Automorphic Forms Learning Seminar Notes

Austin Lei

Fall 2024-Spring 2025

These notes are essentially a summary of Goldfeld's Automorphic Forms and L-functions for the Group $GL(n,\mathbb{Z})$.

1 The Godement-Jacquet L-function

1.1 Maass forms for $SL(n, \mathbb{Z})$

• Recall that we showed that a Maass form ϕ had a Fourier expansion

$$\phi(z) = \sum_{\gamma \in U_{n-1}(\mathbb{Z}) \setminus \mathrm{SL}(n-1,\mathbb{Z})} \sum_{m_1=1}^{\infty} \cdots \sum_{m_{n-2}=1}^{\infty} \sum_{m_{n-1} \neq 0} \widetilde{\phi}_{(m_1,\dots,m_{n-1})} \left(\begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z \right),$$

where

$$\widetilde{\phi}_{(m_1,\dots,m_{n-1})}(z) = \int_0^1 \dots \int_0^1 \phi(u \cdot z) \overline{\psi_m(u)} \mathrm{d}^* u$$

where here d^*u is an integral over all the u_{ij} in the unipotent matrix u.

• We know that $\widetilde{\phi}_{(m_1,\dots,m_{n-1})}$ is a Whittaker function. By the multiplicity one theorem for $\mathrm{SL}(n,\mathbb{Z})$ and identities about Whittaker functions, we can write the Fourier expansion in the form

$$\phi(z) = \sum_{\gamma \in U_{n-1}(\mathbb{Z}) \setminus \mathrm{SL}(n-1,\mathbb{Z})} \sum_{m_1=1}^{\infty} \cdots \sum_{m_{n-2}=1}^{\infty} \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}}} W_{\alpha} \left(M \begin{pmatrix} \gamma \\ & 1 \end{pmatrix} z, \psi_{1,\dots,1,\frac{m_{n-1}}{|m_{n-1}|}} \right) + \sum_{m_{n-1}\neq 0} \frac{A(m_1,\dots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(m_1,\dots,m_{n-1})}}} \right)$$

where the $A(m_1, \ldots, m_{n-1}) \in \mathbb{C}$ are the Fourier coefficients. The choice of normalization comes from the constant in the identity

$$W_{\alpha}(z,\psi_m) = c_{\alpha,m} W_{\alpha}(Mz,\psi_{1,\dots,1,\pm 1});$$

 $c_{\alpha,m}$ is of the form $c_{\alpha} \prod_{k=1}^{n-1} |m_k|^{-k(n-k)/2}$, where c_{α} depends only on α and n.

• Now, since

$$\frac{A(m_1,\ldots,m_{n-1})}{\prod_{k=1}^{n-1}|m_k|^{k(n-k)/2}}W_{\alpha}\left(My,\psi_{1,\ldots,1,\frac{m_{n-1}}{|m_{n-1}|}}\right) = \int_0^1\ldots\int_0^1\phi(z)\overline{\psi_m(x)}\mathrm{d}^*x,$$

fixing some choice constant choice of y and using that ϕ is bounded, we conclude that the

$$\frac{A(m_1,\ldots,m_{n-1})}{\prod_{k=1}^{n-1} |m_k|^{k(n-k)/2}}$$

are bounded.

1.2 Dual and symmetric Maass forms

• Symmetric Maass forms: Let δ be a matrix of the form

$$\begin{pmatrix} \delta_1 \dots \delta_{n-1} & & & \\ & \ddots & & \\ & & \delta_1 \delta_2 & \\ & & & \delta_1 & \\ & & & & 1 \end{pmatrix}$$

where each of the δ_i is ± 1 . We define the operator

$$T_{\delta}\phi(z) = \phi(\delta z) = \phi(\delta z\delta),$$

which takes xy to x'y, where x' consists of $\delta_i x_i$ on the offdiagonal.

A Maass form is symmetric if $T_{\delta}\phi = \pm \phi$ for all T_{δ} , where the choice of \pm depends on δ .

- By linear algebra, every Maass form is a linear combination of symmetric Maass forms, so it suffices to only consider aymmetric Maass forms.
- Let

$$\delta_0 = \begin{pmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & & \\ & & & 1 & \\ & & & & 1 \end{pmatrix}$$

We say that ϕ is even if $T_{\delta_0}\phi = \phi$, and odd if $T_{\delta_0}\phi = -\phi$.

• If n is odd, then all Maass forms are even. In particular, this means that

$$A(m_1,\ldots,m_{n-2},m_{n-1}) = -A(m_1,\ldots,m_{n-2},-m_{n-1}).$$

Proof idea: ϕ is invariant by $SL(n, \mathbb{Z})$ and $-I_n$, which has determinant -1, so $T_{\delta}\phi = \phi$ for all δ . Then looking at T_{δ_0} , only the x_{n-1} variable changes to $-x_{n-1}$, so the corresponding coefficients that must match are $A(m_1, \ldots, m_{n-1})$ and $A(m_1, \ldots, -m_{n-1})$.

• If n is even, then for a symmetric Maass form, we have

$$A(m_1,\ldots,m_{n-2},m_{n-1}) = \pm A(m_1,\ldots,m_{n-2},-m_{n-1}),$$

depending on if ϕ is odd or even.

Proof idea: The δ matrices are determined by $SL(n, \mathbb{Z})$ and T_{δ_0} ; hence ϕ is symmetric iff $T_{\delta_0}\phi = \pm \phi$. (Typo on page 266.)

Looking at T_{δ_0} , only the x_{n-1} variable changes to $-x_{n-1}$, so the corresponding coefficients when looking at that must match are $A(m_1, \ldots, m_{n-1})$ and $A(m_1, \ldots, -m_{n-1})$, with a \pm depending on the sign of $T_{\delta_0}\phi = \pm \phi$; i.e. when ϕ is even or odd.

- Using the T_{δ} , we can interpret $A(m_1, \ldots, m_{n-1})$ for symmetric Maass forms, even when the m_i are negative. Note in particular that letting δ be the matrix with the $\delta_i = \frac{m_i}{|m_i|}$, then we can take $A(m_1, \ldots, m_{n-1})$ to be the $(|m_1|, \ldots, |m_{n-1}|)$ -th coefficient of $T_{\delta}\phi$, multiplied by det δ if ϕ is odd and 1 if ϕ is even.
- Dual Maass form: (Typos in book.) For ϕ a Maass form of Langlands parameters α , then we define the dual Maass form

$$\widetilde{\phi}(z) = \phi((z^{-1})^T)$$

a Maass form of Langlands parameters $\alpha' = (-\alpha_n, -\alpha_{n-1}, \ldots, -\alpha_1)$. Moreover, if ϕ is symmetric, then the (m_1, \ldots, m_{n-1}) th coefficient of ϕ is

$$\pm A(m_{n-1},\ldots,m_1),$$

where the sign is $(-1)^{n-1+\lfloor n/2 \rfloor}$ if ϕ is odd, and 1 if ϕ is even. Equivalently, the sign is -1 if $4 \mid n$ and ϕ is odd, and 1 otherwise.

• Proof idea: $\widetilde{\phi}(\gamma z) = \widetilde{\phi}(z)$ because $\operatorname{SL}(n, \mathbb{Z})$ is preserved by inverse transpose.

By $SL(n,\mathbb{Z})$ left invariance and $O(n,\mathbb{R})$ right invariance, we have that

$$\widetilde{\phi}(z) = \phi(w(z^{-1})^T w^{-1})$$

where

$$w = \begin{pmatrix} & & (-1)^{\lfloor n/2 \rfloor} \\ & 1 & & \\ & \cdots & & \\ 1 & & & \end{pmatrix}$$

is the long element of the Weyl group for $\operatorname{SL}(n, \mathbb{Z})$. In particular, we note that $w(z^{-1})^T w^{-1}$ has a Iwasawa decomposition of the form x'y', where y' consists of the elements $y_1 \ldots y_{n-1}, y_2 \ldots y_{n-1}, \ldots, y_{n-1}, 1$, and x' consists of 1s on the diagonal, $-x_i$ on the offdiagonal for $2 \le i \le n-1$ and $(-1)^{\lfloor n/2 \rfloor + 1} x_1$. One can show by induction (on what the remaining x' terms look like) that

$$\int_{\mathrm{SL}(n,\mathbb{Z})\cap U)\setminus U} \widetilde{\phi}(z) \,\mathrm{d}u = 0$$

for all ${\cal U}$ from the cuspidal condition.

In particular, note that the y' reverses the order of the y_i , which in Langlands parameters corresponds to reversing the order of the parameters and negating them. Thus $I_{\alpha'}(z) = I_{\alpha}(w(z^{-1})^T w^{-1})$, and thus $\tilde{\phi}$ has Langlands parameters α' .

Finally, the (m_1, \ldots, m_{n-1}) th coefficient of ϕ , by the work above, computed by looking at

$$\int_0^1 \dots \int_0^1 \widetilde{\phi}(z) e^{-2\pi i (m_1 x_1 + \dots + m_{n-1} x_{n-1})} \mathrm{d}^* x$$

corresponds to $A(-m_{n-1}, -m_{n-2}, \ldots, -m_2, (-1)^{\lfloor n/2 \rfloor + 1} m_1)$ of ϕ , giving the desired result.

1.3 Hecke operators for $SL(n, \mathbb{Z})$

• Recall the Hecke theory discussed in Section 3.10. Let $G = GL(n, \mathbb{R})$, $\Gamma = SL(n, \mathbb{Z})$, and $X = \mathfrak{h}^n$. In this case, we have the that the matrices

$$\begin{pmatrix} m_0 \dots m_{n-1} & & \\ & \ddots & & \\ & & m_0 m_1 & \\ & & & & m_0 \end{pmatrix},$$

where the m_i are all positive integers lies in the commensurator. Let Δ be the semigroup generated by all of these matrices. Since Δ is preserved under transpose, the Hecke ring generated by Δ is commutative.

• Define the set

$$S_n = \left\{ \begin{pmatrix} c_1 & c_{1,2} & \dots & c_{1,n} \\ & c_2 & \dots & c_{2,n} \\ & & \ddots & \vdots \\ & & & c_n \end{pmatrix} \mid c_\ell \ge 1, \prod_{\ell=1}^n c_\ell = N, 0 \le c_{i,\ell} < c_\ell \right\}.$$

Then we have the double coset partition

$$\bigcup_{\substack{m_0^n m_1^{n-1} \dots m_{n-1} = N}} \Gamma \begin{pmatrix} m_0 \dots m_{n-1} & & \\ & \ddots & & \\ & & m_0 m_1 & \\ & & & m_0 \end{pmatrix} \Gamma = \bigcup_{\alpha \in S_N} \Gamma \alpha.$$

Proof idea: Use Hermite and Smith normal form.

• We can use the S_N to define Hecke operators:

$$T_N f(z) = \frac{1}{N^{\frac{n-1}{2}}} \sum_{\substack{\prod_{\ell=1}^n c_\ell = N \\ 0 \le c_{i,\ell} < c_\ell}} f\left(\begin{pmatrix} c_1 & c_{1,2} & \dots & c_{1,n} \\ & c_2 & \dots & c_{2,n} \\ & & \ddots & \vdots \\ & & & c_n \end{pmatrix} \cdot z \right).$$

• With respect to the standard inner product, the Hecke operators are no longer self-adjoint. However, the adjoint of a Hecke operator is itself a Hecke operator, and commutes with the original Hecke operator, so the operator is normal. Mathematically, we have that T_N^* is associated to the double coset union

$$\bigcup_{m_0^n m_1^{n-1} \dots m_{n-1} = N} \Gamma \begin{pmatrix} N \cdot m_0^{-1} & & \\ & N \cdot (m_0 m_1)^{-1} & & \\ & & \ddots & \\ & & & N \cdot (m_0 \dots m_{n-1})^{-1} \end{pmatrix} \Gamma.$$

Proof idea: Apply a change of variable in the integral for $\langle T_N f, g \rangle$.

- To form the full Hecke ring, we take ring of operators generated by the T_{δ} , the $GL(n, \mathbb{R})$ -invariant differential operators, and then T_n .
- As expected, we can use the Hecke operators to gain information about the Fourier coefficients of Hecke-eigen Maass forms.
- For a Heckeeigen Maass form ϕ , if $A(1, \ldots, 1) = 0$, then $\phi = 0$. Otherwise, choosing to normalize to let $A(1, \ldots, 1) = 1$, we have that

$$T_m\phi = A(m, 1, \dots, 1)\phi$$

with multiplicativity relations

$$A(m_1, \dots, m_{n-1})A(m'_1, \dots, m'_{n-1}) = A(m_1m'_1, \dots, m_{n-1}m'_{n-1})$$

if $gcd(m_1 \cdots m_{n-1}, m'_1 \cdots m'_{n-1}) = 1$, and

$$A(m,1,\ldots,1)A(m_1,\ldots,m_{n-1}) = \sum_{\substack{\prod_{\ell=1}^{n} c_\ell = m \\ c_i \mid m_i}} A\left(\frac{m_1c_n}{c_1}, \frac{m_2c_1}{c_2}, \ldots, \frac{m_{n-1}c_{n-2}}{c_{n-1}}\right).$$

• Proof idea: Manually compute what the (m_1, \ldots, m_{n-1}) coefficient of $T_m \phi$ looks like as a sum over the *c* matrices. Do a change of variable to swap from *cx* to *x'c* and working through the relationship gives the equation

$$\lambda_m A(m_1, \dots, m_{n-1}) = \sum_{\substack{\prod_{\ell=1}^n c_\ell = m \\ c_i \mid m_i}} A\left(\frac{m_1 c_n}{c_1}, \frac{m_2 c_1}{c_2}, \dots, \frac{m_{n-1} c_{n-2}}{c_{n-1}}\right).$$

First assume $A(1,...,1) \neq 0$, with normalization A(1,...,1) = 1. We directly get that $T_m \phi = A(m,1,...,1)\phi$ and the relation

$$A(m,1,\ldots,1)A(m_1,\ldots,m_{n-1}) = \sum_{\substack{\prod_{\ell=1}^n c_\ell = m \\ c_i \mid m_i}} A\left(\frac{m_1 c_n}{c_1}, \frac{m_2 c_1}{c_2}, \ldots, \frac{m_{n-1} c_{n-2}}{c_{n-1}}\right).$$

Now, to prove multiplicativity, we use the above relation. One can inductively show

$$A(p^{K_1}m_1, p^{K_2}m_2, \dots, p^{K_{n-1}}m_{n-1}) = A(p^{K_1}, p^{K_2}, \dots, p^{K_{n-1}})A(m_1, m_2, \dots, m_{n-1})$$

for $p \nmid m_i$ by applying the relation to

$$A(p^{K_0}, 1, \dots, 1)A(p^{K_1}m_1, p^{K_2}m_2, \dots, p^{K_{n-1}}m_{n-1}),$$

first proving it for p^{K_1} only, then p^{K_1} and p^{K_2} , etc. See Goldfeld's paper for more details.

Now, if A(1,...,1) = 0, then all of the A(m,1,...,1) are 0, and inductively using the prime power idea, one can show that all of the $A(m_1,...,m_{n-1})$ are 0.

1.4 The Godement-Jacquet L-function

• Given a Hecke-eigen Maass form f, we have the Godement-Jacquet L-function

$$L_f(s) = \sum_{m=1}^{\infty} A(m, 1, \dots, 1) m^{-s},$$

absolutely convergent for $\operatorname{Re}(s) > \frac{n+1}{2}$.

• We have an Euler product

$$L_f(s) = \prod_p \phi_p(s),$$

where

$$\phi_p(s) = \sum_{k=0}^{\infty} \frac{A(p^k, 1, \dots, 1)}{p^{ks}}.$$

By using the multiplicativity relations, one can show that

$$\phi_p(s) = \left(1 - A(p, \dots, 1)p^{-s} + A(1, p, \dots, 1)p^{-2s} - \dots + (-1)^{n-1}A(1, \dots, p)p^{-(n-1)s} + (-1)^n p^{-ns}\right)^{-1}$$

• For GL(2), taking the Mellin transform of the Maass form along the *y*-axis gives the L-function, which we then can use to get the functional equation. We want to do something similar for GL(n), but the

 $\begin{pmatrix} \gamma \\ 1 \end{pmatrix}$ terms cause issues.

• Inductively, we can show that

$$\int_{0}^{1} \dots \int_{0}^{1} f(\widehat{u}z) e^{-2\pi i (u_{1} + \dots + u_{n-2})} d^{*}\widehat{u}$$

= $\sum_{m \neq 0} \frac{A(1, \dots, 1, m)}{|m|^{\frac{n-1}{2}}} e^{2\pi i m x_{n-1}} e^{2\pi i (x_{1} + \dots + x_{n-2})} W_{\alpha} \begin{pmatrix} |m| & & \\ & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix} y, \psi_{1,\dots,1} \end{pmatrix},$

where \hat{u} is an integral over a unipotent matrix, except for the u_n element (top left offdiagonal element). The induction is by column (right to left).

- Taking the Mellin transform of this formula gives the L function (of the dual modular form, possibly with a minus sign), along with the integral of a Whittaker function. For n = 3, we can compute explicitly everything in terms of Gamma functions and Bessel functions to compute the functional equation.
- For higher n, we will get the functional equation from the functional equation of the Eisenstein series.