
Automorphic Forms Learning Seminar Notes
Austin Lei

Fall 2024-Spring 2025

These notes are essentially a summary of Goldfeld’s Automorphic Forms and L-functions for the Group
GL(n,Z).

1 Maass forms and Whittaker functions for SL(n,Z)
• The spectral parameter approach follows Dorian’s book. Supposedly useful in some analytic applica-

tions.

• The Langlands parameter approach follows the paper “A template method for Fourier coefficients of
Langlands Eisenstein series” by Goldfeld, Miller, and Woodbury. Also known as Satake parameters.
They come from automorphic representations at the Archimedean place.

1.1 Maass forms

• Recall that we are interested in SL(n,Z) acting on

hn = GL(n,R)/(O(n,R)× R∗).

• Recall that we can represent elements of
hn = x · y,

where x is an upper triangular matrix with 1s on the diagonal and xi,j off the diagonal, and y is a
diagonal matrix with elements of the form 1, y1, y1y2, . . . , y1y2 . . . yn−1.

• We will consider two parameterizations: the spectral parameters v and the Langlands parameters,
denoted α = (α1, . . . , αn) ∈ Cn, with α1 + · · ·+ αn = 0. (This is abuse of notation; we really refer to
the set of the αi.)

• Recall that we defined

bij =

{
ij i+ j ≤ n
(n− i)(n− j) i+ j ≥ n

The bij come from the inverse of the Cartan matrix for GL(n).

• We have the following relation between the two sets of parameters:

vi =
αi − αi+1 + 1

n
,

and conversely

αi =


Bn−1(v) i = 1

Bn−i(v)−Bn−i+1(v) 1 < i < n

−B1(v) i = n

,

where Bj(s) =
∑n−1
i=1 bi,j(vi − 1/n).

• Example: For n = 2, α1 = −α2 = v − 1
2 . For n = 3, α1 = 2v1 + v2 − 1, α2 = −v1 + v2, and

α3 = −v1 − 2v2 + 1.
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• We have the center of the universal enveloping algebra of gl(n,R) is Dn. For any D ∈ Dn and
v = (v1, . . . , vn−1), we know that

Iv(z) =

n−1∏
i=1

n−1∏
j=1

y
bi,jvj
i

is an eigenfunction of every D ∈ Dn.

Alternatively, in terms of Langlands parameters, let ρi = n+1
2 − i. We can express the power function

as

I(z, α) =

n∏
i=1

n−i∏
j=1

yj

αi+ρi

=

n−i∏
i=1

y
∑n−i
j=1 (αj+ρj)

i .

The eigenvalue is independent of the permutation of α. This will follow from the proof of the funcational
equation for the Whittaker function.

• We express DIv(z) = λDIv(z). Note that λD1·D2
= λD1

· λD2
, hence λD is a character of Dn, called

the Harish-Chandra character.

• Maass form of type v for SL(n,Z): A function φ ∈ L2(SL(n,Z)\hn) satsifying

– φ(γz) = φ(z) for all γ ∈ SL(n,Z)

– Dφ(z) = λDφ(z) for all D ∈ Dn for λD a Harish-Chandra character. (In particular, these are the
same λD coming from DIv(z) = λDIv(z), which is where the v condition is being used.)

–
´

(SL(n,Z)∩U)\U φ(uz) du = 0 for all U that are matrices with diagonal matrices Iri on the diagonals

and 0 below the diagonal.

If the eigenvalues of φ agree with the eigenvalues of I(·, α), then α are the Langlands parameters of φ.

• Remark: An alternative definition of a Maass (cusp) form replaces the L2 condition with a growth
condition that

|φ(xy)| �N (y1 . . . yn−1)−N

for all N > 0; i.e. an exponential decay growth condition.

• For Laplace operator ∆, then if f is a Maass form, we have corresponding Laplace eigenvalue

λ∆ =
n3 − n

24
− α2

1 + · · ·+ α2
n

2
.

Generalized Ramanujan-Selberg conjecture: All Maass forms for SL(n,Z) (and congruence subgroups)
are tempered, i.e. all αi are purely imaginary. Compare this to the Ramanujan-Selberg conjecture for
n = 2.

1.2 Whittaker functions associated to Maass forms

• Idea: Emulate the Fourier expansion in higher dimensions.

• Let Un(R) be the group of upper triangular n× n matrices.

• Let m = (m1, . . . ,mn−1) ∈ Zn−1. We have a character ψm : Un(R)→ C∗ sending

ψm(u) = e2πi(m1u1,2+m2u2,3+···+mn−1un−1,n).

We have that ψm(uv) = ψm(u)ψm(v).
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• For Maass form φ, we want Fourier coefficients like

φ̃m(z) =

ˆ 1

0

. . .

ˆ 1

0

φ(u · z)ψm(u)
∏

1≤i<j≤n

dui,j

such that we can write
φ =

∑
m

φ̃m(z).

This is the analogue of W (y)e2πimx in the rank 2 case.

Since Un(R) is non-Abelian, we need to be careful over which m we sum.

• Properties of the Fourier coefficients (which we will show later are Whittaker functions):

– φ̃m(u · z) = ψm(u)φ̃m(z)

– Dφ̃m = λDφ̃m for all D ∈ Dn, where λD is a Harish-Chandra character

–
´

Σ√3
2

, 12
|φ̃m(z)|2d∗z <∞.

• Proof of properties:

– The substitution u 7→ u · u′, for u′ ∈ Un(R), does not change the measure.

– Follows by definition of a Maass form.

– Follows from Cauchy-Schwarz, φ is automorphic, and that φ is L2.

1.3 Fourier expansions on SL(n,Z)
• Every Maass form for SL(n,Z) has the Fourier expansion

φ(z) =
∑

γ∈Un−1(Z)\SL(n−1,Z)

∑
m1 6=0

∞∑
m2=1

· · ·
∞∑

mn−1=1

φ̃m1,...,mn−1

((
γ

1

)
z

)
.

The sum is independent of the choice of representatives γ. Recall that

φ̃(m1,...,mn−1)(z) =

ˆ 1

0

. . .

ˆ 1

0

φ(u · z)e−2πi(m1u1,2+···+mn−1un−1,n)d∗u

where d∗u =
∏n
i=1 dui,i+1.

• Idea of proof: Inductively construct the Fourier expansion. Use standard Fourier expansion to get
expansion with variables determined by the n− 1 variables in the last column; i.e. let

v =


1 v1

1 v2

. . .
...

1 vn−1

1


and

φ̂m(z) =

ˆ 1

0

. . .

ˆ 1

0

φ(vz)e−2π〈v,m〉d∗v.

Since φ is periodic when multiplying by v, we get

φ(z) =
∑

m∈Zn−1

φ̂m(z).

Rewrite this sum in terms of gcd of variables in last column and representatives of SL(n − 1,Z) by
P (n− 1,Z), where P (n− 1,Z) is matrices whose last row is en−1. Nothing corresponding to mn−1 = 0
because φ is a cuspform. Repeat inductively on all columns. m1 also has negative coefficients because
SL(1,Z) treats the orbits a and −a separately.
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1.4 Whittaker functions for SL(n,R)
• A SL(n,Z) Whittaker function of type v = (v1, . . . , vn−1) ∈ Cn−1 associated to a character ψ : Un(R)→
C is a smooth function W : hn → C such that

– W (uz) = ψ(u)W (z) for any u ∈ Un(R)

– DW (z) = λDW (z) for any D ∈ Dn

–
´

Σ√3
2
, 1
2

|W (z)|2d∗z <∞.

• In particular, note that the Fourier coefficient defined before

φ̃m(z) =

ˆ 1

0

. . .

ˆ 1

0

φ(u · z)ψ(u)
∏

1≤i<j≤n

dui,j

is a Whittaker function.

1.5 Jacquet’s Whittaker function

• Goal: Construct non-trivial (zero nowhere) Whittaker functions for rank n.

• Let m = (m1, . . . ,mn−1) (corresponding to Fourier frequency) and v = (v1, v2, . . . , vn−1) corresponding
to the type of the Maass form. Alternatively, let α = (α1, . . . , αn) be the Langlands parameters.

• Notation: for the upper triangular matrix u, we denote

ui = un−i,n−i+1.

• Let ψm : Un(R)→ C to be the character

ψm(u) = e2πi(m1u1+···+mn−1un−1).

Note that this has the reverse coefficients as expected in Section 5.3; i.e. the summation for Fourier
expansion will be reversed.

• Let z = xy and suppose all of the mi are nonzero, we define the Jacquet Whittaker function hn → C

W (z; v, ψm) =

ˆ
Un(R)

Iv(wuz)ψm(u)d∗u,

where

w =


1

1

. .
.

1


and the integral is integrated with respect to all ui,j from −∞ to ∞.

In terms of Langlands parameters, we have

Wα(z) =

ˆ
Un(R)

I(wuz, α)ψm(u)d∗u.

Note that this exactly matches the construction for H.

• Remark: Dorian’s book uses wn (−1bn/2c in the top right corner), the long element of the Weyl group.
This is equivalent because of the wedge product definition of Iv(s), using that ejwn = ejw for all j > 1.
We will use the original definition to show the functional equation.
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• If Re(vi) > 1/n for all i and mi 6= 0 for all i, then:

– W converges absolutely and uniformly on compact subsets of hn

– W has meromorphic continuation for all v ∈ Cn−1

– W is an SL(n,Z)-Whittaker function of type v and character ψm

–
W (z; v, ψm) = cv,mW (Mz; v, ψm1/|m1|,...,mn−1/|mn−1|) = cv,mψm(x)W (My; v, ψ1,...,1),

where

cv,m =

n−1∏
i=1

|mi|(
∑n−1
j=1 bi,jvj)−i(n−i)

and

M =


|m1m2 . . .mn−1|

. . .

|m1|
1

 .
• Remark: From the Fourier expansion, we only care about m where m1, . . . ,mn−2 are positive. By the

above properties, it is sufficient to care only about m = (1, . . . , 1,±1).

• Proof idea:

– Proof that W is a Whittaker function:

∗ W (az) = ψm(a)W (z): Change of variable. Also proves part of second equation of fourth
point.

∗ DW = λDW : Use that DIv = λDIv.

∗ Assume that integral converges absolutely and uniformly on compacts to an L2 function.

– Proof of first equation of fourth point: Make the changes of variables in the integral from wuMz
to wMuz to wMw · wuz. This gives the correct constant cv,m; see Broughan 2009, Theorem 6.1
for more details.

– Proof of second equation of fourth point: Let δj be the identity matrix, except with εj = mj/|mj |
at the n− jth row. Replace u with δjδju, then do a change of variable from u→ δju and use that
δn−jw = wδj , and since all the matrices in the integral are diagonal and δn−j ∈ O(n,R), δn−j
can be ignored. Repeat for all j.

– Proof of absolute convergence/meromorphic continuation for n = 2: Absolute convergence fol-
lows from computing the integral, which converges for Re(v) > 1/2. Meromorphic continuation:
Follows from Kv = K−v.

1.6 The exterior power of a vector space

• Let ⊗`(Rn) be the space of `th tensor products of the vector space Rn. Formally, we define

Λ`(Rn) = ⊗`(Rn)/a`

where a` is the vector subspace generated by all elements v1 ⊗ · · · ⊗ v` where vi = vj for some i 6= j.

• In other words, we have the set of v1 ∧ · · · ∧ v` with the rules v ∧ v = 0, v ∧ w = −w ∧ v, and
(a1v1 + a2v2) ∧ w = a1v1 ∧ w + a2v2 ∧ w.

• On ⊗`(Rn), we have the (canonical) inner product

〈v, w〉⊗` =
∏̀
i=1

〈vi, wi〉 .
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• Let e1, . . . , en be the canonical basis for Rn. Then letting

a =
∑

1≤i1,...,i`≤n

ai1,...,i`ei1 ∧ · · · ∧ ei` ,

we define φ` : Λ`(Rn)→ ⊗`(Rn) such that

φ`(a) =
1

`!

∑
1≤i1,...,i`≤n

ai1,...,i`
∑
σ∈S`

Sign(σ) · eiσ(1) ⊗ · · · ⊗ eiσ(`) .

This is a well-defined injection, and hence Λ`(Rn) can be viewed as a subspace of ⊗`(Rn). We then
define the inner product on Λ` to be

〈v, w〉Λ` = 〈φ`(v), φ`(w)〉⊗` .

• We define the action of SL(n,R) on Λ`(Rn) via

v ◦ g = (v1 · g) ∧ · · · ∧ (v` · g)

and similarly for ⊗`.

• For k ∈ O(n,R), 〈v, w〉Λ` = 〈v ◦ k,w ◦ k〉Λ` , and ‖v‖ =
√
〈v, v〉Λ` = ‖v ◦ k‖. Proof: Prove the same

properties from ⊗`, and then apply φ`.

• For any upper triangular matrix u,

(en−` ∧ · · · ∧ en) ◦ u = en−` ∧ · · · ∧ en.

• Cauchy-Schwarz: | 〈v, w〉Λ` |2 ≤ 〈v, v〉Λ` · 〈w,w〉Λ` , and ‖v ∧ w‖Λ` ≤ ‖v‖Λ`‖w‖Λ` . Proof: Use that

‖v‖2Λ` =
∑
i1,...,i`

|ai1,...,i` |2, and apply normal Cauchy-Schwarz.

1.7 Construction of the Iv function using wedge products

• We can write

Iv(z) =

(
n−2∏
i=0

‖(en−i ∧ · · · ∧ en) ◦ z‖−nvn−i−1

)
· | det(z)|

∑n−1
i=1 ivn−i ,

and hence we can write W in terms of a wedge product.

• Check that operations inside are invariant under SO(n,R) and R∗, so the operation is well-defined.
Moreover, use that x is upper triangular to get that I∗v (z) = I∗v (y). Finish by doing the computation
on y.

• Why is this helpful? Shows that we can choose to use w instead of wn in the definition of the Jacquet-
Whittaker function. Also can be used to explicitely compute the Whittaker function for the SL(n, 3)
case:

W (y; v, ψm) = yv1+2v2
1 y2v1+v2

2

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

(y2
1y

2
2 + u2

1y
2
2 + (u1u2 − u3)2)−3v1/2

· (y2
1y

2
2 + u2

2y
2
1 + u2

3)−3v2/2e−2πi(m1u1+m2u2) du1 du2 du3

1.8 Convergence of Jacquet’s Whittaker function

• This section is incorrect; equation 5.8.2 is the wrong direction.

• Heuristic: The integral will be on the order of something like the product ofˆ
(1 + u2

j,j+1 + · · ·+ u2
j,n)−

n
2

∑n−j
i=1 Revi du

for all j, and the integral converges if n
2

∑n−j
i=1 Revi >

n−j
2 , or if

∑n−j
i=1 Revi >

n−j
n for all j. Hence the

convergence is for Revj >
1
n .
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1.9 Functional equations of Jacquet’s Whittaker function

• Everything stated here will be in terms of Langlands parameters, but it is possible to translate every-
thing in terms of spectral parameters. It just is really annoying.

• Multiplicity one: Due to Shalika, there is only one Whittaker function of type v and character ψ up
to constant multiple (implied here is the growth condition).

• Because in the Fourier expansion, we care only when m1, . . . ,mn−2 > 0, and we can relate W (z; v, ψm)
to W (Mz; v, ψ1,...,1,±1) by a constant, it suffices only to consider the following normalized Whittaker
functions:

W±α (z) =
∏

1≤j<k≤n

Γ
(

1+αj−αk
2

)
π

1+αj−αk
2

ˆ
Un(R)

I(wug, α)ψ1,...,1,±1(u)d∗u.

• Properties: It is an absolutely convergent integral for Re(αi − αi+1) > 0 and has holomorphic contin-
uation to all α ∈ Cn with

∑
αi = 0.

• Functional equation: For any permutation α′ of α,

W±α = W±α′ .

In other words, there is no abuse of notation regarding the Langlands parameters.

• Proof idea: It suffices to consider adjacent swaps of αi. Let α′ be the permutation of α swapping αi
and αi+1. Consider

σi =


In−i−1

0 1
1 0

Ii−1

 .

Letting wi = σ−1
i w, every u ∈ Un(R) can be written in the form

u = (w−1
i niwi)n

′
i,

where ni ∈ Ni is the set of matrices with 1s on the diagonal, real number at position (n− i, n− i+ 1),
and zeros elsewhere, and n′i ∈ N ′i is the subgroup of Un(R) with a zero at the position (i, i+1). Hence,
we can write

W±α (z) =

ˆ
Un(R)

Iα(wug)ψ(u)d∗u =

ˆ
N ′i

(ˆ
Ni

Iα(σini(win
′
iz))ψ(ni) dni

)
ψ(n′i) dn′i .

The inner integral is a Whittaker function over SL(2,R), whose function equation is independent of
choice of win

′
iz, and we remark that

Iα(σini) = (u2 + 1)
1
2 (αi−αi+1),

where u is the nonzero element of ni. This thus resembles the Bessel function, and swapping αi and
αi+1 changes α to α′ and changes by the requisite constant.

1.10 Degenerate Whittaker functions

• It is possible to construct Whittaker using other elements of the Weyl group (elements of SL(n,Z) with
exactly one 1 or −1 in each row or column) instead of wn, as the only key property used was that Iv
was an eigenfunction.

• However, these Whittaker functions will not contain all of the ui,j . You can define the Whittaker
functions by integrating only over the variables that appear.
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