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Jacobians and Prym varieties

If X is a smooth algebraic curve of genus g , then Jac(X ) is a principally
polarized abelian variety of dimension g .

Let π : X̃ → X be an étale double cover of smooth algebraic curves, then
g(X̃ ) = 2g(X )− 1. Let Nm : Jac(X̃ )→ Jac(X ) be the associated norm
map. Then:

The kernel Ker Nm has two connected components.

The even connected component of Ker Nm carries a principal
polarization that is 1

2 of the induced polarization from Jac(X̃ ).

The even connected component of Ker Nm is a principally polarized
abelian variety of dimension g(X )− 1 called the Prym variety

Prym(X̃/X ) of the double cover π : X̃ → X .

The dimension of the moduli space of Pryms of dimension g is
dimRg = 3g , which is more than the dimension dimMg = 3g − 3 of the
moduli space of Jacobians.
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Characterization of Prym varieties

Theorem (Krichever, 2010)

Jacobian varieties are characterized by the existence of a trisecant of the
associated Kummer variety.

Theorem (Grushevsky–Krichever, 2010)

Prym varieties are characterized by the existence of a symmetric pair of
quadrisecant planes of the associated Kummer variety.
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Tropicalization: algebraic curves to metric graphs

3 2 4

Algebraic curve Metric graph

There is a tropicalization procedure for algebraic curves over a
non-Archimedean field K , e.g. K = C((t)):

X algebraic curve over K → ΓX metric graph

The graph ΓX records the degeneration behavior of X .
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Metric graphs

Metric graphs are the tropical analogues of algebraic curves.

A metric graph Γ may have loops and multi-edges, and has a length
function ` : E (Γ)→ R>0 on the edges:

3 2

√
2

7/2

5
π

The genus g(Γ) of a graph Γ is its first Betti number:

g(Γ) = b1(Γ) = |E (Γ)| − |V (Γ)|+ 1.
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Jacobian of a metric graph (Mikhalkin–Zharkov, 2008)

For a smooth algebraic curve X over C, the Jacobian is

Jac(X ) =
H0(X ,Ω1

X )∨

H1(X ,Z)
,

with H1(X ,Z) embedded in H0(X ,Ω1
X )∨ by the integration pairing.

How to define Jac(Γ) for a metric graph Γ? First, orient the edges of Γ.

H1(Γ,Z) is the simplicial homology group:

H1(Γ,Z) =

 ∑
e∈E(Γ)

ae · e

∣∣∣∣∣ae ∈ Z,
∑

e into v

ae =
∑

e out of v

ae

 .

This is a free abelian group of rank g(Γ).

The group of harmonic 1-forms is also H1(Γ,Z):

H1(Γ,Z) = H0(Γ,Ω1
Γ), γ =

∑
e∈E(Γ)

ae · e ↔
∑

e∈E(Γ)

ae de.
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The edge length pairing

We introduce a (symmetric, positive definite) pairing on H1(Γ,Z) (think
of the first H1(Γ,Z) as H0(Γ,Ω1

Γ)):

[·, ·] : H1(Γ,Z)× H1(Γ,Z)→ R, [γ1, γ2] =

∫
γ2

γ1,

 ∑
e∈E(Γ)

ae · e,
∑

e∈E(Γ)

be · e

 =
∑

e∈E(Γ)

aebe`(e).

We embed H1(Γ,Z) into H1(Γ,Z)∨ = Hom(H1(Γ,Z),R) via the edge
length pairing. The quotient torus is the Jacobian variety of Γ:

γ 7→ [·, γ] ∈ H1(Γ,Z)∨, Jac(Γ) =
H1(Γ,Z)∨

H1(Γ,Z)
' Rg/Zg .

The isomorphism H1(Γ,Z) = H0(Γ,Ω1
Γ) is the statement that Jac(Γ) is a

principally polarized tropical abelian variety.
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The intersection matrix and Jacobian variety: example

e1 e2

e3

e4

e6
e5

For this graph,
H1(Γ,Z) = Zγ1 ⊕ Zγ2 ⊕ Zγ3,

γ1 = e1 − e2, γ2 = e2 − e3 − e4, γ3 = e6, `(ei ) = xi .

γ1 γ2 γ3

γ1 x1 + x2 −x2 0
γ2 −x2 x2 + x3 + x4 0
γ3 0 0 x6

The Jacobian variety Jac(Γ) is the quotient of R3 by the lattice spanned
by the columns of the intersection matrix.
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Divisor theory on metric graphs

Mikhalkin–Zharkov (2008), Baker–Norine (2007)

Div(Γ) is the free abelian group on the points of Γ.

A rational function f : Γ→ R is continuous, piecewise-linear with
integer slopes.

The divisor div f of a rational function is

div f =
∑
x∈Γ

(sum of incoming slopes at x) · x .

The Jacobian variety is isomorphic to the set of linear equivalence
classes of degree zero divisors:

Jac(Γ) ' Pic0(Γ) =
Div0(Γ)

Prin(Γ)
, Prin(Γ) = {div f |f ∈ Rat(Γ)}

Theorem (Baker–Rabinoff, 2015)

If the metric graph ΓX is the tropicalization of an algebraic curve X , then
the Jacobian Jac(ΓX ) is the tropicalization of the Jacobian Jac(X ).
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The volume of the Jacobian variety of a metric graph
How to find the volume of the Riemannian manifold Jac(Γ)?

Idea. Since dim Jac(Γ) = g , we should have Vol(Jac(Γ)) = (· · · ) · cmg ,
so there should be a formula

Vol(Jac(Γ)) = homogeneous degree g polynomial in edge lengths.

Observation: the genus g(Γ) of a graph is the number of edges in the
complement of any spanning tree:

e1 e2

e3

e4

e6
e5

g(Γ) = 3, Γ\T = {e1, e3, e6}, `(e1)`(e3)`(e6) = x1x3x6 · cm3.

Perhaps

Vol(Jac(Γ)) =
∑

F⊂E(Γ)
Γ\F spanning tree

∏
e∈F

`(e)?
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Kirchhoff’s theorem for metric graphs

Theorem (An–Baker–Kuperberg–Shokrieh, 2014)

The volume of the Jacobian of a metric graph Γ is given by

Vol2(Jac(Γ)) =
∑

F⊂E(Γ)
Γ\F spanning tree

∏
e∈F

`(e).

The square is due to the fact that the inner product is proportional to `,
not `2, so edge lengths represent areas from the point of view of the
Riemannian geometry on Jac(Γ).

This is a version of Kirchhoff’s theorem for metric graphs.

Example. If Γ is a loop e with `(e) = L, then

H1(Γ,Z) = Ze, ||e|| =
√

[e, e] =
√
L,

hence
Jac(circle of length L) = circle of length

√
L.
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Geometric interpretation of the volume formula
We rearrange the volume formula as follows:

Vol(Jac(Γ)) =
1

Vol(Jac(Γ))

∑
F⊂E(Γ)

Γ\F spanning tree

Vol(F ), Vol(F ) =
∏
e∈F

`(e).

Question. Do the individual summands have geometric meaning?

Fix a point q ∈ Γ, and consider the Abel–Jacobi map:

Φ : Γ→ Jac(Γ), p 7→ [·, γp], γp is any path from q to p.

The Abel–Jacobi map extends to the symmetric product

Φg : Symg (Γ)→ Jac(Γ), Φg (p1 + · · ·+ pg ) = Φ(p1) + · · ·+ Φ(pg ).

The symmetric product Symg (Γ) has a cellular decomposition:

Symg (Γ) =
⋃

F∈Symg (E(Γ))

CF ,

where the cells are indexed by g -tuples of edges of Γ:

F = {e1, . . . , eg}, CF = {p1 + · · ·+ pg : pi ∈ ei}.

We say that CF is a break cell if all ei are distinct, and if Γ\F is a tree.
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Vol(F ), Vol(F ) =
∏
e∈F

`(e).

Question. Do the individual summands have geometric meaning?

Fix a point q ∈ Γ, and consider the Abel–Jacobi map:

Φ : Γ→ Jac(Γ), p 7→ [·, γp], γp is any path from q to p.

The Abel–Jacobi map extends to the symmetric product

Φg : Symg (Γ)→ Jac(Γ), Φg (p1 + · · ·+ pg ) = Φ(p1) + · · ·+ Φ(pg ).

The symmetric product Symg (Γ) has a cellular decomposition:

Symg (Γ) =
⋃

F∈Symg (E(Γ))

CF ,

where the cells are indexed by g -tuples of edges of Γ:

F = {e1, . . . , eg}, CF = {p1 + · · ·+ pg : pi ∈ ei}.

We say that CF is a break cell if all ei are distinct, and if Γ\F is a tree.
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ABKS: structure of the tropical Abel–Jacobi map

The Abel–Jacobi map Φg : Symg (Γ)→ Jac(Γ) is affine linear on each cell
CF , and the cells fit together as follows:

Symg (Γ) break cells

other cells

Jac(Γ)

In other words, Φg contracts all cells except the break cells, and the
images of the break cells form a tiling of Jac(Γ).
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ABKS decomposition of the Jacobian

Tropical Jacobi inversion (Mikhalkin–Zharkov 2008, ABKS 2014)

The Abel–Jacobi map

Φg : Symg (Γ)→ Jac(Γ)

has a unique continuous section, whose image is the union of the break
cells. Furthermore, for any cell CF ⊂ Symg (Γ):

1 If CF is a break cell, then

Vol(Φg (CF )) =
1

Vol(Jac(Γ))
Vol(F ) =

1

Vol(Jac(Γ))

∏
e∈F

`(e).

2 Otherwise, Vol(Φg (CF )) = 0.

Summing over the break cells, we get

Vol(Jac(Γ)) =
1

Vol(Jac(Γ))

∑
F⊂E(Γ)

Γ\F spanning tree

Vol(F ).
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Double covers of metric graphs

A double cover of metric graphs
π : Γ̃→ Γ is a topological covering
of degree two that also preserves
edge lengths.

It is easy to see that

g(Γ̃) = 2g(Γ)− 1.

There is an induced map on the
homology groups and a surjective
norm map on the Jacobians:

π∗ : H1(Γ̃,Z)→ H1(Γ,Z),∑
ẽ∈E(Γ̃)

aẽ · ẽ 7→
∑

ẽ∈E(Γ̃)

aẽ · π(ẽ),

Nm : Jac(Γ̃)→ Jac(Γ).
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The Prym variety of a double cover of metric graphs

Theorem (Jensen–Len, 2018)

Let π : Γ̃→ Γ be a double cover of metric graphs.

1 The kernel of the norm map Nm : Jac(Γ̃)→ Jac(Γ) has two
connected components.

2 The even connected component carries a principal polarization that
is 1

2 of the polarization induced from Jac(Γ̃).

The even connected component is the Prym variety of the double cover:

Prym(Γ̃/Γ) =
(Ker π∗)

∨

Ker π∗
, dim Prym(Γ̃/Γ) = g(Γ)− 1.

where Ker π∗ is embedded in its dual by the integration pairing:

γ ∈ Ker π∗, γ 7→ 1

2
[·, γ] ∈ (Ker π∗)

∨.

Theorem (Len–Ulirsch, 2020)

If the double cover Γ̃→ Γ is the tropicalization of X̃ → X , then
Prym(Γ̃/Γ) is the tropicalization of Prym(X̃/X ).
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Prym variety of a double cover: example

Γ e1
e2

e3

Γ̃ ẽ+
1 ẽ−1

ẽ−2

ẽ+
2

ẽ+
3 ẽ−3

The kernel of π∗ : H1(Γ̃,Z)→ H1(Γ,Z) is generated by the cycle

γ = (ẽ+
1 − ẽ−1 ) + 2(ẽ+

2 − ẽ−2 )− (ẽ+
3 − ẽ−3 ),

1

2
[γ, γ] = x1 + 4x2 + x3, xi = `(ei ) = `(ẽ±i ).

Hence Prym(Γ̃/Γ) is a circle of circumference
√
x1 + 4x2 + x3.
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1 ẽ−1
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The cographic matroid

In analogy with the tropical Jacobian, there should be a formula

Vol2(Prym(Γ̃/Γ)) =
∑

F⊂E(Γ)

A(F ) Vol(F ), Vol(F ) =
∏
e∈F

`(e).

The sum is taken over certain (g − 1)-element subsets of E (Γ).

A(F ) are certain coefficients (powers of two?).

Let Γ be a graph. We denote

M∗(Γ) = {F ⊂ E (Γ)|Γ\F is connected}.

Then F is the complement of a spanning tree if and only if F is a
maximal element M∗(Γ).

The setsM∗(Γ) are the independent sets of the cographic matroid of Γ.
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Matroid of a double cover (Zaslavsky, 1982)

Let π : Γ̃→ Γ be a double cover. We say that an edge set F ⊂ E (Γ) is
independent if

every connected component of Γ\F has connected preimage in Γ̃.

When is an independent set F ⊂ E (Γ) maximal? Let

Γ\F = Γ1 ∪ · · · ∪ Γk

be the connected components. Observe that:

g(Γi ) = 0 → π−1(Γi ) disconnected → F not independent
g(Γi ) ≥ 2 → can remove another edge → F not maximal

Hence F is a maximal independent set if

g(Γi ) = 1 for all i .

Each π−1(Γi ) is connected.

We call such a set F ⊂ E (Γ) an odd genus one decomposition (ogod).
The number k of connected components of G\F is the rank r(F ) of F .
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Example of a double cover

g(Γ̃) = 5, g(Γ) = 3, ogods consist of 3− 1 = 2 edges.

Dmitry Zakharov The tropical Prym variety



Odd genus one decompositions: example

ogod of rank 2 not an ogod
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The volume of the tropical Prym variety

Theorem (Len-Z)

The volume of the tropical Prym variety of a double cover π : Γ̃→ Γ is

Vol2(Prym(Γ̃/Γ)) =
∑

F⊂E(Γ) ogods

4r(F )−1 Vol(F ),

where the sum is taken over all odd genus one decompositions F of Γ,
and r(F ) is the rank of an ogod.

For discrete graphs, an analogous result was proved by Zaslavsky (1982)
and Reiner–Tseng (2004).
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Geometrization of the volume formula and Abel–Prym map

The Abel–Prym map associated to a double cover π : Γ̃→ Γ with
associated involution ι : Γ̃→ Γ̃ is

Ψ : Γ̃→ Prym(Γ̃/Γ), p 7→ p − ι(p)

It extends to symmetric powers:

Ψ : Symg−1(Γ̃)→ Prym(Γ̃/Γ), Ψ(p1+· · ·+pg−1) = Ψ(p1)+· · ·+Ψ(pg−1).

Our main result regarding Ψ is the following:

Theorem (Len–Z.)

The tropical Abel–Prym map

Ψ : Symg−1(Γ̃)→ Prym(Γ̃/Γ)

is a harmonic morphism of polyhedral complexes of degree 2g−1.
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The action of Ψ on the cells of Symg−1(Γ̃)

We consider the natural cellular decomposition for Symg−1(Γ̃):

Symg−1(Γ̃) =
⋃

F∈Symg−1(E(Γ̃))

CF .

We say that CF is an ogod cell of degree 2k−1 if π(F ) ⊂ E (Γ) is an
ogod of rank k = r(π(F )).

Theorem (Len–Z)

Let Ψ : Symg−1(Γ̃)→ Prym(Γ̃/Γ) be the Abel–Prym map.

1 If CF ⊂ Symg−1(Γ̃) is an ogod cell of degree 2k−1

Vol(Ψ(CF )) = 2k−1 Vol(F )

Vol(Prym(Γ̃/Γ))
.

2 Otherwise, Vol(Ψ(CF )) = 0 (Ψ contracts CF ).

The ogod cells form a multivalued tiling of Prym(Γ̃/Γ). A generic point
lies in 2g−1 tiles (counted with degree).

Dmitry Zakharov The tropical Prym variety



Harmonicity of the Abel–Prym map

Symg−1(Γ̃)

ogod cells CF

other cells

Prym(Γ̃/Γ) C+ C−

Harmonicity of the Abel–Prym map

Let C+ and C− be two cells of Prym(Γ̃/Γ) of dimension g − 1 with
common boundary of dimension g − 2. The total degrees over all cells
C (F ) mapping to C+ and to C− are equal:∑

F :Ψ(CF )=C+

2r(ϕ(F ))−1 =
∑

F :Ψ(CF )=C−

2r(ϕ(F ))−1.
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2k 2k 2k+1 2k

2k

2k

2k

2k

2k
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The Abel–Prym map: examples for g = 2
We consider the double cover π : Γ̃→ Γ and Abel–Prym map

Γ̃ = Sym1(Γ̃)→ Prym(Γ̃/Γ).

Γ x
y

z

Γ̃ = Sym1 Γ̃ x x

y

y

z z x

2y

2y

z Prym(Γ̃/Γ)

The odd genus one decompositions are

r = 1,Vol = x r = 2,Vol = y r = 1,Vol = z

Hence the volume of the Prym is Vol2(Prym(Γ̃/Γ)) = x + 4y + z .
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The Abel–Prym map: examples for g = 2
We consider the double cover π : Γ̃→ Γ and Abel–Prym map

Γ̃ = Sym1(Γ̃)→ Prym(Γ̃/Γ).

Γ x
y

z

Γ̃ = Sym1 Γ̃ x x

y

y

z

z

z Prym(Γ̃/Γ)

The only odd genus one decomposition is

r = 1,Vol = z
Vol2(Prym(Γ̃/Γ)) = z .
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The Abel–Prym map: example for g = 3

Γ h1

h3

h4

h5

h7

h6

Γ̃ h̃+
1 h̃−1

h̃−3

h̃+
3

h̃−5

h̃+
5

h̃−4

h̃+
4

h̃−6

h̃+
6

h̃+
7 h̃−7
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The trigonal construction

Theorem (Recillas, 1974)

There is a bijection between étale double covers of trigonal curves
X̃ → X → P1 and generic tetragonal curves Y → P1 such that

Prym(X̃/X ) ' Jac(Y ).

A tropical n-gonal curve Γ→ K is a metric graph Γ together with a
degree n finite harmonic morphism to a metric tree K .

Theorem (Röhrle-Z, 2022)

There is a bijection between free double covers of tropical trigonal curves
G̃ → G → K and generic tropical tetragonal curves P → K such that

Prym(G̃/G ) ' Jac(P).

Our main technique is tropical homology theory
(Itenberg–Katsarkov–Mikhalkin–Zharkov, Gross–Shokrieh), and we are
able to closely model our proof on the algebraic case.
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Example of the tropical trigonal construction

A double cover of a trigonal tropical curve G̃ → G → K and a tetragonal
tropical curve P → K . Thickness indicates dilation factor.

Prym(G̃/G ) ' Jac(P).
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The end

THANK YOU!
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