from the group law on the Jacobian and Theorem 1 that $d z_{i}$ and $\frac{\partial}{\partial z_{i}}$ at a point $\mu^{(g)}(D)$ are given by the symplectic basis of $\Omega^{(2 n d)} / \mathrm{d} \mathcal{M}$.
(7) The vector fields $\frac{\partial}{\partial z_{i}}$ on $\operatorname{Jac}(X)$ can be described using the formalism of Lax equations on algebraic curves, developed by Igor Krichever (Commun. Math. Phys. 229, 2002, and Mosc. Math. J., 2:4, 2002).
(8) Namely, Igor's meromorphic 1-forms $L(z) d z$ are holomorphic in case $r=1$ and become differentials of the first kind ϑ, while the analogues of rational functions $M(z)$ are defined as follows.
Consider the vector space

$$
\mathcal{L}_{D+D_{0}}=\left\{f \in \mathcal{M}:(f)+D+D_{0} \geq 0\right\}, \quad \operatorname{dim} \mathcal{L}_{D+D_{0}}=g+1
$$

For any fixed choice of principal parts of f at D_{0}, not all of them zero, there is a unique $f \in \mathcal{L}_{D+D_{0}}$, at all points of D satisfying

$$
\begin{equation*}
f(z)=\frac{\alpha_{i}}{z-z_{i}}+O(1), \quad z_{i}=z\left(P_{i}\right) \tag{3}
\end{equation*}
$$

Functions f play the role of rational functions $M(z)$ in case $r=1$.
(9) We have

$$
d f=\tau-\tau_{0}
$$

where $\tau \in \Omega^{(2 \text { nd })}(2 D)$ and $\left(\tau_{0}\right)+2 D_{0} \geq 0$. By the residue theorem,

$$
-\sum_{i=1}^{g} \operatorname{Res}_{P_{i}}(f \vartheta)=\omega_{X}^{(1)}(\vartheta, \tau)=\omega_{X}^{(1)}\left(\vartheta, \tau_{0}\right), \quad \vartheta \in H^{0}\left(X, K_{X}\right)
$$

so the pairing (2.22) in Igor's papers coincides with the pairing given by the symplectic form $\omega_{X}^{(1)}$. Choosing the symplectic basis of $\Omega^{(2 \mathrm{nd})} / \mathrm{d} \mathcal{M}$, we see that there is a correspondence

$$
f \mapsto \mathscr{L}_{f}=-\sum_{i=1}^{g} \alpha_{i} \frac{\partial}{\partial z_{i}}
$$

between rational functions $f \in \mathcal{L}_{D+D_{0}}$ and vector fields on $\operatorname{Jac}(X)$. (10) Along an integral curve $D(t)$, where $D(0)=D$, we have

$$
\begin{equation*}
\dot{z}_{i}(t)=-\alpha_{i}(t), \quad i=1, \ldots, g \tag{4}
\end{equation*}
$$

where the dot stands for the t-derivative. In case when X is a hyperelliptic curve, these are classical Dubrovin equations, arising in the theory of finite-gap integration for the KdV equation.
(11) Using Dubrovin equations, we see that along the integral curve equations (3) take the form

$$
\begin{equation*}
f_{t}(z)=-\frac{\dot{z}_{i}(t)}{z-z_{i}(t)}+O(1), \quad i=1, \ldots, g \tag{5}
\end{equation*}
$$

Thus introducing

$$
\Psi(z)=\exp \left\{\int_{0}^{T} f_{t}(z) d t\right\}
$$

we see from (5) that Ψ is a meromorphic function on $X \backslash D_{0}$ having simple poles only at D, simple zeros only at $D(T)$, and essential singularities at the points of D_{0}. The function Ψ is nothing but the celebrated Baker-Akhiezer function, introduced by Igor Krichever in 1977!

2. Quadratic differentials

In order to formulate an analog of algebraic de Rham theorem for higher order differentials, one needs to fix a projective structure on X (or to choose a uniformizer at each $P \in X$). One can assume that a projective structure is given by the Fuchsian uniformization $X \simeq \Gamma \backslash \mathbb{H}$ (or by quasi-Fuchsian uniformization for holomorphic families).
2.1 Quadratic differentials of the second kind. We have

$$
H^{0}\left(X, \mathcal{M}\left(K_{X}^{2}\right)\right) \simeq \mathscr{M}_{4}(\mathbb{H}, \Gamma)
$$

the space of weight 4 meromorphic automorphic forms for Γ and

$$
H^{0}\left(X, K_{X}^{2}\right) \simeq \mathscr{H}_{4}(\mathbb{H}, \Gamma)
$$

the subspace of holomorphic automorphic forms of weight 4.
Correspondingly, for the space \mathscr{V} of meromorphic vector fields on X

$$
\mathscr{V}=H^{0}\left(X, \mathcal{M}\left(K_{X}^{-1}\right)\right) \simeq \mathscr{M}_{-2}(\mathbb{H}, \Gamma) .
$$

It is a classical result

$$
\mathscr{M}_{-2}(\mathbb{H}, \Gamma) \ni v \mapsto q=v^{\prime \prime \prime} \in \mathscr{M}_{4}(\mathbb{H}, \Gamma),
$$

which allows (given a choice of a projective atlas) to consider the sheaf $\mathrm{d}^{3} \mathcal{M}\left(K_{X}^{-1}\right)$ as a subsheaf of $\mathcal{M}\left(K_{X}^{2}\right)$.
The infinite-dimensional vector space $\Omega^{(2 \mathrm{nd})}=H^{0}\left(X, \mathrm{~d}^{3} \mathcal{M}\left(K_{X}^{-1}\right)\right)$

- the space of quadratic differentials of the second kind - is the subspace of meromorphic automorphic forms of weight 4 whose singular series at the poles do not contain terms of orders $-3,-2$ and -1 .
Explicitly,

$$
\begin{equation*}
q(z)=\sum_{n=N}^{\infty}\left(n^{3}-n\right) a_{n}\left(z-z_{0}\right)^{n-2} \tag{6}
\end{equation*}
$$

near each pole $z_{0} \in \mathbb{H}$, where coefficients a_{-1}, a_{0}, a_{1} can set to be 0 . (Though this condition is not well defined for arbitrary choice of a local parameter, it is stable under the fractional-linear transformations.)
2.2 Algebraic de Rham theorem I.

Let $\mathscr{P}_{2}\left(K_{X}^{-1}\right)$ be the sheaf of local holomorphic sections of K_{X}^{-1}, which are polynomials of degree ≤ 2 (in a given projective structure on X).
The formal analogue of the algebraic de Rham theorem for quadratic differentials is the isomorphism

$$
\begin{equation*}
H^{1}\left(X, \mathscr{P}_{2}\left(K_{X}\right)\right) \simeq \Omega^{(2 \mathrm{nd})} / \mathrm{d}^{3} \mathscr{V} \tag{7}
\end{equation*}
$$

which follows from the short exact sequence of sheaves
$0 \longrightarrow \mathscr{P}_{2}\left(K_{X}^{-1}\right) \xrightarrow{i} \mathcal{M}\left(K_{X}^{-1}\right) \xrightarrow{\mathrm{d}^{3}} \mathrm{~d}^{3} \mathcal{M}\left(K_{X}^{-1}\right)$
as before, since $H^{1}\left(X, \mathcal{M}\left(K_{X}^{-1}\right)\right)=0$.
2.3 Symplectic form. The infinite-dimensional vector space $\Omega^{(2 \mathrm{nd})}$ has a natural skew-symmetric bilinear form

$$
\omega_{X}^{(2)}\left(q_{1}, q_{2}\right)=\sum_{z \in \Gamma \backslash \mathbb{H}} \operatorname{Res}_{z}\left(d^{-3} q_{1} q_{2}\right),
$$

It follows from the residue theorem that

$$
\omega_{X}^{(2)}\left(q_{1}, q_{2}\right)=0 \quad q_{1} \in \Omega^{(2 \mathrm{nd})}, \quad q_{2} \in \mathrm{~d}^{3} \mathscr{V}
$$

so $\omega_{X}^{(2)}$ can be restricted to the quotient space $\Omega^{(2 n d)} / \mathrm{d}^{3} \mathscr{V}$.
Theorem 2 (i) The restriction of $\omega_{X}^{(2)}$ to $\Omega^{(2 n d)} / \mathrm{d}^{3} \mathscr{V}$ is non-degenerate and

$$
\operatorname{dim}_{\mathbb{C}} \Omega^{(2 \mathrm{nd})} / \mathrm{d}^{3} \mathscr{V}=6 g-6
$$

(ii) For every choice of degree g non-special effective divisor D,

$$
\Omega^{(2 \mathrm{nd})} / \mathrm{d}^{3} \mathscr{V} \simeq \Omega^{(2 \mathrm{nd})} \cap H^{0}\left(2 K_{X}+4 D\right)
$$

(iii) Let $K_{X}+D=\sum_{i=1}^{3 g-3} P_{i}$ be an effective divisor of degree $3 g-3$ with distinct points, The vector space $\Omega^{(2 \text { nd })} / \mathrm{d}^{3} \mathscr{V}$ has a symplectic basis $\left\{q_{i}, r_{i}\right\}_{i=1}^{3 g-3}$ uniquely characterized by

$$
q_{i}=\left(\delta_{i j}+O\left(z-z_{j}\right)\right) d z^{2} \quad r_{i}=\left(6 \frac{\delta_{i j}}{\left(z-z_{j}\right)^{4}}+O\left(z-z_{j}\right)\right) d z^{2}
$$

(iv) The subspace $\Omega^{(2 \mathrm{nd})}(4 D)=\mathbb{C} \cdot r_{1} \oplus \cdots \oplus \mathbb{C} \cdot r_{3 g-3}$ is a complementary isotropic subspace to $H^{0}\left(X, K_{X}^{2}\right) \oplus \mathrm{d}^{3} \mathscr{E}$ in $\Omega^{(2 n d)}$. 2.4 Eichler integrals and Eichler cohomology.

For $q \in \Omega^{(2 \mathrm{nd})}$ we have

$$
q(z)=\mathscr{E}^{\prime \prime \prime}(z)
$$

where \mathscr{E} is an Eichler integral of weight -1 , a meromorphic function on \mathbb{H} which has an expansion

$$
\mathscr{E}(z)=\sum_{n=N}^{\infty} a_{n}\left(z-z_{0}\right)^{n+1}
$$

near each pole z_{0} of q and for every $\gamma \in \Gamma$ satisfies

$$
\begin{equation*}
\mathscr{E}(z)-\frac{\mathscr{E}(\gamma z)}{\gamma^{\prime}(z)}=\chi\left(\gamma^{-1}\right)(z) \tag{8}
\end{equation*}
$$

where $\chi(\gamma)(z) \in \mathscr{P}_{2}$, the vector space of polynomials of degree ≤ 2. The Eichler integral $\mathscr{E}=\mathrm{d}^{-3} q$ is defined up to the addition of a quadratic polynomial in z.
The mapping $\chi: \Gamma \rightarrow \mathscr{P}_{2}$ satisfies

$$
\chi\left(\gamma_{1} \gamma_{2}\right)=\chi\left(\gamma_{1}\right)+\gamma_{1} \cdot \chi\left(\gamma_{2}\right), \quad\left(g \cdot P_{2}\right)(z)=\frac{P_{2}\left(g^{-1} z\right)}{\left(g^{-1}\right)^{\prime}(z)}
$$

where $g \in \operatorname{PSL}(2, \mathbb{C}), P_{2} \in \mathscr{P}_{2}$.

We have $\chi \in Z^{1}\left(\Gamma, \mathscr{P}_{2}\right)$, the space of 1 -cocycles for the group Γ with coefficients in the Γ-module \mathscr{P}_{2}. Corresponding coboundaries $B^{1}\left(\Gamma, \mathscr{P}_{2}\right)$ are $\chi(\gamma)=\gamma \cdot P_{2}-P_{2}$ for some $P_{2} \in \mathscr{P}_{2}$, and

$$
H^{1}\left(\Gamma, \mathscr{P}_{2}\right)=Z^{1}\left(\Gamma, \mathscr{P}_{2}\right) / B^{1}\left(\Gamma, \mathscr{P}_{2}\right)
$$

is the first Eichler cohomology group of Γ (group cohomology with coefficients in the Γ-module \mathscr{P}_{2}).
We have a standard isomorphism

$$
\begin{equation*}
H^{1}\left(\Gamma, \mathscr{P}_{2}\right) \simeq H^{1}\left(X, \mathscr{P}_{2}\left(K_{X}^{-1}\right)\right) \tag{9}
\end{equation*}
$$

2.5 Eichler integrals and Eichler and Bers cocycles.

The solution of the equation $\mathscr{E}^{\prime \prime \prime}=q$ is

$$
\begin{equation*}
\mathscr{E}(z)=\frac{1}{2} \int_{z_{0}}^{z}(z-u)^{2} q(u) d u \tag{10}
\end{equation*}
$$

and corresponding cocycle χ is given by explicit formula

$$
\begin{equation*}
\chi(\gamma)(z)=\frac{1}{2} \int_{z_{0}}^{\gamma z_{0}}(z-u)^{2} q(u) d u \tag{11}
\end{equation*}
$$

In particular, we have a \mathbb{C}-linear mapping

$$
H^{0}\left(X, K_{X}^{2}\right) \ni q \mapsto \imath_{E}(q)=[\chi] \in H^{1}\left(\Gamma, \mathscr{P}_{2}\right)
$$

where χ is given by (11) with holomorphic q. We call such χ Eichler cocycles and denote by $H_{E}^{1}\left(\Gamma, \mathscr{P}_{2}\right)$ the image of $H^{0}\left(X, K_{X}^{2}\right)$. This map is injective, so that

$$
\operatorname{dim}_{\mathbb{C}} H_{E}^{1}\left(\Gamma, \mathscr{P}_{2}\right)=3 g-3
$$

Another \mathbb{C}-antilinear mapping $\imath_{B}: H^{0}\left(X, K_{X}^{2}\right) \rightarrow H^{1}\left(\Gamma, \mathscr{P}_{2}\right)$: for $q \in H^{0}\left(X, K_{X}^{2}\right)$ put $\mu=y^{2} \bar{q}$ and consider the following $\bar{\partial}$-problem

$$
F_{\bar{z}}=\mu \quad \text { and } \quad F=o\left(|z|^{2}\right) \text { as } \quad|z| \rightarrow \infty .
$$

The function F is a Bers potential of the harmonic Beltrami differential $\mu=y^{2} \bar{q}$. We have

$$
F(z)=-\frac{1}{4} \overline{\int_{z_{0}}^{z}(\bar{z}-u)^{2} q(u) d u}=-\frac{1}{4} \int_{z_{0}}^{z}(z-\bar{u})^{2} \overline{q(u)} d \bar{u}
$$

and for $\gamma \in \Gamma$,

$$
F(z)-\frac{F(\gamma z)}{\gamma^{\prime}(z)}=\sigma\left(\gamma^{-1}\right)(z) \in \mathscr{P}_{2}
$$

where $\sigma \in Z^{1}\left(\Gamma, \mathscr{P}_{2}\right)$ is a Bers cocycle,

$$
\begin{equation*}
\sigma(\gamma)(z)=-\frac{1}{4} \int_{z_{0}}^{\gamma z_{0}}(z-\bar{u})^{2} \overline{q(u)} d \bar{u} \tag{12}
\end{equation*}
$$

Now the mapping \imath_{B} is defined by

$$
H^{0}\left(X, K_{X}^{2}\right) \ni q \mapsto \imath_{B}(q)=[\sigma] \in H^{1}\left(\Gamma, \mathscr{P}_{2}\right)
$$

and we denote by $H_{B}^{1}\left(\Gamma, \mathscr{P}_{2}\right)$ the image of $H^{0}\left(X, K_{X}^{2}\right)$.
Comparing formula (12) for the Bers cocycle for q with formula (11) for the Eichler cocycle for q, we get

$$
\begin{equation*}
\sigma(\gamma)(z)=-\frac{1}{2} \overline{\chi(\bar{z})} \tag{13}
\end{equation*}
$$

The injectivity of the map \imath_{B} follows from the injectivity of \imath_{E} and

$$
\operatorname{dim}_{\mathbb{C}} H_{B}^{1}\left(\Gamma, \mathscr{P}_{2}\right)=3 g-3
$$

Lemma $H_{E}^{1}\left(\Gamma, \mathscr{P}_{2}\right) \cap H_{B}^{1}\left(\Gamma, \mathscr{P}_{2}\right)=\{0\}$.
2.6 Eichler-Shimura periods and bilinear relations.

$$
\left(q_{1}, q_{2}\right)=\frac{\sqrt{-1}}{2} \omega_{\mathrm{G}}\left(\chi_{1}, \bar{\chi}_{2}\right), \quad \chi_{1}=\imath_{E}\left(q_{1}\right), \chi_{2}=\imath_{E}\left(q_{2}\right)
$$

and

$$
\omega_{X}^{(2)}\left(q_{1}, q_{2}\right)=-\frac{1}{\pi} \omega_{\mathrm{G}}\left(\chi_{1}, \chi_{2}\right), \quad \chi_{1}=\imath_{E}\left(q_{1}\right), \chi_{2}=\imath_{E}\left(q_{2}\right)
$$

where ,) stands for the Petersson inner product, and ω_{G} is the Goldman symplectic form on $\operatorname{PSL}(2, \mathbb{C})$ character variety. 2.7 Algebraic de Rham theorem II. Every choice of a non-special effective divisor D of degree g gives an isomorphism

$$
H^{1}\left(X, \mathscr{P}_{2}\left(K_{X}^{-1}\right)\right) \simeq H^{0}\left(X, K_{X}^{2}\right) \oplus \Omega^{(2 \mathrm{nd})}(4 D)
$$

Remarks

- Let T_{g} be the Teichmüller space of compact Riemann surfaces of genus $g>1$. Then its holomorphic tangent space $T_{[X]} T_{g}$, for a choice of a non-special effective divisor D of degree g, can be identified with the subspace $\Omega^{(2 \mathrm{nd})}(4 D)$ of special meromorphic quadratic differentials on X, and the holomorphic cotangent space $T_{[X]}^{*} T_{g}$ - with the subspace $H^{0}\left(X, K_{X}^{2}\right)$ of holomorphic quadratic differentials. The pairing between $T_{[X]} T_{g}$ and $T_{[X]}^{*} T_{g}$ is given by the symplectic form $\omega_{X}^{(2)}$.

Remarks

- Let T_{g} be the Teichmüller space of compact Riemann surfaces of genus $g>1$. Then its holomorphic tangent space $T_{[X]} T_{g}$, for a choice of a non-special effective divisor D of degree g, can be identified with the subspace $\Omega^{(2 \mathrm{nd})}(4 D)$ of special meromorphic quadratic differentials on X, and the holomorphic cotangent space $T_{[X]}^{*} T_{g}$ - with the subspace $H^{0}\left(X, K_{X}^{2}\right)$ of holomorphic quadratic differentials. The pairing between $T_{[X]} T_{g}$ and $T_{[X]}^{*} T_{g}$ is given by the symplectic form $\omega_{X}^{(2)}$.
- In the standard complex-analytic approach, the holomorphic tangent space $T_{[X]} T_{g}$ is naturally identified with the space of harmonic Beltrami differentials.

Remarks

- Let T_{g} be the Teichmüller space of compact Riemann surfaces of genus $g>1$. Then its holomorphic tangent space $T_{[X]} T_{g}$, for a choice of a non-special effective divisor D of degree g, can be identified with the subspace $\Omega^{(2 \mathrm{nd})}(4 D)$ of special meromorphic quadratic differentials on X, and the holomorphic cotangent space $T_{[X]}^{*} T_{g}$ - with the subspace $H^{0}\left(X, K_{X}^{2}\right)$ of holomorphic quadratic differentials. The pairing between $T_{[X]} T_{g}$ and $T_{[X]}^{*} T_{g}$ is given by the symplectic form $\omega_{X}^{(2)}$.
- In the standard complex-analytic approach, the holomorphic tangent space $T_{[X]} T_{g}$ is naturally identified with the space of harmonic Beltrami differentials.
- Relation with work of Krichever-Phong, and its elaboration by Grushevsky-Krichever on the algebro-geometric description of the vector fields on the moduli space of curves (with extra data)?

Рис.: Наташа и Игорь (и Таня). Lake Mohonk, NY, 1998

Рис.: Наташа и Игорь (и Леон). Lake Mohonk, NY, 1998

Рис.: Игорь и Л.Д. Фаддеев. СПб, 2016

