Theta divisors and Chern-Dold character in complex cobordisms

Alexander Veselov
(j/w with Victor M. Buchstaber)

Algebraic Geometry, Mathematical Physics and Solitons Celebrating the work of Igor Krichever, Columbia University, October 7-9, 2022

S.P. Novikov's School

Novikov's School in Ascona 2015: Buchstaber, AV, Novikov, IK, Dubrovin

Work of Igor Krichever in algebraic topology

Bordisms of groups acting freely on spheres. Uspehi Mat. Nauk 26 (1971), no. 6(162), 245-246.
Actions of finite cyclic groups on quasicomplex manifolds. Mat. Sb. (N.S.) 90(132) (1973), 306-319, 327.
Formal groups and the Atiyah-Hirzebruch formula. Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1289-1304.
Formulae for the fixed points of an action of the group Z_{p}. (jointly with S.M.
Gusein-Zade) Uspehi Mat. Nauk 28 (1973), no. 1(169), 237-238.
The invariance of characteristic classes for manifolds of the homotopy type of $C P^{n}$. Uspehi Mat. Nauk 28 (1973), no. 5(173), 245-246.
Formal groups and the Atiyah-Hirzebruch formula. Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1289-1304.
Equivariant Hirzebruch genera. The Atiyah-Hirzebruch formula. Uspehi Mat. Nauk 30 (1975), no. 1(181), 243-244.
Obstructions to the existence of S^{1}-actions. Bordisms of branched coverings. Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 4, 828-844, 950. Generalized elliptic genera and Baker-Akhiezer functions. Math. Notes 47 (1990), no. 1-2, 132-142

Complex coborodisms

Let M^{m} be a smooth closed real manifold. By stable complex structure (or, simply U-structure) on M^{m} we mean an isomorphism of real vector bundles $T M^{m} \oplus(2 N-m)_{\mathbb{R}} \cong r \xi$, where $T M^{m}$ is the tangent bundle of $M^{m},(2 N-m)_{\mathbb{R}}$ is trivial real $(2 N-m)$-dimensional bundle over M^{m}, ξ is a complex vector bundle over M^{m} and $r \xi$ is its real form. A manifold M^{m} with a chosen U-structure is called U-manifold.

Complex coborodisms

Let M^{m} be a smooth closed real manifold. By stable complex structure (or, simply U-structure) on M^{m} we mean an isomorphism of real vector bundles $T M^{m} \oplus(2 N-m)_{\mathbb{R}} \cong r \xi$, where $T M^{m}$ is the tangent bundle of $M^{m},(2 N-m)_{\mathbb{R}}$ is trivial real $(2 N-m)$-dimensional bundle over M^{m}, ξ is a complex vector bundle over M^{m} and $r \xi$ is its real form. A manifold M^{m} with a chosen U-structure is called U-manifold.

Two closed smooth real m-dimensional manifolds M_{1} and M_{2} are called bordant if there exists a real $(m+1)$-dimensional U-manifold W such that the boundary ∂W is a disjoint union of M_{1} and M_{2} and the restriction of the stable tangent bundle $T W$ to M_{i} is stably equivalent to $T M_{i}, i=1,2$.

Complex coborodisms

Let M^{m} be a smooth closed real manifold. By stable complex structure (or, simply U-structure) on M^{m} we mean an isomorphism of real vector bundles $T M^{m} \oplus(2 N-m)_{\mathbb{R}} \cong r \xi$, where $T M^{m}$ is the tangent bundle of $M^{m},(2 N-m)_{\mathbb{R}}$ is trivial real $(2 N-m)$-dimensional bundle over M^{m}, ξ is a complex vector bundle over M^{m} and $r \xi$ is its real form. A manifold M^{m} with a chosen U-structure is called U-manifold.

Two closed smooth real m-dimensional manifolds M_{1} and M_{2} are called bordant if there exists a real $(m+1)$-dimensional U-manifold W such that the boundary ∂W is a disjoint union of M_{1} and M_{2} and the restriction of the stable tangent bundle $T W$ to M_{i} is stably equivalent to $T M_{i}, i=1,2$.

Similarly, two closed smooth real m-dimensional manifolds M_{1} and M_{2} are called cobordant if there exists a real $(m+1)$-dimensional U-manifold W such that the boundary ∂W is a disjoint union of M_{1}^{m} and M_{2}^{m} and the restriction of the stable normal bundle νW to M_{i} coincides with $\nu M_{i}, i=1,2$.

Ring structure

The sum of bordism classes of two closed U-manifolds M_{1}^{m} and M_{2}^{m} is defined as

$$
\left[M_{1}^{m}\right]+\left[M_{2}^{m}\right]=\left[M_{1}^{m} \cup M_{2}^{m}\right],
$$

where $M_{1}^{m} \cup M_{2}^{m}$ is the disjoint union of M_{1}^{m} and M_{2}^{m}. The product of the bordism classes of $M_{1}^{m_{1}}$ and $M_{2}^{m_{2}}$ is defined by

$$
\left[M_{1}^{m_{1}}\right]\left[M_{2}^{m_{2}}\right]=\left[M_{1}^{m_{1}} \times M_{2}^{m_{2}}\right] .
$$

This defines the commutative graded ring

$$
\Omega^{U}=\sum_{m \geq 0} \Omega_{m}^{U},
$$

where Ω_{m}^{U} is the group of bordism classes of m-dimensional U-manifolds.

Ring structure

The sum of bordism classes of two closed U-manifolds M_{1}^{m} and M_{2}^{m} is defined as

$$
\left[M_{1}^{m}\right]+\left[M_{2}^{m}\right]=\left[M_{1}^{m} \cup M_{2}^{m}\right]
$$

where $M_{1}^{m} \cup M_{2}^{m}$ is the disjoint union of M_{1}^{m} and M_{2}^{m}. The product of the bordism classes of $M_{1}^{m_{1}}$ and $M_{2}^{m_{2}}$ is defined by

$$
\left[M_{1}^{m_{1}}\right]\left[M_{2}^{m_{2}}\right]=\left[M_{1}^{m_{1}} \times M_{2}^{m_{2}}\right]
$$

This defines the commutative graded ring

$$
\Omega^{U}=\sum_{m \geq 0} \Omega_{m}^{U}
$$

where Ω_{m}^{U} is the group of bordism classes of m-dimensional U-manifolds.
Similarly, we have the graded ring $\Omega_{U}=\sum_{m \geq 0} \Omega_{U}^{-m}$, where Ω_{U}^{-m} is the group of cobordism classes of m-dimensional U-manifolds.

Ring structure

The sum of bordism classes of two closed U-manifolds M_{1}^{m} and M_{2}^{m} is defined as

$$
\left[M_{1}^{m}\right]+\left[M_{2}^{m}\right]=\left[M_{1}^{m} \cup M_{2}^{m}\right]
$$

where $M_{1}^{m} \cup M_{2}^{m}$ is the disjoint union of M_{1}^{m} and M_{2}^{m}. The product of the bordism classes of $M_{1}^{m_{1}}$ and $M_{2}^{m_{2}}$ is defined by

$$
\left[M_{1}^{m_{1}}\right]\left[M_{2}^{m_{2}}\right]=\left[M_{1}^{m_{1}} \times M_{2}^{m_{2}}\right]
$$

This defines the commutative graded ring

$$
\Omega^{U}=\sum_{m \geq 0} \Omega_{m}^{U}
$$

where Ω_{m}^{U} is the group of bordism classes of m-dimensional U-manifolds.
Similarly, we have the graded ring $\Omega_{U}=\sum_{m \geq 0} \Omega_{U}^{-m}$, where Ω_{U}^{-m} is the group of cobordism classes of m-dimensional U-manifolds.

From the correspondence between stable complex structures in tangent and normal bundles it follows that the groups Ω_{m}^{U} and Ω_{U}^{-m} and the rings Ω_{U} and Ω^{U} are isomorphic.

Chern numbers

Let $\lambda=\left(i_{1}, \ldots, i_{k}\right), i_{1} \geq \cdots \geq i_{k}$ be a partition of $n=i_{1}+\cdots+i_{k}$. Using the splitting principle one can define the Chern classes $c_{\lambda}(T M) \in H^{2 n}(M, \mathbb{Z})$ of a U-manifold M corresponding to the monomial symmetric functions $m_{\lambda}(t)=t_{1}^{i_{1}} \ldots t_{k}^{i_{k}}+\ldots$.

Chern numbers

Let $\lambda=\left(i_{1}, \ldots, i_{k}\right), i_{1} \geq \cdots \geq i_{k}$ be a partition of $n=i_{1}+\cdots+i_{k}$. Using the splitting principle one can define the Chern classes $c_{\lambda}(T M) \in H^{2 n}(M, \mathbb{Z})$ of a U-manifold M corresponding to the monomial symmetric functions $m_{\lambda}(t)=t_{1}^{i_{1}} \ldots t_{k}^{i_{k}}+\ldots$.
The Chern number $c_{\lambda}\left(M^{2 n}\right),|\lambda|=n$ of U-manifold $M^{2 n}$ is defined as

$$
c_{\lambda}\left(M^{2 n}\right):=\left(c_{\lambda}\left(T M^{2 n}\right),\left\langle M^{2 n}\right\rangle\right)
$$

We have $p(n)$ Chern numbers $c_{\lambda}\left(M^{2 n}\right)$, which depend only on the bordism class of $M^{2 n}$.

Chern numbers

Let $\lambda=\left(i_{1}, \ldots, i_{k}\right), i_{1} \geq \cdots \geq i_{k}$ be a partition of $n=i_{1}+\cdots+i_{k}$. Using the splitting principle one can define the Chern classes $c_{\lambda}(T M) \in H^{2 n}(M, \mathbb{Z})$ of a U-manifold M corresponding to the monomial symmetric functions $m_{\lambda}(t)=t_{1}^{i_{1}} \ldots t_{k}^{i_{k}}+\ldots$.
The Chern number $c_{\lambda}\left(M^{2 n}\right),|\lambda|=n$ of U-manifold $M^{2 n}$ is defined as

$$
c_{\lambda}\left(M^{2 n}\right):=\left(c_{\lambda}\left(T M^{2 n}\right),\left\langle M^{2 n}\right\rangle\right)
$$

We have $p(n)$ Chern numbers $c_{\lambda}\left(M^{2 n}\right)$, which depend only on the bordism class of $M^{2 n}$.

It will be more convenient for us to use the Chern numbers $c_{\lambda}^{\nu}\left(M^{2 n}\right)$ defined using the stable normal bundle $\nu M^{2 n}$:

$$
c_{\lambda}^{\nu}\left(M^{2 n}\right):=\left(c_{\lambda}\left(\nu M^{2 n}\right),\left\langle M^{2 n}\right\rangle\right)
$$

They can be expressed through the usual Chern numbers $c_{\lambda}\left(M^{2 n}\right)$ and contain the same information about U-manifold $M^{2 n}$.

Milnor-Novikov theorem

The following fundamental result is due to Milnor and Novikov.
Theorem (Milnor, Novikov, 1960)
The graded complex bordism ring Ω^{U} is isomorphic to the graded polynomial ring $\mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{n}, \ldots\right]$ of infinitely many variables with deg $y_{n}=2 n$.

Two closed $2 n$-dimensional U-manifolds M_{1} and M_{2} are U-bordant if and only if all the corresponding Chern numbers are the same.

Milnor-Novikov theorem

The following fundamental result is due to Milnor and Novikov.
Theorem (Milnor, Novikov, 1960)
The graded complex bordism ring Ω^{U} is isomorphic to the graded polynomial ring $\mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{n}, \ldots\right]$ of infinitely many variables with deg $y_{n}=2 n$.
Two closed $2 n$-dimensional U-manifolds M_{1} and M_{2} are U-bordant if and only if all the corresponding Chern numbers are the same.

The same is true for the complex cobordism ring Ω_{U} with the degrees of the generators $-2 n$.

Chern-Dold character

Buchstaber 1970: The Chern-Dold character in complex cobordisms

$$
\text { ch } h_{U}: U^{*}(X) \rightarrow H^{*}\left(X, \Omega_{U} \otimes \mathbb{Q}\right)
$$

is uniquely defined by its action

$$
\operatorname{ch}_{U}: u \rightarrow \beta(z), \quad \beta(z):=z+\sum_{n=1}^{\infty}\left[\mathcal{B}^{2 n}\right] \frac{z^{n+1}}{(n+1)!},
$$

where $u \in U^{2}\left(\mathbb{C} P^{\infty}\right)$ and $z \in H^{2}\left(\mathbb{C} P^{\infty}\right)$ are the first Chern classes of the universal line bundle over $\mathbb{C} P^{\infty}$ in the complex cobordisms and cohomology theory respectively, and $\mathcal{B}^{2 n}$ are some implicitly characterised U-manifolds.

Chern-Dold character

Buchstaber 1970: The Chern-Dold character in complex cobordisms

$$
c h_{U}: U^{*}(X) \rightarrow H^{*}\left(X, \Omega_{U} \otimes \mathbb{Q}\right)
$$

is uniquely defined by its action

$$
c_{u}: u \rightarrow \beta(z), \quad \beta(z):=z+\sum_{n=1}^{\infty}\left[\mathcal{B}^{2 n}\right] \frac{z^{n+1}}{(n+1)!}
$$

where $u \in U^{2}\left(\mathbb{C} P^{\infty}\right)$ and $z \in H^{2}\left(\mathbb{C} P^{\infty}\right)$ are the first Chern classes of the universal line bundle over $\mathbb{C} P^{\infty}$ in the complex cobordisms and cohomology theory respectively, and $\mathcal{B}^{2 n}$ are some implicitly characterised U-manifolds.

The series $\beta(z)$ is the exponential of the commutative formal group

$$
F(u, v)=u+v+\sum_{i, j} a_{i, j} u^{i} v^{j}
$$

of the geometric complex cobordisms introduced by Novikov:

$$
\beta(z+w)=F(\beta(z), \beta(w))
$$

Quillen identified this group with Lazard's universal one-dimensional commutative formal group.

Main result

The inverse of this series is the logarithm of this formal group, which was found explicitly by Mischenko:

$$
\beta^{-1}(u)=u+\sum_{n=1}^{\infty}\left[\mathbb{C} P^{n}\right] \frac{u^{n+1}}{n+1}
$$

The question about explicit algebraic representatives of $\left[\mathcal{B}^{2 n}\right]$ in the exponential was open since 1970.

Main result

The inverse of this series is the logarithm of this formal group, which was found explicitly by Mischenko:

$$
\beta^{-1}(u)=u+\sum_{n=1}^{\infty}\left[\mathbb{C} P^{n}\right] \frac{u^{n+1}}{n+1}
$$

The question about explicit algebraic representatives of $\left[\mathcal{B}^{2 n}\right]$ in the exponential was open since 1970.

Buchstaber, APV 2020:

As a representative of $\left[\mathcal{B}^{2 n}\right]$ one can take a smooth theta divisor Θ^{n} of a general principally polarised abelian variety A^{n+1} :

$$
\beta(z)=z+\sum_{n=1}^{\infty}\left[\Theta^{n}\right] \frac{z^{n+1}}{(n+1)!}
$$

Theta divisors

Let $A^{n+1}=\mathbb{C}^{n+1} / \Gamma$ be a principally polarised abelian variety (ppav). It has a canonical line bundle L with one-dimensional space of sections generated by the classical Riemann θ-function

$$
\theta(z, \tau)=\sum_{m \in \mathbb{Z}^{n+1}} \exp [\pi i(m, \tau m)+2 \pi i(m, z)], z \in \mathbb{C}^{n+1}, \quad \tau^{t}=\tau, \operatorname{Im} \tau>0
$$

Theta divisors

Let $A^{n+1}=\mathbb{C}^{n+1} / \Gamma$ be a principally polarised abelian variety (ppav). It has a canonical line bundle L with one-dimensional space of sections generated by the classical Riemann θ-function

$$
\theta(z, \tau)=\sum_{m \in \mathbb{Z}^{n+1}} \exp [\pi i(m, \tau m)+2 \pi i(m, z)], z \in \mathbb{C}^{n+1}, \quad \tau^{t}=\tau, \operatorname{Im} \tau>0
$$

Andreotti and Mayer 1967: For generic ppav the theta divisor $\Theta^{n} \subset A^{n+1}$ given by $\theta(z, \tau)=0$ is smooth irreducible algebraic variety of general type. The cobordism class $\left[\Theta^{n}\right]$ does not depend on the choice of such abelian variety.

Theta divisors

Let $A^{n+1}=\mathbb{C}^{n+1} / \Gamma$ be a principally polarised abelian variety (ppav). It has a canonical line bundle L with one-dimensional space of sections generated by the classical Riemann θ-function

$$
\theta(z, \tau)=\sum_{m \in \mathbb{Z}^{n+1}} \exp [\pi i(m, \tau m)+2 \pi i(m, z)], z \in \mathbb{C}^{n+1}, \quad \tau^{t}=\tau, \operatorname{Im} \tau>0
$$

Andreotti and Mayer 1967: For generic ppav the theta divisor $\Theta^{n} \subset A^{n+1}$ given by $\theta(z, \tau)=0$ is smooth irreducible algebraic variety of general type. The cobordism class $\left[\Theta^{n}\right.$] does not depend on the choice of such abelian variety.

In particular, the theta divisor $\Theta^{1} \cong \mathcal{C} \subset A^{2}=J(\mathcal{C})$ is a smooth genus 2 curve, $\Theta^{2} \cong S^{2}(\mathcal{C}) \subset A^{3}=J(\mathcal{C})$ for a smooth non-hyperelliptic curve \mathcal{C} of genus 3 .

Theta divisors

Let $A^{n+1}=\mathbb{C}^{n+1} / \Gamma$ be a principally polarised abelian variety (ppav). It has a canonical line bundle L with one-dimensional space of sections generated by the classical Riemann θ-function

$$
\theta(z, \tau)=\sum_{m \in \mathbb{Z}^{n+1}} \exp [\pi i(m, \tau m)+2 \pi i(m, z)], z \in \mathbb{C}^{n+1}, \quad \tau^{t}=\tau, \operatorname{Im} \tau>0
$$

Andreotti and Mayer 1967: For generic ppav the theta divisor $\Theta^{n} \subset A^{n+1}$
given by $\theta(z, \tau)=0$ is smooth irreducible algebraic variety of general type. The cobordism class $\left[\Theta^{n}\right.$] does not depend on the choice of such abelian variety.
In particular, the theta divisor $\Theta^{1} \cong \mathcal{C} \subset A^{2}=J(\mathcal{C})$ is a smooth genus 2 curve, $\Theta^{2} \cong S^{2}(\mathcal{C}) \subset A^{3}=J(\mathcal{C})$ for a smooth non-hyperelliptic curve \mathcal{C} of genus 3.
For $n \geq 3$ the general ppav is not Jacobian and the characterisation of the Jacobi varieties among all ppav is the famous Riemann-Schottky problem (see the recent survey by Igor Krichever and his plenary talk at ICM-2022).

Key lemma

The Chern numbers of the theta divisor Θ^{n} are

$$
c_{\lambda}^{\nu}\left(\Theta^{n}\right)=0
$$

for any partition λ of n different from the one-part partition $\lambda=(n)$, and

$$
c_{(n)}^{\nu}\left(\Theta^{n}\right)=(n+1)!.
$$

The Chern numbers of the theta divisor Θ^{n} are

$$
c_{\lambda}^{\nu}\left(\Theta^{n}\right)=0
$$

for any partition λ of n different from the one-part partition $\lambda=(n)$, and

$$
c_{(n)}^{\nu}\left(\Theta^{n}\right)=(n+1)!.
$$

Indeed, since the tangent bundle of abelian variety is trivial, the normal bundle $\nu \Theta^{n}$ is stably equivalent to the line bundle $\mathcal{L}=i^{*}(L)$, where $i: \Theta^{n} \rightarrow A^{n+1}$ is natural embedding and L is the principal polarisation line bundle on A^{n+1}.

Key lemma

The Chern numbers of the theta divisor Θ^{n} are

$$
c_{\lambda}^{\nu}\left(\Theta^{n}\right)=0
$$

for any partition λ of n different from the one-part partition $\lambda=(n)$, and

$$
c_{(n)}^{\nu}\left(\Theta^{n}\right)=(n+1)!.
$$

Indeed, since the tangent bundle of abelian variety is trivial, the normal bundle $\nu \Theta^{n}$ is stably equivalent to the line bundle $\mathcal{L}=i^{*}(L)$, where $i: \Theta^{n} \rightarrow A^{n+1}$ is natural embedding and L is the principal polarisation line bundle on A^{n+1}.
The last equality follows from the well-known fact that

$$
D^{g}=g!\in H^{2 g}\left(A^{g}, \mathbb{Z}\right)=\mathbb{Z}
$$

where $D \in H^{2}\left(A^{g}, \mathbb{Z}\right)$ is the Poincare dual cohomology class of the theta divisor $\Theta \subset A^{g}$ of any principally polarised abelian variety.

Todd class in complex cobordisms

Buchstaber 1970: The Todd class $T_{U}(\xi)$ of complex vector bundle ξ over $C W$-complex X with values in $H^{*}\left(X, \Omega_{U} \otimes \mathbb{Q}\right)$ is uniquely defined by the following properties:

- For every two vector bundles ξ_{1} and ξ_{2} over X

$$
T d_{u}\left(\xi_{1} \oplus \xi_{2}\right)=T d_{u}\left(\xi_{1}\right) T d_{u}\left(\xi_{2}\right)
$$

- For any U-manifold $M^{2 n}$

$$
\left(T d_{u}\left(T M^{2 n}\right),\left\langle M^{2 n}\right\rangle\right)=\left[M^{2 n}\right]
$$

Todd class in complex cobordisms

Buchstaber 1970: The Todd class $T d_{U}(\xi)$ of complex vector bundle ξ over $C W$-complex X with values in $H^{*}\left(X, \Omega_{U} \otimes \mathbb{Q}\right)$ is uniquely defined by the following properties:

- For every two vector bundles ξ_{1} and ξ_{2} over X

$$
T d_{u}\left(\xi_{1} \oplus \xi_{2}\right)=T d_{u}\left(\xi_{1}\right) T d_{u}\left(\xi_{2}\right)
$$

- For any U-manifold $M^{2 n}$

$$
\left(T d_{u}\left(T M^{2 n}\right),\left\langle M^{2 n}\right\rangle\right)=\left[M^{2 n}\right]
$$

Buchstaber, APV 2020:

The Todd class can be expressed in terms of theta divisors by the formula

$$
T d_{U}(\xi)=\sum_{\lambda} c_{\lambda}(-\xi) \frac{\left[\Theta^{\lambda}\right]}{(\lambda+1)!}
$$

where the sum is over all partitions $\lambda=\left(i_{1}, \ldots, i_{k}\right)$ and $\Theta^{\lambda}=\Theta^{i_{1}} \times \cdots \times \Theta^{i_{k}}$. In particular, for any U-manifold M we have

$$
\left[M^{2 n}\right]=\sum_{\lambda:|\lambda|=n} c_{\lambda}^{\nu}\left(M^{2 n}\right) \frac{\left[\Theta^{\lambda}\right]}{(\lambda+1)!}
$$

Hirzebruch genus of theta divisors

The Hirzebruch genus in complex cobordisms is a homomorphism $\Phi: \Omega_{U} \rightarrow \mathcal{A}$, where \mathcal{A} is some algebra over \mathbb{Q}, determined by its characteristic power series

$$
Q(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \in \mathcal{A}
$$

Hirzebruch genus of theta divisors

The Hirzebruch genus in complex cobordisms is a homomorphism $\Phi: \Omega_{U} \rightarrow \mathcal{A}$, where \mathcal{A} is some algebra over \mathbb{Q}, determined by its characteristic power series

$$
Q(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \in \mathcal{A}
$$

Buchstaber, APV 2020: The exponential generating function of Hirzebruch genus of theta divisors $\Phi\left(\Theta^{n}\right)$ is

$$
z+\sum_{n=1}^{\infty} \Phi\left(\Theta^{n}\right) \frac{z^{n+1}}{(n+1)!}=\frac{z}{Q(z)}
$$

Hirzebruch genus of theta divisors

The Hirzebruch genus in complex cobordisms is a homomorphism $\Phi: \Omega_{U} \rightarrow \mathcal{A}$, where \mathcal{A} is some algebra over \mathbb{Q}, determined by its characteristic power series

$$
Q(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \in \mathcal{A}
$$

Buchstaber, APV 2020: The exponential generating function of Hirzebruch genus of theta divisors $\Phi\left(\Theta^{n}\right)$ is

$$
z+\sum_{n=1}^{\infty} \Phi\left(\Theta^{n}\right) \frac{z^{n+1}}{(n+1)!}=\frac{z}{Q(z)}
$$

In particular, for the Todd genus we have $Q(z)=\frac{z}{1-e^{-z}}$, so

$$
z+\sum_{n=1}^{\infty} \operatorname{Td}\left(\Theta^{n}\right) \frac{z^{n+1}}{(n+1)!}=1-e^{-z}=z+\sum_{n \in \mathbb{N}}(-1)^{n} \frac{z^{n+1}}{(n+1)!}
$$

so that the Todd genus of the theta divisors is $\operatorname{Td}\left(\Theta^{n}\right)=(-1)^{n}$. As a corollary we have the Todd genus for any U-manifold $M^{2 n}$ as

$$
\operatorname{Td}\left(M^{2 n}\right)=\sum_{\lambda:|\lambda|=n} c_{\lambda}^{\nu}\left(M^{2 n}\right) \frac{(-1)^{n}}{(\lambda+1)!}
$$

Euler characteristic and signature

For the Euler characteristic $Q(z)=1+z$, so we have

$$
z+\sum_{n=1}^{\infty} \chi\left(\Theta^{n}\right) \frac{z^{n+1}}{(n+1)!}=\frac{z}{1+z},
$$

so $\chi\left(\Theta^{n}\right)=(-1)^{n}(n+1)$!.

Euler characteristic and signature

For the Euler characteristic $Q(z)=1+z$, so we have

$$
z+\sum_{n=1}^{\infty} \chi\left(\Theta^{n}\right) \frac{z^{n+1}}{(n+1)!}=\frac{z}{1+z}
$$

so $\chi\left(\Theta^{n}\right)=(-1)^{n}(n+1)$!.
The signature corresponds to Hirzebruch L-genus with $Q(z)=\frac{z}{\tanh z}$. Since

$$
\frac{z}{Q(z)}=\tanh z=\sum_{k=0}^{\infty} 2^{2 k+2}\left(2^{2 k+2}-1\right) B_{2 k+2} \frac{z^{2 k+1}}{(2 k+2)!}
$$

we have the signature

$$
\tau\left(\Theta^{n}\right)=\frac{2^{n+2}\left(2^{n+2}-1\right)}{n+2} B_{n+2}
$$

where B_{n} are the classical Bernoulli numbers:

$$
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30}, B_{6}=\frac{1}{42}, B_{8}=-\frac{1}{30}, B_{10}=\frac{5}{66}, \ldots
$$

Cohomology of theta divisors

The Betti numbers of the theta divisors Θ^{n} can be computed using the Lefschetz hyperplane theorem (Izadi-Wang 2015). Indeed, the embedding $i: \Theta^{n} \rightarrow A^{n+1}$ induces the isomorphisms

$$
i_{*}: H_{k}\left(\Theta^{n}, \mathbb{Z}\right) \rightarrow H_{k}\left(A^{n+1}, \mathbb{Z}\right), \quad i_{*}: \pi_{k}\left(\Theta^{n}\right) \rightarrow \pi_{k}\left(A^{n+1}\right)
$$

for $k<n$, while for $k=n$ these homomorphisms are surjections.

Cohomology of theta divisors

The Betti numbers of the theta divisors Θ^{n} can be computed using the Lefschetz hyperplane theorem (Izadi-Wang 2015). Indeed, the embedding $i: \Theta^{n} \rightarrow A^{n+1}$ induces the isomorphisms

$$
i_{*}: H_{k}\left(\Theta^{n}, \mathbb{Z}\right) \rightarrow H_{k}\left(A^{n+1}, \mathbb{Z}\right), \quad i_{*}: \pi_{k}\left(\Theta^{n}\right) \rightarrow \pi_{k}\left(A^{n+1}\right)
$$

for $k<n$, while for $k=n$ these homomorphisms are surjections.
Using Poincare duality we obtain all Betti numbers of Θ^{n} as

$$
b_{k}\left(\Theta^{n}\right)=b_{k}\left(A^{n+1}\right)=\binom{2 n+2}{k}=b_{2 n-k}\left(\Theta^{n}\right), k<n
$$

except the middle one b_{n}, which can be found using the formula for the Euler characteristic:

$$
b_{n}\left(\Theta^{n}\right)=(n+1)!+\frac{n}{n+2}\binom{2 n+2}{n+1}=(n+1)!+n C_{n+1}
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the n-th Catalan number.

Cohomology of theta divisors

The Betti numbers of the theta divisors Θ^{n} can be computed using the Lefschetz hyperplane theorem (Izadi-Wang 2015). Indeed, the embedding $i: \Theta^{n} \rightarrow A^{n+1}$ induces the isomorphisms

$$
i_{*}: H_{k}\left(\Theta^{n}, \mathbb{Z}\right) \rightarrow H_{k}\left(A^{n+1}, \mathbb{Z}\right), \quad i_{*}: \pi_{k}\left(\Theta^{n}\right) \rightarrow \pi_{k}\left(A^{n+1}\right)
$$

for $k<n$, while for $k=n$ these homomorphisms are surjections.
Using Poincare duality we obtain all Betti numbers of Θ^{n} as

$$
b_{k}\left(\Theta^{n}\right)=b_{k}\left(A^{n+1}\right)=\binom{2 n+2}{k}=b_{2 n-k}\left(\Theta^{n}\right), k<n
$$

except the middle one b_{n}, which can be found using the formula for the Euler characteristic:

$$
b_{n}\left(\Theta^{n}\right)=(n+1)!+\frac{n}{n+2}\binom{2 n+2}{n+1}=(n+1)!+n C_{n+1}
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the n-th Catalan number.
However, the multiplication structure is yet to be understood. The appearance of both Bernoulli and Catalan numbers looks quite intriguing

Milnor-Hirzebruch problem

There is a famous Milnor-Hirzebruch problem, which in algebraic version can be formulated as follows:

Which sets of $p(n)$ integers $c_{\lambda}, \lambda \in \mathcal{P}_{n}$ can be realised as the Chern numbers $c_{\lambda}\left(M^{n}\right)$ of some smooth irreducible complex algebraic variety M^{n} ?

In this version it still remains largely open, although some arithmetic restrictions are known since the work of Milnor and Hirzebruch.

Milnor-Hirzebruch problem

There is a famous Milnor-Hirzebruch problem, which in algebraic version can be formulated as follows:

Which sets of $p(n)$ integers $c_{\lambda}, \lambda \in \mathcal{P}_{n}$ can be realised as the Chern numbers $c_{\lambda}\left(M^{n}\right)$ of some smooth irreducible complex algebraic variety M^{n} ?

In this version it still remains largely open, although some arithmetic restrictions are known since the work of Milnor and Hirzebruch.

In particular, we have the following Hirzebruch congruences for the usual Chern numbers of any almost complex manifold:

$$
\begin{gathered}
n=1: c_{1} \equiv 0 \quad \bmod 2, n=2: c_{2}+c_{1}^{2} \equiv 0 \quad \bmod 12 \\
n=3: c_{1} c_{2} \equiv 0 \quad \bmod 24, \quad c_{3} \equiv c_{1}^{3} \equiv 0 \bmod 2 \\
n=4:-c_{4}+c_{1} c_{3}+3 c_{2}^{2}+4 c_{1}^{2} c_{2}-c_{1}^{4} \equiv 0 \quad \bmod 720, c_{1}^{2} c_{2}+2 c_{1}^{4} \equiv 0 \quad \bmod 12 \\
-2 c_{4}+c_{1} c_{3} \equiv 0 \quad \bmod 4
\end{gathered}
$$

Milnor-Hirzebruch problem

There is a famous Milnor-Hirzebruch problem, which in algebraic version can be formulated as follows:

Which sets of $p(n)$ integers $c_{\lambda}, \lambda \in \mathcal{P}_{n}$ can be realised as the Chern numbers $c_{\lambda}\left(M^{n}\right)$ of some smooth irreducible complex algebraic variety M^{n} ?

In this version it still remains largely open, although some arithmetic restrictions are known since the work of Milnor and Hirzebruch.

In particular, we have the following Hirzebruch congruences for the usual Chern numbers of any almost complex manifold:

$$
\begin{gathered}
n=1: c_{1} \equiv 0 \quad \bmod 2, n=2: c_{2}+c_{1}^{2} \equiv 0 \quad \bmod 12 \\
n=3: c_{1} c_{2} \equiv 0 \quad \bmod 24, \quad c_{3} \equiv c_{1}^{3} \equiv 0 \bmod 2 \\
n=4:-c_{4}+c_{1} c_{3}+3 c_{2}^{2}+4 c_{1}^{2} c_{2}-c_{1}^{4} \equiv 0 \quad \bmod 720, c_{1}^{2} c_{2}+2 c_{1}^{4} \equiv 0 \quad \bmod 12 \\
-2 c_{4}+c_{1} c_{3} \equiv 0 \quad \bmod 4
\end{gathered}
$$

One can check that the first Hirzebruch congruence in each case is sharp for the theta divisors, which means that it cannot be improved in the algebraic setting. We hope that our results may lead to some progress in this direction.

References

F. Hirzebruch Komplexe Mannigfaltigkeiten. In: Proc. Intern. Congress of Math. 1958. Cambridge University Press, Cambridge, 1960, 119-136.
J. Milnor On the cobordism ring Ω_{*} and complex analogue. Part I., Amer. J. Math., 82:3 (1960), 505-521.
S.P. Novikov On certain problems in topology of manifolds, connected with the theory of Thom spaces. Dokl. AN SSSR 132:5 (1960), 1031-1034.
S.P. Novikov Methods of algebraic topology from the viewpoint of cobordism theory. Izv. Akad. Nauk SSSR, Ser. Mat. 31:4 (1967), 827-913.
V.M. Buchstaber Chern-Dold character in cobordisms, I. Math. Sbornik 83 (1970), 575-95.
V.M. Buchstaber, A.P. Veselov Chern-Dold character in complex cobordisms and theta divisors. arXiv 2007.05782 (2020).

Igor and Mika

Alexander Veselov (j/w with Victor M. Buchstaber)

