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1 Discrete Group Actions

1.1 Action of a Topological Space

• Left group action of G on X: continuous if x → g ◦ x is continuous for all g. We denote the set of
orbits G\X (right cosets).

• Γ ⊆ G is discrete if for any compact K, there exists finitely many γ ∈ Γ such that γK ∩K 6= ∅.

• SL(2,Z) is a discrete subgroup of SL(2,R).

• Γ∞ =

{(
1 m
0 1

)
|m ∈ Z

}
.
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• Proof that SL(2,Z) is discrete: Finitely many γ ∈ Γ∞\SL(2,Z) such that a rectangle intersects itself
after translation by Γ. Multiplication by something in Γ∞ corresponds to translation, and only finitely
many possible translate can hit the same rectangle.

• Standard action of SL(2,Z) on H, and fundamental domain.

1.2 Iwasawa Decomposition

• Iwasawa decompostion for GL(2,R): We can express

g = zkd,

where z is upper triangular with 1 in the lower right corner, k is orthogonal, and d is diagonal with
the same entry along the diagonal. k and d are unique up to multiplication by ±I, and z is unique.

• Generalized upper half-plane: hn is the set of all matrices in GL(n,R) of the form xy, where x is upper
triangular with 1s on the diagonal, and

y =


y1y2 . . . yn−1

y1y2 . . . yn−2

. . .

y1

1

 .

• h3 does not have complex structure, compared to h2. This is what makes GL(n) automorphic forms
different.

• Iwasawa decomposition for GL(n): We have that

GL(n,R) = hnO(n,R)Zn,

where Zn is the center of GL(n,R), i.e. diagonal matrices with everything the same along the diagonal.
Letting g = zkd be the decomposition, k and d are unique up to multiplication by ±I, and z is unique.
Hence

hn ∼= GL(n,R)/(O(n,R)R∗),

defining an action of GL(n,R) (and GL(n,Z)) on hn.

• Proof of decomposition: explicit computation involving factoring ggT in terms of upper and lower
triangular matrices.

1.3 Siegel Sets

• Siegel set: Σa,b ⊆ hn is the set of z = x · y ∈ hn such that |xi,j | ≤ b and yi > a.

• Γn = GL(n,Z) acts discretely on hn. In particular, for any z ∈ hn, there are only finitely many g ∈ Γn

such that gz ∈ Σ√3/2,1/2. In fact, we can write

GL(n,R) =
⋃
g∈Γn

gΣ√3/2,1/2.

Hence Σ√3/2,1/2 serves as a ”good approximation” for a fundamental domain for hn.

• Proof idea: Reduce to SL(n,R) and SL(n,Z). Show that if φ(γz) is minimized for γ ∈ SL(n,Z),
where φ is the norm of the last row (which exists because SL(n,Z) is a lattice) then γz ∈ Σ∗√

3/2,1/2

(determinant 1 version). This proves the cover of GL(n,R) by elements of Σ√3/2,1/2.
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• Proof of discreteness of action: We show that there are finitely many γ ∈ SL(n,Z) such that γz ∈
Σ∗√

3/2,1/2
. (This is good enough because GL(n,Z)/SL(n,Z) = Z/2Z.) Define φi(z) = ‖eiγz‖, well-

defined on SL(n,R)/SO(n,R). Letting z = xy and explicitely computing φi(z) shows that γz ∈
Σ∗√

3/2,1/2
=⇒ φi(z) bounded, hence since eiγz has lattice structure, there are only finitely many ith

rows of γ so that γz lies in Σ∗√
3/2,1/2

, and hence finitely many γ.

1.4 Haar Measure

• Topological group: A topological space G such that G is a group, and

(g, h) 7→ g · h−1

is continuous in both variables; i.e. multiplication and inversion is continuous.

• Locally compact: every point has compact neighborhood

• Hausdorff: distinct elements can be separated by opens

• In particular, GL(n,R) is a locally compact Hausdorff topological group, coming from the subspace
topology of GL(n,R) ⊆ Mat(n,R) = gl(n,R).

• (left) Haar measure: For locally compact Hausdorff topological group, we want a positive Borel measure
µ on G, left invariant on the action by G, i.e. µ(gE) = µ(E). Same for right. If left invariant measure
means right invariant measure on G, G is unimodular.

Can define differential one form, such that that we have integrals for compactly supported f : G→ C
ˆ
G

f(g) dµ(g) ,

and ˆ
E

dµ(g) = µ(E).

This dµ(g) is the Haar measure.

• Key theorem: For any locally compact Hausdorff topological group, there exists a unique left Haar
measure on G, up to positive real multiples. Proof of uniquness: Fubini.

• Haar measure on GL(n,R): For g = (gi,j)i,j ∈ GL(n,R), the unique left-right invariant measure on
GL(n,R) is

dµ(g) =

∏
1≤i,j≤n dgi,j

det(g)
n .

Proof: Decompose GL(n,R) into Zn (center of GL(n,R)) and elements that are 1 on the diagonal and
xr,s and (r, s), and do casework.

1.5 Invariant measure on coset spaces

• Let G be a locally compact Hausdorff topological group, and H a compact subgroup of G, with
corresponding Haar measure µ and ν, respectively. Then there exists a unique (up to scalar multiple)
quotient measure µ̃ on G/H such that

ˆ
G

f(g) dµ(g) =

ˆ
G/H

(ˆ
H

f(gh) dν(h)

)
dµ̃(gH) .
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• hn and GL(n,R): The measure left invariant GL(n,R) measure on hn can be expressed as

d∗z = d∗xd∗y,

with
d∗x =

∏
1≤i<j≤n

dxi,j

and
d∗y =

∏
1≤i≤k

y
−k(n−k)−1
k dyk .

Proof: Check invariance under diagonal matrices, upper triangular matrices with 1s on diagonal, and
transpositions.

1.6 Volume of SL(n,Z)\SL(n,R)/SO(n,R)
• Note that SL(n,R)/SO(n,R) ∼= GL(n,R)/(O(n,R) · R∗).

• The volume of SL(n,Z)\SL(n,R)/SO(n,R) can be explicitly computed to be

n2bn/2c
n∏
`=2

ζ(`)

Vol(S`−1)
.

(Note that this is different from the book.)

• Proof idea: Induction.

• Base case (n = 2): Can directly integrate using the fundamental domain. Or use the technique from
the general case.

• General case: Define a test function f , then create a periodic function

F (z) =
∑
m∈Zn

f(m · z).

Split sum in casework by last row: take out common factor `, then treat as coset of Pn\hn, where
Pn is anything with en as the last row. Integrate over a fundamental domain Γn\hn. Now break up
`en · z via the Iwasawa decomposition into three components; one that is integrating over SL(n− 1,Z),
one over (R/Z)n−1 (corresponding to xj,n), and one integrating over (0,∞); corresponding to t =(∏n−1

i=1 y
n−i
i

)−1/n

. Applying spherical integration techniques, this can be computed in terms of f̂(0).

Now, applying Poisson summation, replace f by f̂ , and get the same formula but with f̂ and f switched.
Choosing an appropriate f , this gives the desired result.

2 Invariant differential operators

• The periodic functions e2πinx on L2(Z\R) are precisely the eigenfunctions for the Laplacian operator
d2

dx2 , with eigenvalue −4π2n2. This directly leads to Fourier theory.

• Thus, we are motivated to consider differential operators invariant under the discrete group, and their
eigenvalues/functions.
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2.1 Lie algebra

• Associative algebra: Associative algebra A over field K is a vector space over K with an associative
product closed in A satisfying the distributive law.

• Lie algebra: Vector space over K with bilinear map [·, ·] : L× L→ L such that

– [a, βb+ γc] = β[a, b] + γ[a, c]

– [a, a] = 0

– [a, b] = −[b, a]

– [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

• Given an associative algebra A, the associated Lie algebra Lie(A) is A equipped with the bracket

[a, b] = ab− ba.

• Universal enveloping algebra: For any Lie algebra L over K, consider the tensor algebra

T (L) = ⊕∞k=0 ⊗k L,

where the tensor product is taken over K. Let I(L) be the two-sided ideal generated by X ⊗ Y − Y ⊗
X − [X,Y ]. Then the universal enveloping algebra is precisely

U(L) = T (L)/I(L),

an associative algebra with the product X ◦ Y = X ⊗ Y (mod I(L)). In particular, by definition,

L ⊆ Lie(U(L))

with the inclusion respecting the bracket.

2.2 Universal enveloping algebra of gl(n,R)
• gl(n,R): Precisely Mat(n,R), with Lie bracket

[α, β] = αβ − βα.

• We have the (left invariant) differential operators Dα, for α ∈ gl(n,R), acting on the set of smooth
functions GL(n,R)→ C, via

DαF (g) =
∂

∂t
F (g exp(tα))|t=0 =

∂

∂t
F (g + tgα)|t=0.

Denote Dn to be the associative algebra generated by the Dα, where the multiplication is composition.

• Some properties of the differential operators:

– Dα(FG) = DαF ·G+ F ·DαG

– Dα(F (G(g))) = (DαF )(G(g))Dα(G)(g)

– Dα+β = Dα +Dβ

– Dα ◦Dβ −Dβ ◦Dα = D[α,β].

– Dα ◦Dβ = Dβ ◦Dα =⇒ Dαβ = Dαβ .

In particular, Dn can be realized as the universal enveloping algebra of gl(n,R). Letting [D,D′] =
D ◦D′−D′ ◦D be the bracket for the induced Lie algebra (from the universal enveloping algebra), we
have that [Dα, Dβ ◦D] = [Dα, Dβ ] ◦D +Dβ ◦ [Dα, D].

Proof of properties: Direct calculation using multivariate chain rule.

• If f : GL(n,R) → C is left-invariant by GL(n,Z) and right-invariant by Zn, then for all D ∈ Dn, Df
is also left-invariant by GL(n,Z) and right-invariant by Zn.
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2.3 The center of the universal enveloping algebra of gl(n,R)
• Denote Dn to be the center of the universal enveloping algebra Dn.

• If D ∈ Dn, and f is a smooth function

f : GL(n,Z)\GL(n,R)/(O(n,R)Zn)→ C,

then Df is also well defined over GL(n,Z)\GL(n,R)/(O(n,R)Zn); i.e. it is left-invariant by GL(n,Z)
and right invariant by O(n,R)Zn.

• Proof idea: Use the fact that SO(n,R) is generated by exp of skew-symmetric matrices, and that exp
commutes well with the definition of D. Then use that D lies in the center, and f is right-invariant by
O(n,R) (including δ1!).

• Casimir operators: Let Ei,j be the matrix with 1 at i, j and 0 elsewhere, and let Di,j = DEi,j . Then
for each m ≥ 2, we have the Casimir operator

n∑
i1=1

n∑
i2=1

· · ·
n∑

im=1

Di1,i2 ◦Di2,i3 ◦ · · · ◦Dim,i1 ,

which lies in Dn.

• For gl(n,R): The center is a rank n algebra. Any element in the center can be expressed as a polynomial
in R in the Casimir operators defined before and DIn . Moreover, DIn annihilates any function invariant
under Zn.

2.4 Eigenfunctions of invariant differential operators

• We want a smooth function f : hn → C that is an eigenfunction for all D ∈ Dn; i.e. we want

Df(z) = λDf(z)

for all D in the center of the universal enveloping algebra and z ∈ hn.

• Power function: We have the Is function, a generalization of the imaginary part function raised to the
power s;

Is(z) =

n−1∏
i=1

n−1∏
j=1

y
bi,jsj
i ,

where

bi,j =

{
ij i+ j ≤ n
(n− i)(n− j) i+ j > n

• On GL(2,R), this is just ys. We have that ∆ = y2( ∂2

∂x2 + ∂2

∂y2 ) generates D2 for functions over h2 (we

can ignore DI2 , as all functions are right-invariant by the center). In particular, note that

∆Is(z) = s(s− 1)Is(z).

• The proposition in the book proving this is incorrect. See Dorian’s classes’ notes.

• In particular, Is(z) is such an eigenfunction for all D ∈ Dn.

• Theme: Any function in just ys is an eigenfunction.
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3 Automorphic forms and L-functions for SL(2,Z)
• Key idea: Automorphicity is equivalent to existence of functional equation for certain L-functions -

this is the idea of converse theorems.

• Hecke operators: Simultaneous eigenfunction of all Hecke operators corresponds to Euler product for
L-function.

3.1 Eisenstein series

• Hyperbolic Laplacian:

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
,

invariant under the action by GL(2,R)+.

• ys is an eigenfunction of this operator, with eigenvalue s(1− s).

• Automorphic function: Smooth function SL(2,Z)\h→ C.

• To construct automorphic function, we average over the group to get the Eisenstein series:

E(z, s) =
∑

γ∈Γ∞\SL(2,Z)

Is(γz)

2
=

1

2

∑
c,d∈Z

gcd(c,d)=1

ys

|cz + d|2s

• E(z, s) converges absolutely and uniformly on compact subset for z ∈ h2 and Re(s) > 1.

• Real analytic in z and complex analytic in s.

• More properties:

– |E(z, s)− ys| ≤ c(ε)y−ε for σ ≥ 1 + ε > 1.

– E(γz, s) = E(z, s) for γ ∈ SL(2,Z).

– ∆E(z, s) = s(1− s)E(z, s).

• Bessel function:

Ks(y) =
1

2

ˆ ∞
0

e−
1
2y(u+1/u)us

du

u
.

In particular, Ks(y) = K−s(y).

• Fourier coefficients of Eisenstein series: We have that

E(z, s) = ys + φ(s)y1−s +
2πs
√
y

Γ(s)ζ(2s)

∑
n 6=0

σ1−2s(n)|n|s−1/2Ks−1/2(2π|n|y)e2πinx,

where

φ(s) =
√
π

Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
.

• Idea of proof: Integral calculation. A little bit of Ramanujan sums. Some identities from Gamma
integrals involve rewriting the Gamma integral then performing a change of variable.

• Properties of φ:

– φ(s)φ(1− s) = 1,

– E(z, s) = φ(s)E(z, 1− s).
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• We have the modified function E∗(z, s) = π−sΓ(s)ζ(2s)E(z, s). It is meromorphic, with simple poles
at s = 0, 1. It has functional equation

E∗(z, s) = E∗(z, 1− s)

(which follows by examining the Fourier coefficients) and has

Ress=1E(z, s) =
3

π

for all z ∈ h2.

• Why do we care? Useful in the Rankin-Selberg method (discussed previously) to get functional equa-
tions for L-functions. Will also arise the in the Selberg spectral decomposition of L2(SL(2,Z)\h2)
functions.

3.2 Hyperbolic Fourier expansion of Eisenstein series

• Idea: We can use a hyperbolic Fourier expansion of the Eisenstein series to recover the functional
equation for the Hecke L-function associated to Q(

√
D), where this is a real quadratic field (also for D

of specific form).

• Let ρ =

(
α β
γ δ

)
∈ SL2(Z). be a hyperbolic element; i.e. γ > 0 and |α + δ| > 2. This has two fixed

points

ω =
α− δ +

√
D

2γ

and

ω′ =
α− δ −

√
D

2γ
,

where D = (α+ δ)2 − 4.

• Let

κ =

(
1 −ω
1 −ω′

)
.

Then κρκ−1 (the diagonalization) is equivalent to(
ε 0
0 ε−1

)
,

where
ε = (α+ δ −

√
D)/2.

so that ε+ ε−1 = α+ δ. Moreover, it is a unit in Q(
√
D). Since Q(

√
D) is a quadratic extension of Q,

the ring of integers is rank 1, and we suppose that ε is a fundamental unit of the group of units.

• In particular, we have that
E(κ−1z, s) = E(κ−1(ε2z), s).

Consider this series as a function of v, where z = iv. We get a Fourier expansion

ζ(2s)E(κ−1(iv), s) =
∑
n∈Z

bn(s)v
πin
log ε ,

with

bn(s) =
1

2 log ε

ˆ ε2

1

ζ(2s)E(κ−1(iv), s)v
πin
log ε

dv

v

9
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• After some tedious calculation, you get that

bn(s) =
(ω − ω′)s

4 log ε

∑
β 6=0

N(β)−s
∣∣∣∣ ββ′
∣∣∣∣−πinlog ε

ˆ ε2|β′/β|

|β′/β|

(
v

v2 + 1

)s
v−πin/ log ε dv

v

Note that there are typos in the book: extra factor of 1/2, and inside term is v and not v2.

• The β = cω+d lie in an (fractional) ideal b such that N(b) = 1
γ , so using the definition of two principal

ideals being equal (using that ε is a fundamental unit) and an integral calculation similar to Bump
Proposition 1.9.1, we have that

bn(s) =

Γ

(
s− πin

log ε

2

)
Γ

(
s+ πin

log ε

2

)
Γ(s)

(N(b)
√
D)s

8 log ε

∑
b|(β) 6=0

∣∣∣∣ ββ′
∣∣∣∣−πin/ log ε

N(β)−s.

(TODO: This 8 should maybe be a 2? Double check the gamma integral. Maybe check The Spectrum
of Hyperbolic Surfaces, Bergeron)

• We have the Hecke grossencharakter

ψ((β)) =

∣∣∣∣ ββ′
∣∣∣∣−πin/ log ε

and Hecke L-function
Lb(s, ψn) =

∑
b|(β)6=0

ψn((β))N(β)−s.

• Hence the expansion for the Eisenstein series invovles the Hecke L-function:

E∗(κ−1(iv), s) =
(N(b)

√
D)s

8πs log ε

∑
n∈Z

Γ

(
s− πin

log ε

2

)
Γ

(
s+ πin

log ε

2

)
Lb(s, ψn)vπin/ log ε.

• The functional equation for the Eisenstein series hence gives the functional equation for the Hecke
L-function: Lb(s, ψn) has meromorphic continuation except a simple pole at s = 1, and letting

Λnb(s) =
(N(b)

√
D)s

πs
Γ

(
s− πin

log ε

2

)
Γ

(
s+ πin

log ε

2

)
Lb(s, ψn),

we have Λnb(s) = Λnb(1− s).

3.3 Maass forms

• We have a Hilbert space of L2(SL(2,Z)\h2) with the inner product given by the Petersson inner
product:

ˆ
SL(2,Z)\h2

f(z)g(z)
dxdy

y2
.

• We define a Maass form of type v to be a function f ∈ L2(SL(2,Z)\h2) such that

– f(γz) = f(z) for γ ∈ SL(2,Z).

– ∆f = v(1− v)f

–
´ 1

0
f(z) dx = 0.

(In other sources, the last condition is for a Maass cuspform.)

10



Austin Lei

• ∆ is a self-adjoint operator. Hence v(1− v) is real and nonnegative. Proof idea: Use that
ˆ

Γ\h2

(
∂2f

∂x2
+
∂2f

∂y2

)
f =

ˆ
Γ\h2

∣∣∣∣∂f∂x
∣∣∣∣2 +

∣∣∣∣∂f∂y
∣∣∣∣2

for f a Maass form. This follows from Green’s theorem.

• Maass form of types 0 or 1 must be constant. Follows from properties of harmonic functions. (Why is
f bounded as the imaginary part of z → ∞? Answer: Follows from Fourier expansion; we show later
that each of the Fourier expansions has rapid decay, so the function is hence bounded. See: https:

//math.stackexchange.com/questions/4980702/a-question-on-properties-of-mass-forms )

3.4 Whittaker expansions and multiplicity one for GL(2,R)
• For a Maass form f , using the transformation property gives a Fourier expansion

f(z) =
∑
m∈Z

Am(y)e2πimx,

and Am(y)e2πimx satsifies the two properties

– ∆Wm(z) = v(1− v)Wm(z)

– Wm

((
1 u
0 1

)
z

)
= Wm(z)e2πimu

This motivates the following definition.

• A Whittaker function of type v with additive character ψ : R → S1 is a smooth nonzero function
W : h2 → C such that

– ∆W (z) = v(1− v)W (z)

– W

((
1 u
0 1

)
z

)
= Wm(z)ψ(u)

• On GL(2,R), we can construct these functions explicitely. We can check that

W (z, v, ψm) =
√

2
(π|m|)v−1/2

Γ(v)

√
2πyKv−1/2(2π|m|y)e2πimx.

where

Kv(y) =
1

2

ˆ ∞
0

e−1/2y(u+1/u)uv
du

u
.

• Multiplicity 1: For SL(2,Z)-Whittaker functions of type not 0 or 1 with rapid decay at infinity, it must
be a constant multiple of the W computed before. In particular, if ψ = 1, then a = 0. Moreover, if ψ
is non-trivial, we can assume W has polynomial growth.

• Proof follows from differential equation theory. In the nontrivial case, there are two solutions; one has
rapid decay (Kv(y)) and one has rapid growth, and it is precisely the function defined before.

3.5 Fourier-Whittaker expansions on GL(2,R)
• Corollary of Multiplicity One theorem: Every nonconstant Maass form of type v (i.e. type not 0 or 1)

has Whittaker expansion of the form

f(z) =
∑
n6=0

an
√

2πyKv−1/2(2π|n|y)e2πinx.

• Proof: The integral condition requires that the e2πi0 coefficient is 0. Maass forms being L2 implies
that it has polynomial growth. Hence all of the Whittaker functions corresponding to each Fourier
coefficient (corresponding not to 0) must be at worst polynomial growth. By multiplicity one, this
forces every Fourier coefficient to be of the form above.
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3.6 Ramunujan-Petersson Conjecture

• For holomorphic modular cuspforms of weight k, we have the Ramunujan-Petersson conjecture

|an| = O(n(k−1)/2d(n))

where d(n) is the number of divisors of n.

• Idea: Non-constant Maass forms like holomorphic modular forms of weight 0.

• This leads to Ramanujan-Petersson conjecture for Maass forms:

|an| = O(d(n)),

with constant only dependent on the Petersson norm of f .

• What we can show: If f has Petersson norm 1 and is of type v, we have that

|an| = Ov(
√
|n|).

Proof idea: Integrate from x ∈ [0, 1], y ∈ [Y,∞) of |f(z)|2, then isolate the an. Then use a change of
variable y 7→ Y y to get a 1

Y factor times the area of |f |2 over the fundamental domain.

3.7 Selberg eigenvalue conjecture

• We know that for a non-constant Maass form f , ∆f = v(1 − v)f , where λ = v(1 − v) is real and
positive. How small can λ be?

• Maass form for a congruence subgroup Γ: Smooth on h2, automorphic on Γ, lies in L2(Γ\h2), constant
terms of Fourier expansions at cusps vanish, and ∆f = v(1− v)f .

• Selberg conjecture: If f is a Maass form of type v for a congruence subgroup Γ, then v(1− v) ≥ 1/4;
i.e. Re(v) = 1/2.

• For Maass forms on SL(2,Z), can prove (according to M-F Vigneras) that v(1− v) ≥ 3π2

2 .

• Proof idea: Use again that

ˆ
Γ\h2

(
∂2f

∂x2
+
∂2f

∂y2

)
f =

ˆ
Γ\h2

∣∣∣∣∂f∂x
∣∣∣∣2 +

∣∣∣∣∂f∂y
∣∣∣∣2

for f a Maass form. This follows from Green’s theorem.

3.8 Finite dimensionality of the eigenspaces

• Let Sλ be the space of Maass forms of eigenvalue Λ = v(1−v) under ∆. This space is finite dimensional.

• Idea of proof: If an = 0 for n ≤ n0, for n0 sufficiently large, then f itself must be 0. Get bound using

that an = O(
√
|n|) and use that Kv(y) � e−y√

y .

3.9 Even and odd Maass forms

• T−1: Operator such that
T−1f(x+ iy) = f(−x+ iy).

Notation is written to match Hecke operators later. This sends Maass forms of type v to Maass forms
of type v.

• In particular, the eigenvalues of T−1 must be ±1, since T 2
−1 = I.

12
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• If T−1f = f , then f is even. If T−1f = −f , then f is odd.

• If f is even, then an = a−n. If f is odd, then an = −a−n. Proof: Clear from Fourier inversion after
making substitution x 7→ −x.

• Any Maass form of type v can be expressed as the sum of an even and odd Maass form:

f =
1

2
(f + T−1f) +

1

2
(f − T−1f) ;

the left is an even Maass form and the right is an odd Maass form.

3.10 Hecke operators

We will show this in more generality, then later apply to the case of Γ = SL(2,Z) and X = h2.

• G is a group acting continuously on topological space X, Γ is a discrete subgroup of G, Γ\X as left
Γ-invariant measure dx.

• We have the commensurator of Γ

CG(Γ) =
{
g ∈ G|(g−1Γg) ∩ Γ has finite index in both Γ and g−1Γg

}
.

• For any g ∈ CG(Γ), we have the decomposition

Γ = ∪di=1

(
(g−1Γg) ∩ Γ

)
δi,

giving double coset decomposition
ΓgΓ = ∪di=1Γgδi

for some representatives δi ∈ Γ, where d = [Γ : (g−1Γg) ∩ Γ].

• We define the Hecke operator
Tg : L2(Γ\X)→ L2(Γ\X)

by

Tg(f(x)) =

d∑
i=1

f(gδix).

• This is well-defined; the choice of δi is preserved because f is invariant under left-multiplication under
Γ, and Tg(f(γx)) = Tg(f(x)) for γ ∈ Γ because δiγ = γ′iδσ(i) for γ′i ∈ g−1Γg ∩ Γ, and so

gδiγ = gγ′iδσ(i) ∈ Γgδσi ,

and then we invoke left invariance of Γ.

• We get the Hecke ring by considering formal sums∑
k

mkTgk .

• For multiplication, we consider the multiplication of the double cosets:

(ΓgΓ)(ΓhΓ) = ∪jΓgΓβj = ∪i,jΓαiβj = ∪Γw⊆ΓgΓhΓΓw = ∪ΓwΓ⊆ΓgΓhΓΓwΓ.

• Then
TgTh =

∑
ΓwΓ⊆ΓgΓhΓ

m(g, h, w)Tw,

where m(g, h, w) is the number of i, j such that Γαiβj = Γw. This product ends up being associative.

13
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• Let ∆ be a semigroup such that Γ ⊆ Γ ⊆ CG(Γ). The Hecke ring RΓ,∆ is the set of all formal sums∑
k

ckTgk

with ck ∈ Z and gk ∈ ∆.

• Antiautomorphism: g 7→ g∗ such that (gh)∗ = h∗g∗. For example, transpose of matrix, which is what
we care about.

• Commutativity of Hecke ring: If there exists antiautomorphism g 7→ g∗ of CG(Γ) such that Γ∗ = Γ
and (ΓgΓ)∗ = ΓgΓ for all g ∈ ∆, then RΓ,∆ is a commutative ring.

• Proof: Idea: Use the antiautomorphism to show that left and right coset decompositions are basically
the same. Then use antiautomorphism to show that products should come out to the same thing.

3.11 Hermite and Smith normal forms

• Hermite normal form: Every matrix A ∈ GL(n,Z)+ is left-equivalent under SL(n,Z) to a matrix B,
i.e. B = γA, with γ ∈ SL(n,Z), of the form

d1 α2,1 . . . αn,1
0 d2 . . . αn,2

0 0
. . .

...
0 0 . . . dn


where the di are positive integers and 0 ≤ αk,j < dk.

• Idea of proof: You can get this form by performing row operations that preserve the determinant,
which is equivalent to left-multiplication by γ ∈ SL(n,Z).

• Smith normal form: Every matrix A ∈ GL(n,Z)+ is left-right equivalent under SL(n,Z) to a matrix
D; i.e. D = γ1Aγ2, where D is a diagonal matrix, with dn in the top left and d1 in the bottom right,
such that di | di+1, and the di > 0.

• Idea of proof: Same idea, but now with both row and column operations. Uniqueness: GCD of all
k × k components determines dk.

3.12 Hecke operators for L2(SL(2,Z)\h2)
• In this case, we have G = GL(2,R), Γ = SL(2,Z), and X = h2.

• The matrix (
n0n1 0

0 n0

)
for integers n0, n1 ≥ 1 lies in CG(Γ), we can let ∆ be the semigroup generated by Γ and these matrices.

• For this ∆, we have the antiautomorphism of transposition. We have that

Γt = Γ

and
(ΓgΓ)t = ΓgΓ

for g ∈ ∆, as g is generated by diagonal matrices and elements of Γ, so the Hecke ring RΓ,∆ is
commutative.

14
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• Let

Sn =

{(
a b
0 d

)
|ad = n, 0 ≤ b < d

}
then

∪m2
0m1=nΓ

(
m0m1 0

0 m0

)
Γ = ∪α∈SnΓα

is a disjoint decomposition.

• Proof idea: Basically follows from Hermite/Smith normal forms.

• Thus, we use the double coset disjoint union on the right to define the Hecke operator

Tnf(z) =
1

n

∑
ad=n

0≤b<d

f

(
az + b

d

)
,

where 1/
√
n is a normalization factor to help with formulas later.

• The Hecke operators are self-adjoint wrt the Petersson inner product:

〈Tnf, g〉 = 〈f, Tng〉 .

Proof idea: Use that diagonal matrices are invariatn under transposition, and that

S

((
a b
c d

)−1
)T

S−1 =
1

ad

(
a b
c d

)
,

and acting on z this is the same as

(
a b
c d

)
.

• In particular, one can check that the Hecke operators, T−1, and ∆ all commute.

• Hence, we can simulatenously diagonalize with respect to all of the operators, giving Maass Hecke-
eigenforms. These must be either even or odd.

• In particular, letting

f(z) =
∑
n 6=0

an
√

2πyKv−1/2(2π|n|y)e2πinx

be the Fourier-Whittaker decomposition, we have that for a Maass eigenform of type v a(1) = 0 =⇒
f = 0. If f is nonzero and we normalize such that a(1) = 1, then we have the following properties:

– Tnf = anf

– aman = amn, gcd(m,n) = 1

– aman =
∑
d|(m,n) amn/d2

– apr+1 = apapr − apr−1

for all primes p and r ≥ 1.

• Proof idea: Direct computation using the definition of the Hecke operators.
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3.13 L-functions associated to Maass forms

• Let f be a Maass Hecke eigenform of type v that is also an eigenfunction for T−1. We have the
L-function associated to f

Lf (s) =

∞∑
n=1

ann
−s.

Since we know that an = O(
√
n), this series is absolutely convergent for Re(s) > 3/2.

• Since the an are multiplicative, we have the Euler product

Lf (s) =
∏
p

( ∞∑
`=0

ap`

p`s

)
.

• Using the previous formulas for the apr gives that

Lf (s) =
∏
p

(1− app−s + p−2s)−1 =
∏
p

(1− αpp−s)−1(1− βpp−s)−1,

where αpβp = 1 and αp + βp = ap.

• We have the following holomorphic continuation and functional equation for Lf (s): Let ε = 0, 1 be
such that T−1f = (−1)εf . Then the completed L-function is

Λf (s) = π−sΓ

(
s+ ε− 1/2 + v

2

)
Γ

(
s+ ε+ 1/2− v

2

)
Lf (s),

and we have the functional equation

Λf (s) = (−1)εΛf (1− s).

• Proof: Consider x = 0, and consider as function of y for y > 0. Take the Mellin transform of the
function. The two gamma factors arise out of the Mellin transform of Bessel functions. If f is even,
use that an = a−n. If f is odd, instead take the Mellin transform of ∂

∂xf .

3.14 L-functions associated to Eisenstein series

• Recall that for Re(w) > 1, we had the Eisenstein series

E(z, w) =
1

2

∑
c,d∈Z

gcd(c,d)=1

yw

|cz + d|2w

with Fourier-Whittaker expansion

E(z, w) = yw + φ(w)y1−w +
21/2πw−1/2

Γ(w)ζ(2w)

∑
n 6=0

σ1−2w(n)|n|w−1
√

2π|n|yKw−1/2(2π|n|y)e2πinx.

Note that the σ1−2w(n)|n|w−1/2 are analogous to the an for Maass forms.

• Hence we define the L-function associated to E(z, w) by

LE(∗,w)(s) =

∞∑
n=1

σ1−2w(n)nw−1/2−s.

16



Austin Lei

• It turns out that
LE(∗,w)(s) = ζ(s+ w − 1/2)ζ(s− w + 1/2),

so letting (completing in the natural way for each zeta)

ΛE(∗,w)(s) = π−sΓ

(
s+ w − 1/2

2

)
Γ

(
s− w + 1/2

2

)
LE(∗,w)(s),

we get the functional equation
ΛE(∗,w)(s) = ΛE(∗,w)(1− s),

which exactly matches the functional equation for an even Maass form of type w.

• Moreover, the Eisenstein series is an eigenfunction of all the Hecke operators, giving an explanation
for the Euler product.

• Idea of proof: The Sn defined previously (

(
a b
0 d

)
) act as coset representatives of Γ1\Γn. The Eisen-

stein series are summed over Γ∞\Γ1. Swap the sums and swap the order of coset representatives and
the correct value for TnE(z, s) falls out.

3.15 Converse theorems for SL(2,Z)
• Just like for holomorphic modular forms, satsifying functional equation + sufficient boundedness con-

ditions gives modularity.

• Hecke-Maass converse theorem: Let L(s) =
∑
ann

−s be an L-function that converges absolutely for
Re(s) sufficiently large, and suppose that the completed L-function

Λv(s) = π−sΓ

(
s+ ε− 1/2 + v

2

)
Γ

(
s+ ε+ 1/2− v

2

)
L(s)

satsifies the functional equation
Λv(s) = (−1)εΛv(1− s),

where ε = 0, 1, and Λv(s) is entire and bounded on vertical strips. Then

f =
∑
n 6=0

an
√

2πyKv−1/2(2π|n|y)e2πinx

is an even/odd Maass form, where a−n = (−1)εan.

• Idea of proof: Only need to check modularity. You get T for free, so only need to check S. Can
show that it suffices to check x = 0, y if you can show that f(iy) − f(i/y) satisfies some initial
conditions involving differentials: F (iy) = 0, ∂F

∂x |x=0 = 0 implies F is 0. (This is the replacement for
analytic continuation in the holomorphic case.) This follows out of since Λ is the Mellin transform of
f , expressing f as the Mellin inverse of f , then applying the functional equation + bounded on vertical
strips + f rapidly decaying toward infinity to get the final answer.

• Caveat: No such L-function has been found for Maass forms on SL(2,Z). (Related to that there are
no known constructions of SL(2,Z)-Maass forms) Closest is the Hecke L-function - these turn out to
be the functional equation of a Maass form of a congruence subgroup.

3.16 The Selberg spectral decomposition

• It turns out that we can decompose any L2(SL(2,Z)\h2) function into

C⊕ L2
cusp(SL(2,Z)\h2)⊕ L2

cont(SL(2,Z)\h2).

Here cusp refers to integrals at cusps is 0, and will be an integral of an Eisenstein series.
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• We have ηj(z), for j ≥ 1, be an orthonormal basis of Maass forms that are all Hecke eigencuspforms.
Moreover, let

η0(z) =
√

3/π.

• We get the Selberg spectral decomposition

f(z) =

∞∑
j=0

〈f, ηj〉 ηj(z) +
1

4πi

ˆ 1/2+i∞

1/2−i∞
〈f,E(∗, s)〉E(z, s) ds

where the inner product is the Petersson inner product.

• Why a countable basis of Maass forms? It turns out that the Laplacian on cuspforms is a compact
operator, so from spectral theory we get that the spectrum is countable. See Iwaniec-Kowalski 15.2.

• Can show that if f is of rapid decay such that

〈f,E(∗, s)〉

converges absolutely, and f is orthogonal to 1, then f decomposes into a cusp form plus the correct
integral by showing that 〈f,E(∗, s)〉 is the Mellin transform of the constant term of f , and that the
constant term of the integral is the inverse Mellin transform of 〈f,E(∗, s)〉.

• Spectral theory of automorphic forms important - will lead to Selberg trace formula, etc.

4 Existence of Maass forms

• We defined Maass forms. We have some examples for Maass forms for congruence subgroups, but
whatabout for other groups?

• Phillips-Sarnak (1985) - conjectured that for most non-congruence subgroups, Maass forms do not exist

• For full modular group: Selberg trace formula to get Weyl’s law on number of Maass forms of type v,
with |v| ≤ x. Has been extended to all SL(n,Z).

• Lindenstrauss-Venkatesh - another proof using Hecke operators. Extends better to higher rank than
trace formula.

• We essentially will be discussing this proof.

4.1 The infinitude of odd Maass forms for SL(2,Z)
• Recall that we have the hyperbolic Laplacian

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Maass forms of type v are L2 eigenfunctions of ∆ with eigenvalue v(1 − v) such that f is invariant

under the action by SL(2,Z), and the cusp is 0
´ 1

0
f(x+ iy) dx = 0.

• We have the Fourier expansion for Maass forms

f(z) =
∑
n6=0

an
√

2πyKv−1/2(2π|n|y)e2πinx.

• Recall that we have odd and even Maass forms, defined by the sign of being an eigenfunction for

T−1f(x+ iy) = f(−x+ iy)

For odd Maass forms, an = −a−n, and for even Maass forms an = a−n.
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• It is simple to show that there are an infinite number of odd Maass forms for SL(2,Z); define the
operator

J : L2(SL(2,Z)\h)→ L2(SL(2,Z)\h)

via
Jf = f − T−1f.

Note that for any f ,

ˆ 1

0

Jf dx =

ˆ 1

0

f(x+ iy) dx−
ˆ 1

0

f(−x+ iy) dx =

ˆ 1

0

f(x+ iy) dx+

ˆ −1

0

f(x+ iy) dx = 0,

so the image of J is cuspidal. Moreover T−1(Jf) = −(Jf). Hence sending any eigenfunction of ∆
gives an odd Maass form. We have control of the an in the Fourier expansion of a Maass form, so we
can get a nontrivial image.

• Hence it suffices to show that even Maass forms are also infinite dimensional.

4.2 Integral operators

Note to self: Present 4.3 first.

• Hyperbolic distance: d(z, z′) = d(αz, αz′) for all α ∈ SL(2,R). Defined by functions

u(z, z′) =
|z − z′|2

4 Im z Im z′
= sinh2(d(z, z′)/2).

In particular, the hyperbolic distance between i and iy0 is log(y0).

• Abel transform: For f(x) on [0,∞), the Abel transform is defined by

F (x) =

ˆ ∞
−∞

f(x+ ξ2/2) dξ =
√

2

ˆ ∞
x

f(v)√
v − x

dv .

Inverse Abel transformation: we have that

f(x) = − 1

2π

ˆ ∞
−∞

F ′(x+ η2/2) dη .

Proof: switch to polar coordinates, differentiate under the integral sign.

• (Inverse) Selberg/Harish-Chandra transform: Variant of Abel transform. For g an even smooth func-
tion of compact support on R, we have Fourier transform

h(t) =

ˆ ∞
−∞

g(x)eitx dx

and transformations

q(v) =
1

2
g(2 log

(√
v + 1 +

√
v
)
)

g(r) = 2q((sinh r/2)2)

and

k(u) = − 1

π

ˆ ∞
u

(v − u)−1/2 dq(v)

q(v) =

ˆ ∞
v

k(u)(u− v)−1/2 du

Then the transformation from k(u) to h(t) is the Selberg transform.

k is compactly supported an continuous; if g supported in [−M,M ], then k(u) is 0 for u > sinh2(M/2).
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• Notationally, let u := u(z, w) for z, w ∈ h2.

• Point pair invariant: Given g : R → C an even smooth function of compact support, the point pair
invariant K : h2 × h2 → C is defined to be

K(z, w) = k(u(z, w)) = k(u).

This is continuous, and is supported for d(z, w) ≤ R, where R depends only on the support of g.
Moreover, K(αz, αw) = K(z, w) for all α ∈ SL(2,R).

• Integral operator: For f ∈ L1(SL(2,Z)\h2), we have

(K ∗ f)(z) =

ˆ
h2

K(z, w)f(w)d∗w =

ˆ ∞
0

ˆ ∞
−∞

K(z, µ+ iν)f(µ+ iν)
dµdν

ν2
.

f → K ∗ f is a self-adjoint continuous endomorphism of L2(SL(2,Z)\h2).

• Lemma: ˆ ∞
−∞

K(i, t+ iex) dt = ex/2g(x).

Proof: Plug into the Selberg/Harish-Chandra transform. This is the main computational tool to
computing anything involving these point pair invariants: we transform z → i and then do the integral.

• Intuition: For f an eigenfunction of ∆ with eigenvalue 1/4+r2, K∗f = h(r)f . Can check by computing
K ∗ y1/2+ir.

• Goal: We will want to choose kernels K corresponding to g that are δ-functions. We will approximate
the δ function by a sequence of g(j) with support shrinking to 0 but area under the integral is 1 as
j →∞.

• In particular, note that ˆ
h2

K(j)(i, w)d∗w =

ˆ ∞
−∞

e−x/2g(j)(x) dx→ 1

under the substitution ν = ex. Moreover, once can show that for any z,

ˆ
h2

K(j)(i, w)d∗w =

ˆ
h2

K(j)(z, w)d∗w.

Then for any choice of continuous f ∈ L1(SL(2,Z)\h2), we get that

K(j) ∗ f(z) =

ˆ
h2

K(j)(z, w)f(z)d∗w +

ˆ
h2

K(j)(z, w)(f(w)− f(z))d∗w → f(z)

(pointwise, not uniformly in z), using that the support of K(j) goes to 0 as g(j) → δ.

• Thus, K(j) ∗ f(z)→ f(z).

4.3 The endomorphism ♥
• Goal: Define an endomorphism ♥ : L2(SL(2,Z)\h2)→ L2(SL(2,Z)\h2) whose image is purely cuspidal.

In other words, ♥f will be cuspidal even when f is not. We will use the arithmetic structure of SL(2,Z).

• We will use the Eisenstein series to get intuition for what we want out of ♥.

• Recall that we had the Hecke operators

Tpf(z) =
1
√
p

(
f(pz) +

p−1∑
k=0

f

(
z + k

p

))
.
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We also had Eisenstein series E(z, 1/2 + ir), defined by

E(z, s) =
1

2

∑
(c,d)6=(0,0)

ys

|cz + d|2s

• Easy to compute that
TpE(z, 1/2 + ir) = (pir + p−ir)E(z, 1/2 + ir).

• Formally, define

♥ = Tp − p
√

1/4−∆ − p−
√

1/4−∆.

Then ♥E(z, 1/2 + ir) = 0, and same with the constant function.

• Suppose that ♥ can be made rigorous, and that it is self-adjoint on the space of even square integrable
automorphic functions. Then since ♥ kills the continuous spectrum and the constant functions, the
image of ♥ must be cuspidal. Thus, we need to find an f such that the image under ♥ is nonzero, and
we are done.

• How to make ♥ rigorous - wave equation or convolution operators.

4.4 How to interpret ♥ an explicit operator with purely cuspidal image

• Intuitively, suppose that gp is the sum of δ functions at log p and − log p. Then hp(r) = pir + p−ir,
and for an eigenfunction of ∆ with spectral parameter r,

Kp ∗ f = (pir + p−ir)f,

which is what we want our formal p
√

∆−1/4 + p−
√

∆−1/4 to behave like.

• To make this more rigorous, we will take sequences of even compactly supported smooth functions
approaching a delta function.

• Let g0 be an even smooth function of compact support on R. Define

gp(x) = g0(x+ log p) + g0(x− log p)

(emulating the g that we want). Define kp via the Selberg transform, and the point pair invariant
Kp(z, w).

• Thinking of the g0 as a delta function, the corresponding h0 is the constant function 1, so K0 ∗ f is
like the constant function. Hence we should expect Kp ∗ f − Tp(K0 ∗ f) to annihilate the continuous
spectrum.

• Proof: Explictely compute the constant terms of both operators, using the definition of the Hecke
operator. You take an integral from [0, 1] in x and over all h2, and at one point you need to unfold the
integral to integrate over all x, while restricting the domain in the integral over h2.

4.5 There exist infinitely many even cusp forms for SL(2,Z)
• Now that we have this self-adjoint operator ♥ that sends even L2 functions to cuspidal even functions,

we need to show that this image is nontrivial. We will do this by leveraging the different behavior of
the operators as one approaches the cusp at infinity.

• Consider G(T ) =
{
z ∈ h2 : 0 ≤ x < 1, y > T

}
. Hence the space of smooth compactly supported func-

tions on G(T ) is a subset of the smooth compactly supported functions on SL(2,Z)\h2, and similarly
for L2 functions.

• Consider R sufficiently large such that k0(z, w) and kp(z, w) are supported in d(z, w) ≤ R. Let Y ≥ peR.
Then ♥ maps C∞(G(Y )) into C∞(G(1)) ⊆ C∞c (SL(2,Z)\h2).
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• Moreover,

an,Kp∗f (y) =

ˆ
x∈Z\R

e−2πinx

ˆ
w∈h2

Kp(x+ iy, w)f(w)d∗w dx

=

ˆ
x∈Z\R

e−2πinx

ˆ
w∈h2

Kp(iy, w − x)f(w)d∗w dx

=

ˆ
w∈h2

Kp(iy, w)

ˆ
x∈Z\R

e−2πinxf(w + x) dx d∗w,

so if an,f (y) (the nth coefficient) is identically 0, so is an,Kp∗f (y).

• Fix an integer N , not divisible by p. Consider f ∈ C∞c (G(Y )) that is also even, such that an,f vanishes
identically for all n 6= ±N . Then an,Kp∗f also vanishes identically for all n 6= ±N .

• Similarly,

Tp(K0 ∗ f)(z) =
1
√
p

(
(K0 ∗ f)(pz) +

p−1∑
k=0

(K0 ∗ f)

(
z + k

p

))
so by a similar argument (using that p - N) an,Tp(K0∗f) vanishes identically for all n 6= ±pN .

• Moreover, note that the K0 ∗ f is nonzero as we take g0 to approach the delta function, as K0 ∗ f → f
pointwise, which is not f . Hence ♥f is nonzero and even. We have free reign over the choice of N , so
we can generate infinitely many even cusp forms.

4.6 A weak Weyl law

• We wish to make the number of cusp forms quantitative.

• Lemma: Order the spectrum of a non-negative self-adjoint operator A on H λ1 ≤ λ2 ≤ . . . . Suppose
V ⊆ H is finite such that ‖Av‖ ≤ Λ‖v‖ whenever v ∈ V . Then # {λi ≤ Λ} ≥ dim(V ).

• One can show that the number of even cusp forms with eigenvalue ≤ Λ is at least cΛ for some constant
c, by specifying the right choice of functions to pass through the heart function.

4.7 Interpretation via wave equation and the role of finite propogation speed

• This section is more or less included in the next section.

4.8 Intepretation via wave equation: higher rank case

• For more details, see Lindenstrauss and Venkatesh (2005) - Existence and Weyl’s law for spherical cusp
forms.

• One can intepret ♥ via the automorphic wave eqaution

utt = −∆u+ u/4

where t is time and position is x+ iy in the hyperbolic plane

• You can define an operator Ut taking f(x + iy) to 2u(x + iy, t), where u is the solution such that
u|t=0 = f and ut|t=0 = 0. This operator is well-defined and self-adjoint, and formally can be written
by

Ut = et
√

∆−1/4 + e−t
√

∆−1/4,

hence this can be interpreted as the Tp operator from before.
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• The value of this operator only depends on d(z, w) ≤ t, representing the finite propogation speed of

waves in the hyperbolic plane. Hence the operator p
√

∆−1/4 + p−
√

∆−1/4 corresponds to propagating
a wave for time log p.

• The ♥ operator can be generalized in higher rank by doing something similar - using the number of
parameters for Eisenstein series to find an operator that kills the Eisenstein series, then construct an
function that is not killed by this operator.

4.9 Extra: Selberg trace formula and Weyl’s law for rank 2

This section is roughly based on Iwaniec’s Spectral Methods for Automorphic Forms and Marklof’s Selberg
trace formula: A Introduction, as extra info for a talk.

• Idea: consider trace of kernel K(z, w) associated to a specific test function h satsifying nice enough
conditions.

• One side, consider the spectral decomposition of ∆ to get information relating to the eigenvalues.

• Other side is geometric side. Related to computing integrals by considering conjugacy classes of Γ and
considering the parabolic, hyperbolic, and elliptic motions.

• Discrete spectrum:
NΓ(T ) = # {j : |tj | ≤ T}

• Continuous spectrum:

MΓ(T ) =
1

4π

ˆ T

−T

−φ′

φ
(1/2 + it) dt ,

where φ(s) = π1/2 Γ(s−1/2)
Γ(s)

ζ(2s−1)
ζ(2s) (coming from the Fourier expansions of the Eisenstein series). Some

computation with complex analysis gives MΓ(T ) as the number of poles of φ(s) on the left of the
critical line of height less than T up to an error term O(T ).

• Selberg trace formula for h(t) = e−δt
2

∑
j

e−δt
2
j +

1

4π

ˆ ∞
−∞

−φ′

φ
(1/2 + it)e−δt

2

dt =
|F |
4πδ

+
h log δ

4
√
πδ
− γh

4
√
πδ

+O(1).

where h is the rank of some matrix and |F | is the area of a fundamental domain.

• Tauberian theorem implies that

NΓ(T ) +MΓ(T ) ∼ |F |
4π

T 2

• MΓ(T ) can be shown to be O(T log T ), giving the final asymptotic

NΓ(T ) ∼ |F |
4π

T 2 +O(T log T ).

Compare this with the previous bound.

• Remark: This approach allows to compute an error term for the Weyl law, which is not available in
the Lindenstrauss-Venkatesh approach.

5 Maass forms and Whittaker functions for SL(n,Z)
• The spectral parameter approach follows Dorian’s book. Supposedly useful in some analytic applica-

tions.

• The Langlands parameter approach follows the paper “A template method for Fourier coefficients of
Langlands Eisenstein series” by Goldfeld, Miller, and Woodbury. Also known as Satake parameters.
They come from automorphic representations at the Archimedean place.
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5.1 Maass forms

• Recall that we are interested in SL(n,Z) acting on

hn = GL(n,R)/(O(n,R)× R∗).

• Recall that we can represent elements of
hn = x · y,

where x is an upper triangular matrix with 1s on the diagonal and xi,j off the diagonal, and y is a
diagonal matrix with elements of the form 1, y1, y1y2, . . . , y1y2 . . . yn−1.

• We will consider two parameterizations: the spectral parameters v and the Langlands parameters,
denoted α = (α1, . . . , αn) ∈ Cn, with α1 + · · ·+ αn = 0. (This is abuse of notation; we really refer to
the set of the αi.)

• Recall that we defined

bij =

{
ij i+ j ≤ n
(n− i)(n− j) i+ j ≥ n

The bij come from the inverse of the Cartan matrix for GL(n).

• We have the following relation between the two sets of parameters:

vi =
αi − αi+1 + 1

n
,

and conversely

αi =


Bn−1(v) i = 1

Bn−i(v)−Bn−i+1(v) 1 < i < n

−B1(v) i = n

,

where Bj(s) =
∑n−1
i=1 bi,j(vi − 1/n).

• Example: For n = 2, α1 = −α2 = v − 1
2 . For n = 3, α1 = 2v1 + v2 − 1, α2 = −v1 + v2, and

α3 = −v1 − 2v2 + 1.

• We have the center of the universal enveloping algebra of gl(n,R) is Dn. For any D ∈ Dn and
v = (v1, . . . , vn−1), we know that

Iv(z) =

n−1∏
i=1

n−1∏
j=1

y
bi,jvj
i

is an eigenfunction of every D ∈ Dn.

Alternatively, in terms of Langlands parameters, let ρi = n+1
2 − i. We can express the power function

as

I(z, α) =

n∏
i=1

n−i∏
j=1

yj

αi+ρi

=

n−i∏
i=1

y
∑n−i
j=1 (αj+ρj)

i .

The eigenvalue is independent of the permutation of α. This will follow from the proof of the functional
equation for the Whittaker function.

• We express DIv(z) = λDIv(z). Note that λD1·D2
= λD1

· λD2
, hence λD is a character of Dn, called

the Harish-Chandra character.

• Maass form of type v for SL(n,Z): A function φ ∈ L2(SL(n,Z)\hn) satsifying

– φ(γz) = φ(z) for all γ ∈ SL(n,Z)
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– Dφ(z) = λDφ(z) for all D ∈ Dn for λD a Harish-Chandra character. (In particular, these are the
same λD coming from DIv(z) = λDIv(z), which is where the v condition is being used.)

–
´

(SL(n,Z)∩U)\U φ(uz) du = 0 for all U that are matrices with diagonal matrices Iri on the diagonals

and 0 below the diagonal.

If the eigenvalues of φ agree with the eigenvalues of I(·, α), then α are the Langlands parameters of φ.

• Remark: An alternative definition of a Maass (cusp) form replaces the L2 condition with a growth
condition that

|φ(xy)| �N (y1 . . . yn−1)−N

for all N > 0; i.e. an exponential decay growth condition.

• For Laplace operator ∆, then if f is a Maass form, we have corresponding Laplace eigenvalue

λ∆ =
n3 − n

24
− α2

1 + · · ·+ α2
n

2
.

Generalized Ramanujan-Selberg conjecture: All Maass forms for SL(n,Z) (and congruence subgroups)
are tempered, i.e. all αi are purely imaginary. Compare this to the Ramanujan-Selberg conjecture for
n = 2.

5.2 Whittaker functions associated to Maass forms

• Idea: Emulate the Fourier expansion in higher dimensions.

• Let Un(R) be the group of upper triangular n× n matrices.

• Let m = (m1, . . . ,mn−1) ∈ Zn−1. We have a character ψm : Un(R)→ C∗ sending

ψm(u) = e2πi(m1u1,2+m2u2,3+···+mn−1un−1,n).

We have that ψm(uv) = ψm(u)ψm(v).

• For Maass form φ, we want Fourier coefficients like

φ̃m(z) =

ˆ 1

0

. . .

ˆ 1

0

φ(u · z)ψm(u)
∏

1≤i<j≤n

dui,j

such that we can write
φ =

∑
m

φ̃m(z).

This is the analogue of W (y)e2πimx in the rank 2 case.

Since Un(R) is non-Abelian, we need to be careful over which m we sum.

• Properties of the Fourier coefficients (which we will show later are Whittaker functions):

– φ̃m(u · z) = ψm(u)φ̃m(z)

– Dφ̃m = λDφ̃m for all D ∈ Dn, where λD is a Harish-Chandra character

–
´

Σ√3
2

, 12
|φ̃m(z)|2d∗z <∞.

• Proof of properties:

– The substitution u 7→ u · u′, for u′ ∈ Un(R), does not change the measure.

– Follows by definition of a Maass form.

– Follows from Cauchy-Schwarz, φ is automorphic, and that φ is L2.
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5.3 Fourier expansions on SL(n,Z)
• Every Maass form for SL(n,Z) has the Fourier expansion

φ(z) =
∑

γ∈Un−1(Z)\SL(n−1,Z)

∑
m1 6=0

∞∑
m2=1

· · ·
∞∑

mn−1=1

φ̃m1,...,mn−1

((
γ

1

)
z

)
.

The sum is independent of the choice of representatives γ. Recall that

φ̃(m1,...,mn−1)(z) =

ˆ 1

0

. . .

ˆ 1

0

φ(u · z)e−2πi(m1u1,2+···+mn−1un−1,n)d∗u

where d∗u =
∏n
i=1 dui,i+1.

• Idea of proof: Inductively construct the Fourier expansion. Use standard Fourier expansion to get
expansion with variables determined by the n− 1 variables in the last column; i.e. let

v =


1 v1

1 v2

. . .
...

1 vn−1

1


and

φ̂m(z) =

ˆ 1

0

. . .

ˆ 1

0

φ(vz)e−2π〈v,m〉d∗v.

Since φ is periodic when multiplying by v, we get

φ(z) =
∑

m∈Zn−1

φ̂m(z).

Rewrite this sum in terms of gcd of variables in last column and representatives of SL(n − 1,Z) by
P (n− 1,Z), where P (n− 1,Z) is matrices whose last row is en−1. Nothing corresponding to mn−1 = 0
because φ is a cuspform. Repeat inductively on all columns. m1 also has negative coefficients because
SL(1,Z) treats the orbits a and −a separately.

5.4 Whittaker functions for SL(n,R)
• A SL(n,Z) Whittaker function of type v = (v1, . . . , vn−1) ∈ Cn−1 associated to a character ψ : Un(R)→
C is a smooth function W : hn → C such that

– W (uz) = ψ(u)W (z) for any u ∈ Un(R)

– DW (z) = λDW (z) for any D ∈ Dn

–
´

Σ√3
2
, 1
2

|W (z)|2d∗z <∞.

• In particular, note that the Fourier coefficient defined before

φ̃m(z) =

ˆ 1

0

. . .

ˆ 1

0

φ(u · z)ψ(u)
∏

1≤i<j≤n

dui,j

is a Whittaker function.
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5.5 Jacquet’s Whittaker function

• Goal: Construct non-trivial (zero nowhere) Whittaker functions for rank n.

• Let m = (m1, . . . ,mn−1) (corresponding to Fourier frequency) and v = (v1, v2, . . . , vn−1) corresponding
to the type of the Maass form. Alternatively, let α = (α1, . . . , αn) be the Langlands parameters.

• Notation: for the upper triangular matrix u, we denote

ui = un−i,n−i+1.

• Let ψm : Un(R)→ C to be the character

ψm(u) = e2πi(m1u1+···+mn−1un−1).

Note that this has the reverse coefficients as expected in Section 5.3; i.e. the summation for Fourier
expansion will be reversed.

• Let z = xy and suppose all of the mi are nonzero, we define the Jacquet Whittaker function hn → C

W (z; v, ψm) =

ˆ
Un(R)

Iv(wuz)ψm(u)d∗u,

where

w =


1

1

. .
.

1


and the integral is integrated with respect to all ui,j from −∞ to ∞.

In terms of Langlands parameters, we have

Wα(z) =

ˆ
Un(R)

I(wuz, α)ψm(u)d∗u.

Note that this exactly matches the construction for H.

• Remark: Dorian’s book uses wn (−1bn/2c in the top right corner), the long element of the Weyl group.
This is equivalent because of the wedge product definition of Iv(s), using that ejwn = ejw for all j > 1.
We will use the original definition to show the functional equation.

• If Re(vi) > 1/n for all i and mi 6= 0 for all i, then:

– W converges absolutely and uniformly on compact subsets of hn

– W has meromorphic continuation for all v ∈ Cn−1

– W is an SL(n,Z)-Whittaker function of type v and character ψm

–
W (z; v, ψm) = cv,mW (Mz; v, ψm1/|m1|,...,mn−1/|mn−1|) = cv,mψm(x)W (My; v, ψ1,...,1),

where

cv,m =

n−1∏
i=1

|mi|(
∑n−1
j=1 bi,jvj)−i(n−i)

and

M =


|m1m2 . . .mn−1|

. . .

|m1|
1

 .
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• Remark: From the Fourier expansion, we only care about m where m1, . . . ,mn−2 are positive. By the
above properties, it is sufficient to care only about m = (1, . . . , 1,±1).

• Proof idea:

– Proof that W is a Whittaker function:

∗ W (az) = ψm(a)W (z): Change of variable. Also proves part of second equation of fourth
point.

∗ DW = λDW : Use that DIv = λDIv.

∗ Assume that integral converges absolutely and uniformly on compacts to an L2 function.

– Proof of first equation of fourth point: Make the changes of variables in the integral from wuMz
to wMuz to wMw · wuz. This gives the correct constant cv,m; see Broughan 2009, Theorem 6.1
for more details.

– Proof of second equation of fourth point: Let δj be the identity matrix, except with εj = mj/|mj |
at the n− jth row. Replace u with δjδju, then do a change of variable from u→ δju and use that
δn−jw = wδj , and since all the matrices in the integral are diagonal and δn−j ∈ O(n,R), δn−j
can be ignored. Repeat for all j.

– Proof of absolute convergence/meromorphic continuation for n = 2: Absolute convergence fol-
lows from computing the integral, which converges for Re(v) > 1/2. Meromorphic continuation:
Follows from Kv = K−v.

5.6 The exterior power of a vector space

• Let ⊗`(Rn) be the space of `th tensor products of the vector space Rn. Formally, we define

Λ`(Rn) = ⊗`(Rn)/a`

where a` is the vector subspace generated by all elements v1 ⊗ · · · ⊗ v` where vi = vj for some i 6= j.

• In other words, we have the set of v1 ∧ · · · ∧ v` with the rules v ∧ v = 0, v ∧ w = −w ∧ v, and
(a1v1 + a2v2) ∧ w = a1v1 ∧ w + a2v2 ∧ w.

• On ⊗`(Rn), we have the (canonical) inner product

〈v, w〉⊗` =
∏̀
i=1

〈vi, wi〉 .

• Let e1, . . . , en be the canonical basis for Rn. Then letting

a =
∑

1≤i1,...,i`≤n

ai1,...,i`ei1 ∧ · · · ∧ ei` ,

we define φ` : Λ`(Rn)→ ⊗`(Rn) such that

φ`(a) =
1

`!

∑
1≤i1,...,i`≤n

ai1,...,i`
∑
σ∈S`

Sign(σ) · eiσ(1) ⊗ · · · ⊗ eiσ(`) .

This is a well-defined injection, and hence Λ`(Rn) can be viewed as a subspace of ⊗`(Rn). We then
define the inner product on Λ` to be

〈v, w〉Λ` = 〈φ`(v), φ`(w)〉⊗` .

• We define the action of SL(n,R) on Λ`(Rn) via

v ◦ g = (v1 · g) ∧ · · · ∧ (v` · g)

and similarly for ⊗`.
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• For k ∈ O(n,R), 〈v, w〉Λ` = 〈v ◦ k,w ◦ k〉Λ` , and ‖v‖ =
√
〈v, v〉Λ` = ‖v ◦ k‖. Proof: Prove the same

properties from ⊗`, and then apply φ`.

• For any upper triangular matrix u,

(en−` ∧ · · · ∧ en) ◦ u = en−` ∧ · · · ∧ en.

• Cauchy-Schwarz: | 〈v, w〉Λ` |2 ≤ 〈v, v〉Λ` · 〈w,w〉Λ` , and ‖v ∧ w‖Λ` ≤ ‖v‖Λ`‖w‖Λ` . Proof: Use that

‖v‖2Λ` =
∑
i1,...,i`

|ai1,...,i` |2, and apply normal Cauchy-Schwarz.

5.7 Construction of the Iv function using wedge products

• We can write

Iv(z) =

(
n−2∏
i=0

‖(en−i ∧ · · · ∧ en) ◦ z‖−nvn−i−1

)
· | det(z)|

∑n−1
i=1 ivn−i ,

and hence we can write W in terms of a wedge product.

• Check that operations inside are invariant under SO(n,R) and R∗, so the operation is well-defined.
Moreover, use that x is upper triangular to get that I∗v (z) = I∗v (y). Finish by doing the computation
on y.

• Why is this helpful? Shows that we can choose to use w instead of wn in the definition of the Jacquet-
Whittaker function. Also can be used to explicitely compute the Whittaker function for the SL(n, 3)
case:

W (y; v, ψm) = yv1+2v2
1 y2v1+v2

2

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

(y2
1y

2
2 + u2

1y
2
2 + (u1u2 − u3)2)−3v1/2

· (y2
1y

2
2 + u2

2y
2
1 + u2

3)−3v2/2e−2πi(m1u1+m2u2) du1 du2 du3

5.8 Convergence of Jacquet’s Whittaker function

• This section is incorrect; equation 5.8.2 is the wrong direction.

• TODO: Maybe see this paper.

• Heuristic: The integral will be on the order of something like the product of
ˆ

(1 + u2
j,j+1 + · · ·+ u2

j,n)−
n
2

∑n−j
i=1 Revi du

for all j, and the integral converges if n
2

∑n−j
i=1 Revi >

n−j
2 , or if

∑n−j
i=1 Revi >

n−j
n for all j. Hence the

convergence is for Revj >
1
n .

5.9 Functional equations of Jacquet’s Whittaker function

• Everything stated here will be in terms of Langlands parameters, but it is possible to translate every-
thing in terms of spectral parameters. It just is really annoying.

• Multiplicity one: Due to Shalika, there is only one Whittaker function of type v and character ψ up
to constant multiple (implied here is the growth condition).

• Because in the Fourier expansion, we care only when m1, . . . ,mn−2 > 0, and we can relate W (z; v, ψm)
to W (Mz; v, ψ1,...,1,±1) by a constant, it suffices only to consider the following normalized Whittaker
functions:

W±α (z) =
∏

1≤j<k≤n

Γ
(

1+αj−αk
2

)
π

1+αj−αk
2

ˆ
Un(R)

I(wug, α)ψ1,...,1,±1(u)d∗u.
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• Properties: It is an absolutely convergent integral for Re(αi − αi+1) > 0 and has holomorphic contin-
uation to all α ∈ Cn with

∑
αi = 0.

• Functional equation: For any permutation α′ of α,

W±α = W±α′ .

In other words, there is no abuse of notation regarding the Langlands parameters.

• Proof idea: It suffices to consider adjacent swaps of αi. Let α′ be the permutation of α swapping αi
and αi+1. Consider

σi =


In−i−1

0 1
1 0

Ii−1

 .

Letting wi = σ−1
i w, every u ∈ Un(R) can be written in the form

u = (w−1
i niwi)n

′
i,

where ni ∈ Ni is the set of matrices with 1s on the diagonal, real number at position (n− i, n− i+ 1),
and zeros elsewhere, and n′i ∈ N ′i is the subgroup of Un(R) with a zero at the position (i, i+1). Hence,
we can write

W±α (z) =

ˆ
Un(R)

Iα(wug)ψ(u)d∗u =

ˆ
N ′i

(ˆ
Ni

Iα(σini(win
′
iz))ψ(ni) dni

)
ψ(n′i) dn′i .

The inner integral is a Whittaker function over SL(2,R), whose function equation is independent of
choice of win

′
iz, and we remark that

Iα(σini) = (u2 + 1)
1
2 (αi−αi+1),

where u is the nonzero element of ni. This thus resembles the Bessel function, and swapping αi and
αi+1 changes α to α′ and changes by the requisite constant.

5.10 Degenerate Whittaker functions

• It is possible to construct Whittaker using other elements of the Weyl group (elements of SL(n,Z) with
exactly one 1 or −1 in each row or column) instead of wn, as the only key property used was that Iv
was an eigenfunction.

• However, these Whittaker functions will not contain all of the ui,j . You can define the Whittaker
functions by integrating only over the variables that appear.

6 Automorphic forms and L-functions for SL(3,Z)
6.1 Whittaker functions and multiplicity one for SL(3,Z)
• Recall that we had the Whittaker functions

Wα(z, ψm) =

ˆ ∞
0

ˆ ∞
0

ˆ ∞
0

Iα(wuz)ψm(u)d∗u,

with u a unipotent matrix (integrating over all ui,j),

w =

 1
1

1

 ,
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and

Iα(z) =

3∏
i=1

3−i∏
j=1

yj

αi+ρi

with ρi = n+1
2 − i.

• We have completed Whittaker function

W ∗α(z, ψ1,1) =
Γ
(

1+α1−α2

2

)
Γ
(

1+α2−α3

2

)
Γ
(

1+α1−α3

2

)
π

3+α1+α2−2α3
2

ˆ ∞
0

ˆ ∞
0

ˆ ∞
0

Iα(wuz)e−2πi(u1+u2)d∗u

with the functional equation by permuting the αi (and similarly for ψ1,−1).

• We have the integral representation

W ∗α(y, ψ1,1) = 8y
1+α2/2
1 y

1−α2/2
2

ˆ ∞
0

Kα1−α3
2

(2πy1

√
1 + u−2)Kα1−α3

2
(2πy2

√
1 + u2)u−3α2/2

du

u

(via long computation involving computing coefficients of SL(3,Z) Eisenstein series). Note that
Wα(y, ψ1,1) = Wα(y, ψ1,−1), so this also takes care of ψ1,−1.

• Taking the double Mellin transform gives

W̃α(s) :=

ˆ ∞
0

ˆ ∞
0

W ∗α(z, ψ1,1)ys1−1
1 ys2−1

2

dy1

y1

dy2

y2
=
π−s1−s2

4
G(s1, s2)

with

G(s1, s2) =
Γ
(
s1−α1

2

)
Γ
(
s1−α2

2

)
Γ
(
s1−α3

2

)
Γ
(
s2+α1

2

)
Γ
(
s2+α2

2

)
Γ
(
s2+α3

2

)
Γ
(
s1+s2

2

) .

• One can explicitly show a multiplicity one result for GL(3) Whittaker functions: If Ψα(z) is a Whittaker
function of type α associated to character ψ, and

ˆ ∞
0

ˆ ∞
0

yσ1
1 yσ2

2 |Ψv(y)|dy1 dy2

y1y2

converges for σ1, σ2 significantly large, then Ψα(z) is a constant multiple of Wα(z, ψ).

• Proof idea: Let ∆1,∆2 be the GL(3,R)-invariant differential operators, and let ψ̃α(s) be the double

Mellin transform. Show that ψ̃α(s)

W̃α(s)
is invariant by taking (s1, s2) → (s1 + 2, s2) and (s1, s2 + 2) by

looking at the action of ∆1,∆2 on each term, hence giving a Fourier expansion, then use the growth
condition of the Γ functions to show that this expansion must be identically zero.

6.2 Maass forms for SL(3,Z)
• Same as Section 9.1.

• We have the Fourier expansion

ψ(z) =
∑

γ∈U2(Z)\SL(2,Z)

∞∑
m1=1

∑
m2 6=0

A(m1,m2)

|m1m2|
Wα

|m1m2|
m1

1

(γ
1

)
z, ψ1,

m2
|m2|

 .

• We also know that A(m1,m2)
|m1m2| is bounded, independent of the choice of γ.
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6.3 Dual and symmetric Maass forms

• Same as section 9.2.

• Let

δ0 =

−1
1

1

 ,

and for any δ matrix consisting of only 1 and −1 on the diagonals and 1 in the bottom right entry, let

Tδφ = φ(δz).

Note that Tδ sends Maass forms to Maass forms.

Recall that a Maass form φ is symmetric if Tδφ = ±φ for all δ. Specifically, φ is even if Tδ0φ = φ and
odd if Tδ0φ = −φ. Every Maass form can be expressed as a linear combination of symmetric Maass
forms.

• For n = 3, all symmetric (and hence all) Maass forms are even, since −I3 has determinant −1 and lies
in Z.

• Recall that if φ is a Maass form of type α = (α1, α2, α3), then the dual Maass form

φ̃(z) := φ((z−1)T )

is a Maass form of type (−α3,−α2,−α1). Moreover, the (m1,m2,m3)th coefficient of φ̃ is the
(m3,m2,m1)th coefficient of φ.

6.4 Hecke operators for SL(3,Z)
• Same as Section 9.3.

• We have the Hecke operators

Tnf(z) =
1

n

∑
abc=n

0≤c1,c2<c
0≤b1<b

f

a b1 c1
0 b c2
0 0 c

 z

 .

• By construction (from double coset decompositions), the Hecke operators commute.

• With respect to the Petersson inner product, the Hecke operators are normal; i.e. T ∗n is a Hecke
operator (and hence commutes with Tn). The Hecke ring will be the ring of all Hecke operators, Tδs,
and the GL(3,R) differential operators.

• Multiplicativity relations: We have that for an Heckeeigen Maass form, if A(1, 1) = 0, then f ≡ 0, and
otherwise, normalizing such that A(1, 1) = 1, we have that Tnf = A(n, 1)f , and

– A(m1m
′
1,m2m

′
2) = A(m1,m2)A(m′1,m

′
2) if (m1m2,m

′
1m
′
2) = 1.

– A(n, 1)A(m1,m2) =
∑

d0d1d2=n
d1|m1

d2|m2

A

(
m1d0

d1
,
m2d1

d2

)
.

• Proof idea: Explicitly compute the result of Tnf using the definition, then induction on prime factors.

• Moreover, if φ is a Heckeeigen Maass form, then

A(m1,m2) = A(m2,m1).

• Proof: Use that T ∗n is also a Hecke operator, and use its double coset decomposition.
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6.5 The Godement-Jacquet L-function

• Same as section 10.4.

• We have the L-function

Lf (s) =

∞∑
n=1

A(n, 1)n−s =
∏
p

(
1−A(p, 1)p−s +A(1, p)p−2s − p−3s

)−1

where the Euler product is derived from the multiplicativity relations. This is absolutely convergent
for Re(s) > 2, and has holomorphic continutation to all of s.

Similarly, we have the dual L-function

Lf̃ (s) =

∞∑
n=1

A(1, n)n−s.

• Functional equation: Let

Λf (s) = π−3s/2Γ

(
s− α1

2

)
Γ

(
s− α2

2

)
Γ

(
s− α3

2

)
Lf (s),

where (α1, α2, α3) are the Langlands parameters of Maass form f . Then we have functional equation

Λf (s) = Λf̃ (1− s).

In particular, note that f̃ has Langlands parameters (−α3,−α2,−α1).

• Proof of functional equation: Two possible approaches:

– Show that the functional equation of a Maass form must be the same as the Eisensteins series,
which we compute in Section 10. This proof doesn’t use any information about the arithmetic
values of the Fourier coefficients, just the analytic properties of Whittaker functions.

– Direct proof involving double Mellin transforms (Hoffstein-Murty, 1989). Can get L-function out
of double Mellin transform of the Maass form. Do a lot of manipulations involving Maass form
and its dual, and use the fact that we know the double Mellin transform of the Whittaker function
is the product of six gammas over one.

6.6 Bump’s double Dirichlet series

• The double Dirichlet series
∞∑

m1=1

∞∑
m2=1

A(m1,m2)

ms1
1 m

s2
2

has meromorphic continuation to all of s and has functional equations.

• Specifically, we have that
∞∑

m1=1

∞∑
m2=1

A(m1,m2)

ms1
1 m

s2
2

=
Lf (s1)Lf̃ (s2)

ζ(s1 + s2)
.

• Proof idea: Use the multiplicativity relation

A(m1, 1)A(1,m2) =
∑

d|m1,d|m2

A
(m1

d
,
m2

d

)
.

• These functional equations can be computed using the functional equation of Lf (s) from before, or
explicitely computed by retrieving the double Dirichlet series with double Mellin transforms.

• Can be generalized to GL(n) via multiple Dirichlet series.
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9 The Godement-Jacquet L-function

9.1 Maass forms for SL(n,Z)
• Recall that we showed that a Maass form φ had a Fourier expansion

φ(z) =
∑

γ∈Un−1(Z)\SL(n−1,Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 6=0

φ̃(m1,...,mn−1)

((
γ

1

)
z

)
,

where

φ̃(m1,...,mn−1)(z) =

ˆ 1

0

. . .

ˆ 1

0

φ(u · z)ψm(u)d∗u,

where here d∗u is an integral over all the uij in the unipotent matrix u.

• We know that φ̃(m1,...,mn−1) is a Whittaker function. By the multiplicity one theorem for SL(n,Z) and
identities about Whittaker functions, we can write the Fourier expansion in the form

φ(z) =
∑

γ∈Un−1(Z)\SL(n−1,Z)

∞∑
m1=1

· · ·
∞∑

mn−2=1

∑
mn−1 6=0

A(m1, . . . ,mn−1)∏n−1
k=1 |mk|k(n−k)/2

Wα

(
M

(
γ

1

)
z, ψ1,...,1,

mn−1
|mn−1|

)
,

where the A(m1, . . . ,mn−1) ∈ C are the Fourier coefficients. The choice of normalization comes from
the constant in the identity

Wα(z, ψm) = cα,mWα(Mz,ψ1,...,1,±1);

cα,m is of the form cα
∏n−1
k=1 |mk|−k(n−k)/2, where cα depends only on α and n.

• Now, since

A(m1, . . . ,mn−1)∏n−1
k=1 |mk|k(n−k)/2

Wα

(
My,ψ1,...,1,

mn−1
|mn−1|

)
=

ˆ 1

0

. . .

ˆ 1

0

φ(z)ψm(x)d∗x,

fixing some choice constant choice of y and using that φ is bounded, we conclude that the

A(m1, . . . ,mn−1)∏n−1
k=1 |mk|k(n−k)/2

are bounded.

9.2 Dual and symmetric Maass forms

• Symmetric Maass forms: Let δ be a matrix of the form
δ1 . . . δn−1

. . .

δ1δ2
δ1

1


where each of the δi is ±1. We define the operator

Tδφ(z) = φ(δz) = φ(δzδ),

which takes xy to x′y, where x′ consists of δixi on the offdiagonal.

A Maass form is symmetric if Tδφ = ±φ for all Tδ, where the choice of ± depends on δ.
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• By linear algebra, every Maass form is a linear combination of symmetric Maass forms, so it suffices
to only consider aymmetric Maass forms.

• Let

δ0 =


−1

1
. . .

1
1

 .

We say that φ is even if Tδ0φ = φ, and odd if Tδ0φ = −φ.

• If n is odd, then all Maass forms are even. In particular, this means that

A(m1, . . . ,mn−2,mn−1) = A(m1, . . . ,mn−2,−mn−1).

Proof idea: φ is invariant by SL(n,Z) and −In, which has determinant −1, so Tδφ = φ for all δ. Then
looking at Tδ0 , only the xn−1 variable changes to −xn−1, so the corresponding coefficients that must
match are A(m1, . . . ,mn−1) and A(m1, . . . ,−mn−1).

• If n is even, then for a symmetric Maass form, we have

A(m1, . . . ,mn−2,mn−1) = ±A(m1, . . . ,mn−2,−mn−1),

depending on if φ is odd or even.

Proof idea: The δ matrices are determined by SL(n,Z) and Tδ0 ; hence φ is symmetric iff Tδ0φ = ±φ.
(Typo on page 266.)

Looking at Tδ0 , only the xn−1 variable changes to −xn−1, so the corresponding coefficients when looking
at that must match are A(m1, . . . ,mn−1) and A(m1, . . . ,−mn−1), with a ± depending on the sign of
Tδ0φ = ±φ; i.e. when φ is even or odd.

• Using the Tδ, we can interpret A(m1, . . . ,mn−1) for symmetric Maass forms, even when the mi are
negative. Note in particular that letting δ be the matrix with the δi = mi

|mi| , then we can take

A(m1, . . . ,mn−1) to be the (|m1|, . . . , |mn−1|)-th coefficient of Tδφ, multiplied by det δ if φ is odd and
1 if φ is even.

• Dual Maass form: (Typos in book.) For φ a Maass form of Langlands parameters α, then we define
the dual Maass form

φ̃(z) = φ((z−1)T ),

a Maass form of Langlands parameters α′ = (−αn,−αn−1, . . . ,−α1). Moreover, if φ is symmetric,

then the (m1, . . . ,mn−1)th coefficient of φ̃ is

±A(mn−1, . . . ,m1),

where the sign is (−1)n−1+bn/2c if φ is odd, and 1 if φ is even. Equivalently, the sign is −1 if 4 | n and
φ is odd, and 1 otherwise.

• Proof idea: φ̃(γz) = φ̃(z) because SL(n,Z) is preserved by inverse transpose.

By SL(n,Z) left invariance and O(n,R) right invariance, we have that

φ̃(z) = φ(w(z−1)Tw−1),

where

w =


(−1)bn/2c

1
. . .

1
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is the long element of the Weyl group for SL(n,Z). In particular, we note that w(z−1)Tw−1 has a Iwa-
sawa decomposition of the form x′y′, where y′ consists of the elements y1 . . . yn−1, y2 . . . yn−1, . . . , yn−1, 1,
and x′ consists of 1s on the diagonal, −xi on the offdiagonal for 2 ≤ i ≤ n− 1 and (−1)bn/2c+1x1. One
can show by induction (on what the remaining x′ terms look like) that

ˆ
SL(n,Z)∩U)\U

φ̃(z) du = 0

for all U from the cuspidal condition.

In particular, note that the y′ reverses the order of the yi, which in Langlands parameters corresponds
to reversing the order of the parameters and negating them. Thus Iα′(z) = Iα(w(z−1)Tw−1), and thus

φ̃ has Langlands parameters α′.

Finally, the (m1, . . . ,mn−1)th coefficient of φ̃, by the work above, computed by looking at

ˆ 1

0

. . .

ˆ 1

0

φ̃(z)e−2πi(m1x1+···+mn−1xn−1)d∗x

corresponds to A(−mn−1,−mn−2, . . . ,−m2, (−1)bn/2c+1m1) of φ, giving the desired result.

9.3 Hecke operators for SL(n,Z)
• Recall the Hecke theory discussed in Section 3.10. Let G = GL(n,R), Γ = SL(n,Z), and X = hn. In

this case, we have the that the matrices
m0 . . .mn−1

. . .

m0m1

m0

 ,

where the mi are all positive integers lies in the commensurator. Let ∆ be the semigroup generated
by all of these matrices. Since ∆ is preserved under transpose, the Hecke ring generated by ∆ is
commutative.

• Define the set

Sn =



c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn

 | c` ≥ 1,

n∏
`=1

c` = N, 0 ≤ ci,` < c`

 .

Then we have the double coset partition

⋃
mn0m

n−1
1 ...mn−1=N

Γ


m0 . . .mn−1

. . .

m0m1

m0

Γ =
⋃

α∈SN

Γα.

Proof idea: Use Hermite and Smith normal form.

• We can use the SN to define Hecke operators:

TNf(z) =
1

N
n−1
2

∑
∏n
`=1 c`=N

0≤ci,`<c`

f



c1 c1,2 . . . c1,n

c2 . . . c2,n
. . .

...
cn

 · z
 .
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• With respect to the standard inner product, the Hecke operators are no longer self-adjoint. However,
the adjoint of a Hecke operator is itself a Hecke operator, and commutes with the original Hecke
operator, so the operator is normal. Mathematically, we have that T ∗N is associated to the double coset
union

⋃
mn0m

n−1
1 ...mn−1=N

Γ


N ·m−1

0

N · (m0m1)−1

. . .

N · (m0 . . .mn−1)−1

Γ.

Proof idea: Apply a change of variable in the integral for 〈TNf, g〉.

• To form the full Hecke ring, we take ring of operators generated by the Tδ, the GL(n,R)-invariant
differential operators, and then Tn.

• As expected, we can use the Hecke operators to gain information about the Fourier coefficients of
Hecke-eigen Maass forms.

• For a Heckeeigen Maass form φ, if A(1, . . . , 1) = 0, then φ = 0. Otherwise, choosing to normalize to
let A(1, . . . , 1) = 1, we have that

Tmφ = A(m, 1, . . . , 1)φ,

with multiplicativity relations

A(m1, . . . ,mn−1)A(m′1, . . . ,m
′
n−1) = A(m1m

′
1, . . . ,mn−1m

′
n−1)

if gcd(m1 · · ·mn−1,m
′
1 · · ·m′n−1) = 1, and

A(m, 1, . . . , 1)A(m1, . . . ,mn−1) =
∑

∏n
`=1 c`=m
ci|mi

A

(
m1cn
c1

,
m2c1
c2

, . . .
mn−1cn−2

cn−1

)
.

• Proof idea: Manually compute what the (m1, . . . ,mn−1) coefficient of Tmφ looks like as a sum over
the c matrices. Do a change of variable to swap from cx to x′c and working through the relationship
gives the equation

λmA(m1, . . . ,mn−1) =
∑

∏n
`=1 c`=m
ci|mi

A

(
m1cn
c1

,
m2c1
c2

, . . .
mn−1cn−2

cn−1

)
.

First assume A(1, . . . , 1) 6= 0, with normalization A(1, . . . , 1) = 1. We directly get that Tmφ =
A(m, 1, . . . , 1)φ and the relation

A(m, 1, . . . , 1)A(m1, . . . ,mn−1) =
∑

∏n
`=1 c`=m
ci|mi

A

(
m1cn
c1

,
m2c1
c2

, . . .
mn−1cn−2

cn−1

)
.

Now, to prove multiplicativity, we use the above relation. One can inductively show

A(pK1m1, p
K2m2, . . . , p

Kn−1mn−1) = A(pK1 , pK2 , . . . , pKn−1)A(m1,m2, . . . ,mn−1)

for p - mi by applying the relation to

A(pK0 , 1, . . . , 1)A(pK1m1, p
K2m2, . . . , p

Kn−1mn−1),

first proving it for pK1 only, then pK1 and pK2 , etc. See Goldfeld’s paper for more details.

Now, if A(1, . . . , 1) = 0, then all of the A(m, 1, . . . , 1) are 0, and inductively using the prime power
idea, one can show that all of the A(m1, . . . ,mn−1) are 0.

• In addition, if φ is an eigenform of the full Hecke ring, then

A(mn−1, . . . ,m1) = A(m1, . . . ,mn−1).

• Proof idea: Use that the double coset decomposition of T ∗n .
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9.4 The Godement-Jacquet L-function

• Given a Hecke-eigen Maass form f , we have the Godement-Jacquet L-function

Lf (s) =

∞∑
m=1

A(m, 1, . . . , 1)m−s,

absolutely convergent for Re(s) > n+1
2 .

• We have an Euler product

Lf (s) =
∏
p

φp(s),

where

φp(s) =

∞∑
k=0

A(pk, 1, . . . , 1)

pks
.

By using the multiplicativity relations, one can show that

φp(s) =
(

1−A(p, . . . , 1)p−s +A(1, p, . . . , 1)p−2s − · · ·+ (−1)n−1A(1, . . . , p)p−(n−1)s + (−1)np−ns
)−1

• For GL(2), taking the Mellin transform of the Maass form along the y-axis gives the L-function, which
we then can use to get the functional equation. We want to do something similar for GL(n), but the(
γ

1

)
terms cause issues.

• Inductively, we can show that

ˆ 1

0

. . .

ˆ 1

0

f(ûz)e−2πi(u1+···+un−2)d∗û

=
∑
m 6=0

A(1, . . . , 1,m)

|m|n−1
2

e2πimxn−1e2πi(x1+···+xn−2)Wα



|m|

1
. . .

1

 y, ψ1,...,1

 ,

where û is an integral over a unipotent matrix, except for the un element (top left offdiagonal element).
The induction is by column (right to left).

• Taking the Mellin transform of this formula gives the L function (of the dual modular form, possibly
with a minus sign), along with the integral of a Whittaker function. For n = 3, we can compute
explicitely everything in terms of Gamma functions and Bessel functions to compute the functional
equation.

• For higher n, we will get the functional equation from the functional equation of the Eisenstein series.

• The functional equation: For an even Maass form f ,

Λf (s) = π−ns/2
n∏
i=1

Γ

((
s− αi

2

))
Lf (s),

then
Λf (s) = Λf (1− s).
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10 Langlands Eisenstein series

10.1 Parabolic subgroups

• To each partition
n = n1 + · · ·+ nr

we associate the parabolic subgroup Pn1,...,nr

Pn1,...,nr =


mn1

∗
mn2

. . .

mnr

 ,

where each mni ∈ GL(ni,R). Here r is called the rank.

• Two parabolic subgroups are said to be associate if their partitions are permutations of each other. We
denote Σ(P, P ′) to be the set of all permutations that permute the partition of P into P ′ (assuming
they are associate).

10.2 Langlands decomposition of parabolic subgroups

• A parabolic subgroup can be decomposed into the form

Pn1,...,nr = Nn1,...,nr ·Mn1,...,nr ,

where

Nn1,...,nr =


In1

∗
In2

. . .

Inr


is the unipotent radical and

Mn1,...,nr =


mn1

mn2

. . .

mnr


is the Levi component.

• The Levi component can be further decomposed into

Mn1,...,nr = An1,...,nr ·M ′n1,...,nr ,

where

An1,...,nr =


t1In1

t2In2

. . .

trInr


with all ti > 0 is the connected center of Mn1,...,nr ., and

M ′n1,...,nr =


mn1

mn2

. . .

mnr


with det(mi) = ±1.

39



Austin Lei

• These two together comprise the Langlands decomposition, which is a generalization of the Iwasawa
decomposition.

• One can view the parabolic subgroups as stabilizers of flags on Rn.

10.3 Bruhat decomposition

• Let the Weyl group of GL(n,R) be Wn, and Bn be the group of invertible upper triangular matrices.
Then we have the Bruhat decomposition

GL(n,R) = BnWnBn.

• Idea of proof: Left multiplication by Bn corresponds to row operations from lower rows to higher rows,
and right multiplication by Bn corresponds to column operations from left columns to right columns.
One can inductively reduce the bottom row to one 1 and 0s with right multiplication, then use left
multiplication to make all the rows above 0 above the 1.

• One can compute explictely the Bruhat decomposition of a g ∈ GL(n,R). For any λ = (`1, . . . , `k) ∈ Zk,
let Mλ(g) be the k×k minor formed by columns `1, . . . , `k and the last k rows. Moreover, for w ∈Wn,
let ω be the permutation associated to w such that wei = eω−1(i) for basis column vector ei.

Then the Bruhat decomposition is precisely

g = u1cwu2,

with u1, u2 ∈ Un (unipotent), w ∈Wn, and c a diagonal matrix, with

c =


ε/cn−1

cn−1/cn−2

. . .

c2/c1
c1,


with ε = det(w) det(g), and

ci = Mω(n),ω(n−1),...,ω(n−i+1))(g).

In particular, note that u1, u2 are not necessarily unique in this form of the decomposition.

10.4 Minimal, maximal, and general parabolic Eisenstein series

• The minimal parabolic subgroup corresponds to the partition n = 1 + 1 + · · · + 1, and the maximal
parabolic subgroup corresponds to the partition n = (n− 1) + 1.

• For definitions, see notes from Dorian’s class. Recall that our power function here already includes ρ,
but the power function for Dorian’s class doesn’t include the ρ, so it must be included.

• The power function |g|sP is left-invariant by P ∩ Γ by the Langlands decomposition. Thus, the sum-
mation over (P ∩Γ)\Γ is well-defined. Convergence of the Eisenstein series comes from convergence of
the Borel Eisenstein series, plus that the power function for a parabolic subgroup is equivalent to the
standard power function by applying the Iwasawa decomposition to each GL(ni) block then changing
the powers in the standard power function.

10.5 Eisenstein series twisted by Maass forms

• Same thing, see notes from Dorian’s class. Only difference is the addition of the induced Maass form.
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10.6 Fourier expansion of the minimal parabolic Eisenstein series

• We are interested in computing the m = (m1, . . . ,mn−1)th Fourier coefficient of EP (z, s). There
are two approaches - one by direct computation using the Bruhat decomposition, and one by Hecke
operators. This section discuss the direct comptuation approach.

• The object of interest is the Fourier coefficient

Em(z, s) =

ˆ
U(Z)\U(R)

EP (uz, s)ψm(u)d∗u.

• One can partition the summation of (P ∩ Γ)\Γ by the element w in the Bruhat decomposition. In
particular, every γ ∈ (P ∩ Γ)\Γ can be expressed in the form

b1cwb2`,

where b1 ∈ (w−1U(Q)w)∩U(Q), b2 ∈ (w−1U(Q)Tw)∩U(Q), c is a diagonal matrix, ` ∈ w−1PTw∩P ,
and w lies in the Weyl group. Rearranging the summation gives a product of a Whittaker function
times the integral of ψm. The Whittaker function will be the Jacquet-Whittaker function when w is
precisely the long element. Moreover, when the mi are all nonzero, the integral of the character will
be 0 unless w is the long element.

• In other words, for mi all nonzero, the only contribution comes from the long Weyl element, which
gives the Jacquet Whittaker function (times a constant).

10.7 Meromorphic continuation and functional equation of maximal parabolic
Eisenstein series

• For P = Pn−1,1, we have Eisenstein series

EP (z, s) =
∑

γ∈(P∩Γ)\Γ

|det(γz)|s+ρ

and completed Eisenstein series

E∗P (z, s) = π−ns/2Γ(ns/2)ζ(ns)EP (z, s).

• In particular, EP (z, s) has meromorphic continuation to all of s ∈ C, with get functional equation

E∗P (z, s) = E∗P ((z−1)T , 1− s).

In particular, E∗P is holomorphic in s except for simple poles at s = 0, 1.

• Proof idea: Proof is similar to proof of Riemann zeta functional equation. Letting fu(x) = e−π(x2
1+x2

2+···+x2
n)u,

one can show that

E∗P (z, s) = |det(z)|s+ρ
ˆ ∞

0

 ∑
(a1,...,an)∈Zn

fu((a1, . . . , an) · z)− f((0, . . . , 0))

uns/2
du

u

by using the definition of the Gamma integral.

Splitting the integral into [0, 1] and [1,∞] and applying the Poisson summation formula∑
(a1,...,an)∈Zn

f((a1, . . . , an)z) =
1

|det(z)|
∑

(a1,...,an)∈Zn
f̂((a1, . . . , an)(z−1)T )

gives the desired functional equation.
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10.8 The L-function associated to a minimal parabolic Eisenstein series

• Here, we use the Hecke operators to compute the coefficients of the Eisenstein series – in this case we’ll
consider the minimal parabolic Eisenstein series.

• Recall that we have the Hecke operators

Tmf =
1

m
n−1
2

∑
∏n
i=1 ci=m

0≤ci,`<c`

f



c1 ci,j

c2
. . .

cn

 z

 .

• By the same work as for Maass forms, one can get a Fourier expansion for Eisenstein series of the form
(here note that the mi are essentially reversed to follow the structure of Chapter 5). Also note that
E(z, s) is normalized here such that A(1, . . . , 1) = 1 – this will be important later for the completed
Eisenstein series:

E(z, s) = C(z, s)

+
∑

γ∈Un−1(Z)\Γ

∞∑
m1=1

· · ·
∑

mn−1 6=0

A((m1, . . . ,mn−1), s)W



|m1m2 . . .mn−1|

. . .

|m1|
1


(
γ

1

)
z, s, ψ1,1,...,

mn−1
|mn−1|


where the C(z, s) correspond to terms with some mi = 0. This follows because we showed previously
that integrating the Eisenstein series against the character ψm, when all the mi are nonzero, the only
contribution is the Jacquet-Whittaker function.

• We are interested in computing the exact value of the coefficients A((m, 1, . . . , 1), s). We show that it
is sufficient to compute the value of the coefficients on the power function |g|s+ρ.

• Since the Hecke operators are Γ-invariant, it is sufficient to compute the action of Tm on the power
function to get the action of Tm on the Eisenstein series. In particular, by applying the definition
directly,

Tm|g|s+ρ =
1

m
n−1
2

 ∑
c1...cn=m
0≤ci,`<c`

n∏
i=1

csi+ρii

 |g|s+ρ
=

( ∑
c1...cn=m

n∏
i=1

c
si+ρi+(i−1)−n−1

2
i

)
|g|s+ρ

=

( ∑
c1...cn=m

n∏
i=1

csii

)
|g|s+ρ,

where we use that ρi = n+1
2 − i.

• Since the power function is an eigenfunction of all the Hecke operators, so is the Eisenstein series, so
by the same logic as for Maass forms, one concludes that Tm gives the A((m, 1, . . . , 1)) coefficients of
the Eisenstein series, with the same multiplicativity relations (The computation for Maass forms to
get the multiplicativity relation is the exact same as for the Eisenstein series, as the only thing used is
the Fourier expansion.)

• Note that by symmetry, the coefficient

A((m, 1, . . . , 1), s) =
∑

c1...cn=m

n∏
i=1

csii
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remains unchanged upon permutations of s. By the multiplicativity relations, this then holds for all
Fourier coefficients of the Eisenstein series. Then, we can defined completed Eisenstein series

E∗(z, s) =

 ∏
1≤j<k≤n

π−
1+sj−sk

2 Γ

(
1 + sj − sk

2

)
ζ(1 + sj − sk)

 (E(z, s)− C(z, s)),

(the extra zeta factors here are because of our previous choice to normalize E(z, s) such that it had
A(1, . . . , 1) = 1), which then satsifies the functional equation

E∗(z, s) = E∗(z, s′)

for every permutation s′ of s. The same equation can be shown for C(z, s).

• Remark: The computation of A(1, . . . , 1) arises from the Bruhat decomposition and a Kloosterman
sum computation – see Chapter 11.

• Now for the Eisenstein series E(z, v), we can define the L function

LE(∗,v)(s) =
∑
m

A((m, 1, . . . , 1), v)m−s

=
∑
m

( ∑
c1...cn=m

n∏
i=1

cvii

)
m−s

=
∑
m

 ∑
c1...cn−1|m

n−1∏
i=1

cvii

( m

c1 · · · cn−1

)vn
m−s

=
∑

c1,...,cn−1,m

(
n∏
i=1

cvii

)
mvn(mc1 . . . cn−1)−s,

where in the third line we perform the substitution m 7→ mc1 . . . cn−1. Hence we conclude that

LE(∗,v)(s) =

n∏
i=1

ζ(s− vi).

• We get completed L function

ΛE(∗,v)(s) =

(
n∏
i=1

π−
s−vi

2 Γ

(
s− vi

2

))
LE(∗,v)(s) = π−

ns
2

(
n∏
i=1

Γ

(
s− vi

2

))
LE(∗,v)(s),

so we have functional equation
ΛE(∗,v)(s) = ΛẼ(∗,v)(1− s)

arising from the functional equation of the Riemann zeta function, where Ẽ is the dual Eisenstein series
defined by

Ẽ(z, v) = E((z−1)T , v)

(which hence takes the Langlands parameters (v1, . . . , vn) 7→ (−vn, . . . ,−v1)).

• Note that this matches the functional equation for an even SL(n,Z) Maass form - in general, the
functional equation for the minimal parabolic can be used as a heuristic for the functional equations
of other objects. According to Dorian, “The proof of the functional equation of L-functions associated
to Maass forms of GL(n) was first obtained by Godement and Jacquet using a generalized Poisson
summation formula and the methods in Tate’s thesis.” For more details, see Dorian’s book with
Hundley or his paper with Jacquet.
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10.9 Fourier coefficients of Eisenstein series twisted by Maass forms

• One can perform the same computation for the Borel Eisenstein series as for any general Langlands
Eisenstein series to get the Fourier coefficients – the only difference is now the different power function.

• Now, consider any Langlands Eisenstein series twisted by Hecke-Maass forms. Let P = Pn1,...,nr be the
corresponding partition, with s = (s1, . . . , sr) the parameters such that

∑
nisi = 0. Let φi be a SL(ni)

Maass form, and let Φ(z) =
∏r
i=1 φ(mni) be the corresponding induced Maass form, all normalized

with A((1, . . . , 1)) coefficients equal to 1. Then recall that we have Langlands Eisenstein series

EP (z, s, φ) =
∑

(P∩Γ)\Γ

Φ(γz)|γz|s+ρP ,

where ρi = n−ni
2 − n1 − · · · − ni−1.

• One can show that EP (z, s, φ) is an eigenfunction of the Hecke operators, with eigenvalue

λm(s) =

( ∑
C1...Cr=m

r∏
i=1

Ai(Ci)C
si
i

)
,

where Ai(Ci) is the eigenvalue of TCi applied to φi.

• Proof idea: Again, since the Hecke operators are Γ-invariant, it suffices to consider the action of the
Hecke operators on the Maass form times the power function. We have that

Tm

r∏
i=1

φi(mni(z))|det(mni(z))|si+ρi = m−
n−1
2

∑
c1...cn=m
0≤ci,`<c`

r∏
i=1

φi(mni(cz))|det(mni(cz))|si+ρi .

We can break up c into blocks of size ni, of determinant Ci, and treat each individual block as its own
Hecke operator; the elements above each ni × ni block on the diagonal do not affect the computation.
In particular, mni(cy) corresponds to the ni block acting on z. Let η1 = 0 and ηi = n1 + · · · + ni−1.
Note in particular that ρi + ηi = n−ni

2 . One can show, in particular, that

m−
n−1
2

∑
c1...cn=m
0≤ci,`<c`

r∏
i=1

φi(mni(cz))|det(mni(cz))|si+ρi

=m−
n−1
2

∑
C1...Cr=m

∑
ci above the diagonal in the Ci block

r∏
i=1

Cηii φi(mni(Cniz))|det(mni(Cniz))|si+ρi

=m−
n−1
2

∑
C1...Cr=m

r∏
i=1

Cηii C
ni−1

2
i Csi+ρii TCiφi(mni(z))|det(mni(z))|si+ρi

=

( ∑
C1...Cr=m

r∏
i=1

Ai(Ci)C
si
i

)
φi(mni(z))|det(mni(z))|si+ρi ,

applying all of the identities of ρi and ηi. We conclude that (assuming first coefficient equal to 1)

A((m, 1, . . . , 1), s) = λm(s) =
∑

C1...Cr=m

r∏
i=1

Ai(Ci)C
si
i .

10.10 The constant term

• Rather than a singular constant term in the expansion of the Eisenstein series, we can define one for
each parabolic subgroup.
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• Let EP (s, z, φ) be a Langlands Eisenstein series as defined before, and let P ′ be another parabolic
subgroup with Langlands decomposition P ′ = N ′M ′ (in particular, recall that N ′ is the unipotent
portion). Then we define the constant term of EP along the parabolic P ′ to be

ˆ
N ′(Z)\N ′(R)

EP (uz, s, φ)d∗u,

where N ′(Z) = N ′(R) ∩ SL(n,Z).

• Remark: Note that this integral is the exact same as the one we did for Maass cusp forms; in particular,
Maass (cusp) forms φ are those such that the constant term of φ with respect to every parabolic
subgroup is 0.

• One can show that the constant term of EP along P ′ is 0 if P has lower rank than P ′, or if P and P ′

are same rank but are not associate.

• Idea of proof: Doing computation involving the Bruhat decomposition gives an integral of a cusp form
over essentially the intersection of N ′ and P - if P has lower rank or is associate, then some nonzero
elements will lie in their intersection and contribute 0.

10.11 The constant term of SL(3,Z) Eisenstein series twisted by SL(2,Z)-Maass
forms

• For the Eisenstein series EP2,1(z, s, φ), we have the constant terms

– 0 for P1,1,1

– 2(y2
1y2)s+1/2φ(z2) for P2,1

– 2y
1/2−s
1 y1−2s

2
Λφ(λ−1)

Λφ(λ) φ(z1)

where

Λφ(s) = π−sΓ

(
s+ ε+ α

2

)
Γ

(
s+ ε− α

2

)
Lφ(s)

if φ has Langlands parameters (α,−α), and λ = 3s+ 1 if φ is even and 3s+ 2 if φ is even.

10.12 An application of the theory of Eisenstein series to the non-vanishing of
L-functions on the line Re(s) = 1

• In the constant terms of the (twisted) Eisenstein series, L-functions appear in the coefficients. Thus
we can use information about the Eisenstein series to infer information about the L-functions.

• This method can be extended to explicit zero-free regions for general automorphic L-functions. Here
we specifically, we show that L-functions have no zeros on the line Re(s) = 1 for GL(2) and GL(3).

• In the n = 2 case, the Riemann zeta functions appear in the constant term of the coefficients. Thus, we
can use the n = 2 Eisenstein series to conclude information about the non-vanishing of the Riemann
zeta function on Re(s) = 1.

• Proof idea: Suppose ζ(1 + it0) = 0 for some t0. Then the constant term of E∗(z, s) is

2ζ∗(1 + 2s)ys+1/2 + 2ζ∗(2s)y1/2−s

where ζ∗ is the completed Riemann ζ function. Thus, E∗(z, it0/2) has 0 as a constant term (as ζ∗(1−
it0) = ζ∗(1 + it0) = 0). Hence, since Whittaker functions are rapidly decaying, and is non-zero/non-
constant by taking y → ∞. Thus, E∗(z, it0/2) is a Maass (cusp) form with Langlands parameters
(it0/2,−it0/2). However, by the spectral decomposition, since Eisenstein series are orthogonal to cusp
forms (but E∗(z, it0/2) is itself is a cusp form),

〈E∗(z, it0/2), E∗(z, it0/2)〉 = 0,
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which is a contradiction as E∗(z, it0/2) is nonzero. Thus, we conclude that ζ(s) has no zeros on
Re(s) = 1.

• One can do something similar for a Maass form φ by considering

E∗P2,1
(z, sφ) = Λφ(λ)EP2,1

(z, s, φ)

and considering a specific value of s such that the constant term vanishes assuming Lφ(s) vanishes on
Re(s) = 1.
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