Brun's Sieve

Wenqi Li

February 22, 2024

Everything, except for some details, is contained in [FI10].

1 Basic Setup

Let \mathcal{P} be a set of primes. We introduce the notation

$$
P(z)=\prod_{\substack{p \in \mathcal{P} \\ p<z}} p
$$

The variable z is referred to as the sifting level. Note that $P(z)$ is a product of distinct primes, so we use the term "sifting range" to refer to both the number $P(z)$ and the primes that divides $P(z)$.

Let $\mathcal{A}=\left(a_{n}\right)$ be a sequence of non-negative real numbers. We define the "sifting function" as

$$
S(\mathcal{A}, \mathcal{P}, z, x)=\sum_{\substack{n \leq x \\(n, P(z))=1}} a_{n}
$$

Often the restriction $n \leq x$ is imposed everywhere and understood from the context (or sometimes the sequence $\mathcal{A}=\left(a_{n}\right)$ is taken to be a finite sequence to begin with), so we may omit it and just write

$$
S(\mathcal{A}, \mathcal{P}, z)=\sum_{(n, P(z))=1} a_{n}
$$

When the set \mathcal{P} is also understood, we omit the dependent on \mathcal{P} too.
Recall that the Mobius function $\mu(n)$ is defined as

$$
\mu(n)= \begin{cases}(-1)^{r}, & n=p_{1} \cdots p_{r} \\ 0, & n \text { is not squarefree }\end{cases}
$$

By convention $\mu(1)=1$, since 1 is an empty product (i.e. $r=0$). It is a basic fact that

$$
\sum_{d \mid n} \mu(d)=0
$$

for any $n>1$ and is equal to 1 if $n=1$.
It follows that the condition $(n, P(z))=1$ can be detected by

$$
\sum_{d \mid n} \mu(d)=\left\{\begin{array}{ll}
1, & (n, P(z))=1 \\
d \mid P(z)
\end{array},\right.
$$

This is because if $(n, P(z))=1$ then the sum has only one term $\mu(1)=1$. Otherwise, the sum is just $\sum_{d \mid(n, P(z))} \mu(d)=0$. Using this, we obtain

$$
\begin{aligned}
S(\mathcal{A}, z) & =\sum_{(n, P(z))=1} a_{n} \\
& =\sum_{n \leq x}\left(a_{n} \sum_{\substack{d|n \\
d| P(z)}} \mu(d)\right) \\
& =\sum_{d \mid P(z)}\left(\mu(d) \sum_{d \mid n} a_{n}\right)
\end{aligned}
$$

Remember that we have the hidden condition $n \leq x$, so all sums are finite and we can switch the order of summation. This motivates us to define the "congruence sums"

$$
A_{d}(x)=\sum_{\substack{n \leq x \\ d \mid n}} a_{n}
$$

So now

$$
S(\mathcal{A}, z, x)=\sum_{d \mid P(z)} \mu(d) A_{d}(x)
$$

Suppose X is some smooth approximation for $A_{1}(x)=\sum_{n \leq x} a_{n}$, and assume we can write

$$
A_{d}(x)=g(d) X+r_{d}(x)
$$

Here, the idea is that $g(d)$ behaves like a probability density. We assume $g(1)=1$, and g is multiplicative as an arithmetic function. We also assume that $g\left(d_{1}\right) \leq g\left(d_{2}\right)$ if $d_{2} \mid d_{1}$. With this expression for $A_{d}(x)$, we can write

$$
S(\mathcal{A}, z, x)=\sum_{d \mid P(z)} \mu(d) g(d) X+\sum_{d \mid P(z)} \mu(d) r_{d}(x)
$$

And to simply notation we define

$$
V(z)=\sum_{d \mid P(z)} \mu(d) g(d)
$$

By the multiplicativity assumption on g, we observe that

$$
V(z)=\prod_{p \mid P(z)}(1-g(p))
$$

2 Brun's Pure Sieve

Lemma 2.1 (Buchstab formula). Keep the notation from the previous section. Let \mathcal{A}_{d} denote the subset of \mathcal{A} whose indices are divisible by d. We have

$$
\begin{equation*}
S(\mathcal{A}, z)=A_{1}(x)-\sum_{p \mid P(z)} S\left(\mathcal{A}_{p}, p\right) \tag{1}
\end{equation*}
$$

Proof. The quantity $S(\mathcal{A}, z)$ is obtained by first summing a_{n} over all $n \leq x$, and then subtracting the ones whose indices are divisible by some prime factor of $P(z)$. The first is just $A_{1}(x)$. For each prime $p \mid P(z)$, the quantity $S\left(\mathcal{A}_{p}, p\right)$ is the sum of a_{n} whose indices are divisible by p but not divisible by any prime smaller than p. Going through the list of primes dividing $P(z)$ in increasing order gives the formula.

Let $\omega(n)$ denote the number of prime divisors of n.
Lemma 2.2. Let $p(d)$ denote the least prime divisor of d. Then each positive integer r, we have

$$
S(\mathcal{A}, z)=\sum_{\substack{d \mid P(z) \\ \omega(d)<r}} \mu(d) A_{d}(x)+(-1)^{r} \sum_{\substack{d \mid P(z) \\ \omega(d)=r}} S\left(\mathcal{A}_{d}, p(d)\right)
$$

Proof. We use induction on r. When $r=1$, the equality is just (1) in Lemma 2.1. Now assume the desired equality is true for some r. Using Lemma 2.1, we have

$$
S\left(\mathcal{A}_{d}, p(d)\right)=A_{d}(x)-\sum_{p \mid P(p(d))} S\left(\mathcal{A}_{p d}, p\right)
$$

The terms $(-1)^{r} A_{d}(x)$ is equal to $\mu(d) A_{d}(x)$ since in the second sum d has r distinct prime divisors. So we obtain

$$
S(\mathcal{A}, z)=\sum_{\substack{d \mid P(z) \\ \omega(d)<r+1}} \mu(d) A_{d}(x)+(-1)^{r+1} \sum_{\substack{d \mid P(z) \\ \omega(d)=r}} \sum_{p \mid P(p(d))} S\left(\mathcal{A}_{p d}, p\right)
$$

But if p divides $P(p(d))$, we must have $p<p(d)$, so p is the least prime divisor of $p d$, and $p d$ has $r+1$ distinct prime divisors. The inner sum collects all the possible $(r+1)$-th prime divisors, so we obtain the desired equality for $r+1$. This completes the proof.

We have a version of both Lemma 2.1 and Lemma 2.2 for the $V(z)$ function. From Lemma 2.1 we get that

$$
X V(z)+\sum_{d \mid P(z)} \mu(d) r_{d}(x)=X+r_{1}(x)-\sum_{p \mid P(z)}\left(g(p) X V(p)+\sum_{d \mid P(p)} \mu(p d) r_{p d}(x)\right)
$$

The remainder terms all cancel out, and dividing through by X we obtain

$$
V(z)=1-\sum_{p \mid P(z)} g(p) V(p)
$$

This is the Buchstab formula for $V(z)$. Similarly, applying it r times, we obtain

$$
\begin{equation*}
V(z)=\sum_{\substack{d \mid P(z) \\ \omega(d)<r}} \mu(d) g(d)+(-1)^{r} \sum_{\substack{d \mid P(z) \\ \omega(d)=r}} g(d) V(p(d)) . \tag{2}
\end{equation*}
$$

If we substitute $A_{d}(x)=g(d) X+r_{d}(x)$ into the formula in Lemma 2.2, we will get

$$
S(\mathcal{A}, z)=\sum_{\substack{d \mid P(z) \\ \omega(d)<r}} \mu(d) g(d) X+\sum_{\substack{d \mid P(z) \\ \omega(d)<r}} \mu(d) r_{d}(x)+(-1)^{r} \sum_{\substack{d \mid P(z) \\ \omega(d)=r}} S\left(\mathcal{A}_{d}, p(d)\right)
$$

By (2), the first summation is equal to

$$
X V(z)-X(-1)^{r} \sum_{\substack{d \mid P(z) \\ \omega(d)=r}} g(d) V(p(d))
$$

Therefore

$$
S(\mathcal{A}, z)=X V(z)+\sum_{\substack{d \mid P(z) \\ \omega(d)<r}} \mu(d) r_{d}(x)+(-1)^{r} \sum_{\substack{d \mid P(z) \\ \omega(d)=r}}\left(S\left(\mathcal{A}_{d}, p(d)\right)-g(d) X V(p(d))\right)
$$

We can use the crude bound $0 \leq S\left(\mathcal{A}_{d}, p(d)\right) \leq A_{d}(x)$ and $0 \leq V \leq 1$ to estimate the third term. It is between

$$
(-1)^{r+1} X \sum_{\substack{d \mid P(z) \\ \omega(d)=r}} g(d)
$$

and

$$
(-1)^{r} X \sum_{\substack{d \mid P(z) \\ \omega(d)=r}} g(d)+(-1)^{r} \sum_{\substack{d \mid P(z) \\ \omega(d)=r}} r_{d}(x)
$$

So in summary, if we let

$$
G_{r}=\sum_{\substack{d \mid P(z) \\ \omega(d)=r}} g(d) \quad \text { and } \quad R_{r}=\sum_{\substack{d \mid P(z) \\ \omega(d) \leq r}}\left|r_{d}(x)\right|
$$

then

$$
S(\mathcal{A}, z)=X V(z)+\theta X G_{r}+\theta R_{r}
$$

for some $|\theta| \leq 1$.
Notice that for G_{1} we can estimate

$$
G_{1}=\sum_{p \mid P(z)} g(p) \leq \sum_{p \mid P(z)}-\log (1-g(p))=-\log V(z) .
$$

Also we have the following observation:

Lemma 2.3. For any $r \geq 1$,

$$
G_{r} \leq \frac{G_{1}^{r}}{r!}
$$

Proof. Expanding the product

$$
G_{1}^{r}=\left(\sum_{p \mid P(z)} g(p)\right) \cdots\left(\sum_{p \mid P(z)} g(p)\right)
$$

and use the multiplicativity of g, we see that for each $d \mid P(z)$, the term $g(d)$ appears r ! times where $r=\omega(d)$ is the number of distinct prime factors of d. Ignoring terms involving repeated factors and dividing by r ! gives the inequality.

An example

Now suppose $\left|r_{d}(\mathcal{A})\right| \leq g(d) d$ whenever $d \mid P(z)$. Then we have

$$
R_{r}=\sum_{\substack{d \mid P(z) \\ \omega(d) \leq r}}\left|r_{d}(x)\right| \leq \sum_{\substack{d \mid P(z) \\ \omega(d) \leq r}} g(d) d
$$

Again d is at most $z^{\omega(d)}$. Grouping together all possible $k=\omega(d)$, we have

$$
\sum_{\substack{d \mid P(z) \\ \omega(d) \leq r}} g(d) d \leq \sum_{k=0}^{r} G_{k} z^{k}
$$

By Lemma 2.3, we get

$$
R_{r} \leq \sum_{k=0}^{r} \frac{G_{1}^{k}}{k!} z^{k} \leq \sum_{k=0}^{r} A^{r}\left(\frac{z G_{1}}{A}\right)^{k} \frac{1}{k!}=A^{r} e^{z G / A}
$$

for any $A \geq 1$. In particular, we take $A=\max (1, z G / r)$. If $z G / r \geq 1$, then substituting A we get $A^{r} e^{z G / A}=(z G / r)^{r} e^{r}$, and if $z G / r<1$ then $z G<r$, so $A^{r} e^{z G / A}=e^{z G}<e^{r}$. In any case

$$
R_{r} \leq(z e G / r)^{r}+e^{r}
$$

Recall that we showed

$$
G_{r} \leq \frac{1}{e}\left(\frac{e G}{r}\right)^{r}
$$

Therefore using our new estimates for R_{r}, we get

$$
|S(\mathcal{A}, z)-X V(z)| \leq \frac{X}{e}\left(\frac{e G}{r}\right)^{r}+\left(\frac{z e G}{r}\right)^{r}+e^{r} \leq\left(\frac{e G}{r}\right)^{r}\left(X+z^{r}\right)+e^{r}
$$

Now we choose $r=[\log X / \log z]$, so in the above bound z^{r} becomes X. Recall that $G \leq$ $|\log V|$. When

$$
\begin{equation*}
4 \leq z \leq X^{1 / c \log \left(V^{-1} \log X\right)} \tag{3}
\end{equation*}
$$

we have that

$$
\log z \leq \log X / c \log \left(V^{-1} \log X\right)
$$

so

$$
r \geq c \log \left(V^{-1} \log X\right), \text { i.e. } e^{r / c} \geq V^{-1} \log X .
$$

We want to the inequality

$$
\begin{equation*}
\left(\frac{e \log V^{-1}}{r}\right)^{r} \leq e^{-r / c} \tag{4}
\end{equation*}
$$

Taking log, this is

$$
r\left(1+\log \log V^{-1}-\log r\right) \leq \frac{-r}{c}
$$

When $r=c \log \left(V^{-1} \log X\right)$, the right side is $-\log \left(V^{-1} \log X\right)$. The left side is
$c \log \left(V^{-1} \log X\right)\left(1+\log \log V^{-1}-\log c-\log \log \left(V^{-1} \log X\right)\right)=\log \left(V^{-1} \log X\right)(-1-\log \log \log X)$
which is smaller than the right side. The derivative of the left side is negative and decreasing, so for r greater than the said value, we always have the inequality (4). The inequality (4) implies

$$
\left(\frac{e G}{r}\right)^{r} \leq V(z)(\log X)^{-1}
$$

The derivation in teal is not reliable and unimportant. The conclusion is that when (3) is satisfied, we have that

$$
\begin{equation*}
|S(\mathcal{A}, z)-X V(z)| \leq 2 V(z) X(\log X)^{-1}+X^{\frac{3}{4}} \tag{5}
\end{equation*}
$$

Let us now see why these nasty formulas are useful. Let F be a polynomial that is a product of k distinct irreducible polynomials over Z with positive leading coefficient. Let the sequence \mathcal{A} be the indicator sequence for $F(m)$ for $1 \leq m \leq x$. This is a sieve of dimension k, and using generalities in Chapter 5 of [FI10], we have that $V(z)^{-1} \leq(K \log x)^{k}$, which implies $V(z) \asymp(\log z)^{-k}$. Let

$$
\pi_{F}(x, z)=\#\{1 \leq m \leq x \mid(F(m), P(z))=1\}
$$

This is just $S(\mathcal{A}, z)$. Then using (5), we get

$$
\pi_{F}(x, z) \asymp x(\log z)^{-k}
$$

provided that

$$
4 \leq z \leq x^{\frac{1}{c}(k+1) \log (K \log x)}
$$

i..e $\log z \ll \log x \log \log x$. This implies that

$$
\pi_{F}(x) \ll x\left(\frac{\log \log x}{\log x}\right)^{k}
$$

For $F(m)=m(m-2)$, we established an upper bound for the number of twin primes $\pi_{2}(x)$ up to x. This implies that the sum of reciprocals of twin primes converges.

3 Sifting Weights

So far we have only used the "pure" sieve: we rewrote the summation over the condition $(n, P(z))=1$ in terms of the Mobius function. More sophisticated sieves replace the Mobius function $\mu(d)$ by some other (truncated) sequence $\Lambda=\left(\lambda_{d}\right)$. In particular, if the sequence λ_{d} is all 0 after $d \geq D$ for some D, we say that $\left(\lambda_{d}\right)$ is a choice of sifting weights (or sieve weights) of level D. We refer to the ratio

$$
s=\frac{\log D}{\log z}
$$

as the sifting variable.
We had $S(\mathcal{A}, z)=\sum_{d \mid P(z)} \mu(d) A_{d}(x)$, but with different sifting weights we won't have this equality. Instead, we defined the sifted sum

$$
S^{\Lambda}(\mathcal{A}, z)=\sum_{d \mid P(z)} \lambda_{d} A_{d}(x) .
$$

We see that with $\theta=1 \star \lambda$, i.e. $\theta_{n}=\sum_{d \mid n} \lambda_{d}$, we have

$$
S^{\Lambda}(\mathcal{A}, z)=\sum_{n} a_{n} \theta_{n}
$$

If Λ makes $S^{\Lambda}(\mathcal{A}, z)$ a upper (resp. lower) bound for $S(\mathcal{A}, z)$, then we say that Λ is an upper (resp. lower) bound sieve.

Definition 3.1. A choice of sifting weights $\left(\lambda_{d}\right)$ gives a combinatorial sieve if λ_{d} takes only the values $\mu(d)$ and 0 .

In the previous section, we used a combinatorial sieve controlled by the parameter r. The parity of r determines whether it is an upper bound sieve or a lower bound sieve. Now we will construct upper bound and lower bound sieves using a different method of Brun.

This method is again motivated by the Buchstab formula:

$$
S(\mathcal{A}, z)=A_{1}(x)-\sum_{p_{1} \mid P(z)} S\left(\mathcal{A}_{p_{1}}, p_{1}\right)
$$

We wrote p_{1} since we are going to do apply this procedure many times. If p_{1} is large, the subsequence $\mathcal{A}_{p_{1}}$ will contain few terms, so maybe dropping these terms won't hurt much. In any case, we can choose some y_{1} as the criterion of being "large", and obtain an upper bound

$$
S(\mathcal{A}, z) \leq A_{1}(x)-\sum_{\substack{p_{1} \mid P(z) \\ p_{1}<y_{1}}} S\left(\mathcal{A}_{p_{1}}, p_{1}\right)
$$

As long as $y_{1} \leq P(z)$, we can drop the $p_{1} \mid P(z)$ condition. Now we can apply the Buchstab formula again to get

$$
A_{1}(x)-\sum_{p_{1}<y_{1}} A_{p_{1}}(x)+\sum_{p_{2}<p_{1}<y_{1}} S\left(\mathcal{A}_{p_{1} p_{2}}, p_{2}\right)
$$

Nothing can be done here: we can't ignore p_{2} 's that are larger than a certain value, because they are positive terms and we are in the process of finding an upper bound. However, applying the Buchstab formula again, we can ignore p_{3} 's that are larger than some y_{3} :

$$
S(\mathcal{A}, z) \leq A_{1}(x)-\sum_{p_{1}<y_{1}} A_{p_{1}}(x)+\sum_{p_{2}<p_{1}<y_{1}} A_{p_{1} p_{2}}(x)-\sum_{p_{3}<y_{3}<p_{2}<p_{1}<y_{1}} S\left(\mathcal{A}_{p_{1} p_{2} p_{3}}, p_{3}\right)
$$

So we see that for m odd, we can set some y_{m}, and only consider $p_{m}<y_{m}$ in that step of the Buchstab iteration. This motivates us to fix a sequence of these y_{m}, and define

$$
\mathcal{D}^{+}=\left\{d=p_{1} \cdots p_{l} \mid p_{m}<y_{m} \text { for } m \text { odd }\right\}
$$

The prime factors p_{1}, \cdots, p_{l} are always ordered in decreasing order. Notice that this is a finite set since p_{1} is bounded. (This comment is actually meaningless since we always implicitly intersect with the divisors of $P(z)$, but it is easy to get confused here.)

We get

$$
\begin{equation*}
S(\mathcal{A}, z) \leq \sum_{\substack{d \mid P(z) \\ d \in \mathcal{D}^{+}}} \mu(d) A_{d}(x)=S^{+}(\mathcal{A}, z) \tag{6}
\end{equation*}
$$

Note that in the last step of such iteration, i.e. we have used all primes smaller than p_{1}, then the smallest one p_{l} must be 2 , and $S(\mathcal{A}, 2)$ is just the sum of \mathcal{A}, so the bound above has no leftover terms on the right side, unlike when the process has not terminated.

What did we lose? At each odd n, we ignored

$$
S_{n}(\mathcal{A}, z)=\sum_{\substack{y_{n} \leq p_{n}<\cdots<p_{1} \\ p_{m}<y_{m}, m<n, m \text { odd }}} S\left(\mathcal{A}_{p_{1} \cdots p_{n}}, p_{n}\right)
$$

So actually

$$
S(\mathcal{A}, z)=S^{+}(\mathcal{A}, z)-\sum_{n \text { odd }} S_{n}(\mathcal{A}, z)
$$

Similarly, we can define

$$
\mathcal{D}^{+}=\left\{d=p_{1} \cdots p_{l} \mid p_{m}<y_{m} \text { for } m \text { even }\right\} .
$$

and obtain a lower bound

$$
\begin{equation*}
S(\mathcal{A}, z) \geq \sum_{\substack{d \mid P(z) \\ d \in \mathcal{D}^{-}}} \mu(d) A_{d}(x)=S^{-}(\mathcal{A}, z) \tag{7}
\end{equation*}
$$

A completely analogous procedure can be carried out for the V function. Recall that

$$
V(z)=\sum_{d \mid P(z)} \mu(d) g(d)=\prod_{p \mid P(z)}(1-g(p))
$$

and using the procedure described above we obtain

$$
V(z)=V^{+}(D, z)-\sum_{n \text { odd }} V_{n}(z)
$$

where

$$
V^{+}(D, z)=\sum_{\substack{d \mid P(z) \\ d \in \mathcal{D}^{+}}} \mu(d) g(d)
$$

and

$$
V_{n}(z)=\sum_{\substack{y_{n} \leq p_{n}<\cdots<p_{1}<z \\ p_{m}<y_{m}, m<n, m \text { odd }}} g\left(p_{1} \cdots p_{n}\right) V\left(p_{n}\right) .
$$

The question now is how to choose the truncating parameters y_{m} appropriately. A possible choice is

$$
y_{m}=\left(\frac{D}{p_{1} \cdots p_{m}}\right)^{\frac{1}{\beta}}
$$

A sieve given by these parameters is called a beta-sieve of level D. Note that for a different number of final stage, these parameters will be different. We will not cover the reason behind this choice.

4 The Fundamental Lemma

Suppose we selected the parameters y_{m} according to some fixed β and D.
We only need upper bounds for $V_{n}(z)$. The summation condition of V_{n} is complicated, but the terms are non-negative, so we will try to simplify the summation condition at the cost of summing more terms.

Lemma 4.1. Suppose $p_{1}>\cdots>p_{n}$ satisfies the summation condition for $V_{n}(z)$. Then for any $1 \leq \ell \leq n-1$ and $\ell \equiv n-1 \bmod 2$, we have

$$
p_{1} \cdots p_{l}<D z^{\epsilon_{\ell}}
$$

where $\epsilon_{\ell}=-(s-1)\left(\frac{\beta-1}{\beta+1}\right)^{[\ell / 2]}$.
Proof. We use induction on ℓ. We know that $\ell-1 \equiv n \bmod 2$, so $p_{\ell-1}<y_{\ell-1}$, and thus

$$
p_{1} \cdots p_{\ell-2} p_{\ell-1}^{\beta+1}<D
$$

Now use $p_{\ell}<p_{\ell-1}$ to get

$$
p_{1} \cdots p_{\ell}<p_{1} \cdots p_{\ell-2} p_{\ell-1}^{2}<p_{1} \cdots p_{\ell-2}\left(\frac{D}{p_{1} \cdots p_{\ell-2}}\right)^{2 /(\beta+1)}
$$

and use the induction hypothesis.

Corollary 4.2. Suppose $p_{1}>\cdots>p_{n}$ satisfies the summation condition for $V_{n}(z)$. Then

$$
p_{n} \geq z^{\delta_{n}}
$$

where

$$
\delta_{n}=\frac{s-1}{\beta-1}\left(\frac{\beta-1}{\beta+1}\right)^{[(n+1) / 2]}
$$

Proof. Apply the previous lemma with $\ell=n-1$ we get

$$
p_{1} \cdots p_{n-1}<D z^{-(s-1)\left(\frac{\beta-1}{\beta+1}\right)^{[(n-1) / 2]}}
$$

So

$$
p_{n} \geq y_{n}=\left(\frac{D}{p_{1} \cdots p_{n}}\right)^{\frac{1}{\beta}} \geq z^{\frac{s-1}{\beta}\left(\frac{\beta-1}{\beta+1}\right)^{[(n-1) / 2]}} p_{n}^{-1 / \beta}
$$

Rearranging gives the desired inequality.
Assuming $s \geq \beta+1$, we let $z_{n}=z^{\left(\frac{\beta-1}{\beta+1}\right)^{n / 2}}$, and the Corollary implies $p_{n} \geq z_{n}$ provided that the p_{i} 's satisfy the summation condition. Therefore, we can drop all those condition and only require $p_{n} \geq z_{n}$ to get an upper bound

$$
V_{n}(z) \leq \sum_{z_{n} \leq p_{n}<\cdots<p_{1}<z} g\left(p_{1} \cdots p_{n}\right) V\left(p_{n}\right) .
$$

Theorem 4.3 (The Fundamental Lemma). Suppose we have a beta sieve with dimension κ and $\beta=9 \kappa+1$. Assume the function g satisfies

$$
\prod_{w \leq p<z}(1-g(p))^{-1} \leq K\left(\frac{\log z}{\log w}\right)^{\kappa}
$$

and $s \geq 9 \kappa+1$. Then

$$
V^{+}(D, z) \leq\left(1+e^{9 \kappa-s} K^{10}\right) V(z)
$$

Proof. We obtained that

$$
V_{n}(z) \leq \sum_{z_{n} \leq p_{n}<\cdots<p_{1}<z} g\left(p_{1} \cdots p_{n}\right) V\left(p_{n}\right)
$$

Notice that $V\left(p_{n}\right) \leq V\left(z_{n}\right)$ since V is a product of terms less than 1 . Then, using the same proof as in Lemma 2.3, we get that

$$
\sum_{z_{n} \leq p_{n}<\cdots<p_{1}<z} g\left(p_{1} \cdots p_{n}\right) V\left(p_{n}\right) \leq V\left(z_{n}\right) \frac{1}{n!}\left(\sum_{z_{n} \leq p \leq z} g(p)\right)^{n}
$$

For each $g(p)$ we use the inequality $g(p) \leq-\log (1-g(p))$, and we get the above is bounded above by

$$
\frac{V\left(z_{n}\right)}{n!}\left(\log \frac{V\left(z_{n}\right)}{V(z)}\right)^{n}
$$

Our assumption implies that

$$
\frac{V\left(z_{n}\right)}{V(z)} \leq K\left(\frac{\log z}{\log z_{n}}\right)^{\kappa}
$$

Remembering the definition of z_{n}, we have $\frac{\log z}{\log z_{n}}=\left(\frac{\beta+1}{\beta-1}\right)^{n / 2}$. To simplify notation, let $\alpha=\frac{\kappa}{2} \log \frac{\beta+1}{\beta-1}$. Then

$$
\frac{V_{n}(z)}{V(z)} \leq \frac{K}{n!}\left(e^{\alpha} \log \left(K e^{\alpha n}\right)\right)^{n}=\frac{K}{n!}\left(e^{\alpha} \log K+e^{\alpha} \alpha n\right)^{n}
$$

We estimate

$$
e^{\alpha}(\log K+\alpha n)=e^{\alpha} \alpha n\left(1+\frac{\log K}{\alpha n}\right) \leq e^{\alpha} \alpha n \exp \left(\frac{\log K}{\alpha n}\right)=e^{\alpha} \alpha n K^{\frac{1}{\alpha n}}
$$

So in summary

$$
\frac{V_{n}(z)}{V(z)} \leq \frac{1}{n!}\left(e^{\alpha} \alpha n\right)^{n} K^{1+\frac{1}{\alpha}} .
$$

Now sum this over n, choose β appropriately $(\beta=9 \kappa+1)$, and get the desired bound.

Let's apply this to the $\pi_{F}(x, z)$ example considered in section 2. Recall that F is a polynomial that is a product of k distinct irreducible polynomials over \mathbf{Z}, and \mathcal{A} is the indicator sequence for $F(m)$ for $1 \leq m \leq x$. To apply our beta sieve, we let $D=x=X$ and $\kappa=k$. So the fundamental lemma implies that $\pi_{F}(x, z) \asymp X V(z)=x(\log z)^{-k}$, provided that $z^{9 \kappa+1} \leq D$. This means that we are trying to consider all primes up to $D=x$ and sift out their multiples, but our estimate is only true (to our knowledge) when we only sift out not so many prime. However, we still have $\log z \ll \log D=\log x$, so we obtain

$$
\pi_{F}(x, z) \ll x(\log x)^{-k}
$$

Notice that this is a big improvement comparing to the result in section 2: we get rid of the $(\log \log x)^{k}$ factor.

In fact, by being slightly more careful, we obtain
Theorem 4.4. We have

$$
\pi_{F}(x, z) \asymp x(\log z)^{-k}
$$

for $x \geq z^{9 k+1}$. In particular, there are infinitely many pairs of integers m and $m-2$ such that together they have at most 19 prime divisors.

Proof. The general estimate is what we got before we substituted $\log z \ll \log x$. Now let $F(m)=m(m-2)$, so $k=2$ and $9 k+1=19$. Then the estimate says that for x large enough, in the range $[0, x]$, the number of integers of the form $m(m-2)$ where no prime smaller than z divides $m(m-2)$ is at least a constant multiple of $x(\log z)^{-k}$. We may choose z to be close to $x^{1 / 19}$, so so any such $m(m-2)<x$ cannot have more than 19 prime divisors, since these divisors are all at least $x^{1 / 19}$. Now taking x to infinity gives the infinitude result.

In fact, with some more estimates, one can show this result for 9 primes, rather than 19. This is done in the book. Other refinements of Brun's sieve can reduce this number to 4 . This illustrates the power of these sieves in attacking the twin prime conjecture.

References

[FI10] J.B. Friedlander and H. Iwaniec. Opera de Cribro. American mathematical society colloquium publications. American Mathematical Society, 2010. ISBN: 9780821849705.

