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Everything, except for some details, is contained in [FI10].

1 Basic Setup
Let 𝒫 be a set of primes. We introduce the notation

𝑃(𝑧) =∏
𝑝∈𝒫
𝑝<𝑧

𝑝.

The variable 𝑧 is referred to as the sifting level. Note that 𝑃(𝑧) is a product of distinct
primes, so we use the term “sifting range” to refer to both the number 𝑃(𝑧) and the primes
that divides 𝑃(𝑧).

Let 𝒜= (𝑎𝑛) be a sequence of non-negative real numbers. We define the “sifting function”
as

𝑆(𝒜,𝒫,𝑧,𝑥) = ∑
𝑛≤𝑥

(𝑛,𝑃(𝑧))=1

𝑎𝑛

Often the restriction 𝑛 ≤ 𝑥 is imposed everywhere and understood from the context (or
sometimes the sequence 𝒜 = (𝑎𝑛) is taken to be a finite sequence to begin with), so we
may omit it and just write

𝑆(𝒜,𝒫,𝑧) = ∑
(𝑛,𝑃(𝑧))=1

𝑎𝑛

When the set 𝒫 is also understood, we omit the dependent on 𝒫 too.

Recall that the Mobius function 𝜇(𝑛) is defined as

𝜇(𝑛) ={
(−1)𝑟, 𝑛 = 𝑝1⋯𝑝𝑟
0, 𝑛 is not squarefree

.

By convention 𝜇(1) = 1, since 1 is an empty product (i.e. 𝑟 = 0). It is a basic fact that

∑
𝑑|𝑛

𝜇(𝑑) = 0

1



for any 𝑛 > 1 and is equal to 1 if 𝑛 = 1.

It follows that the condition (𝑛,𝑃(𝑧)) = 1 can be detected by

∑
𝑑|𝑛

𝑑|𝑃(𝑧)

𝜇(𝑑) ={
1, (𝑛,𝑃(𝑧)) = 1
0, otherwise

.

This is because if (𝑛,𝑃(𝑧)) = 1 then the sum has only one term 𝜇(1) = 1. Otherwise, the
sum is just ∑𝑑|(𝑛,𝑃(𝑧))𝜇(𝑑) = 0. Using this, we obtain

𝑆(𝒜,𝑧) = ∑
(𝑛,𝑃(𝑧))=1

𝑎𝑛

=∑
𝑛≤𝑥

⎛
⎜⎜
⎝
𝑎𝑛 ∑

𝑑|𝑛
𝑑|𝑃(𝑧)

𝜇(𝑑)
⎞
⎟⎟
⎠

= ∑
𝑑|𝑃(𝑧)

(𝜇(𝑑)∑
𝑑|𝑛

𝑎𝑛)

Remember that we have the hidden condition 𝑛 ≤ 𝑥, so all sums are finite and we can
switch the order of summation. This motivates us to define the “congruence sums”

𝐴𝑑(𝑥) =∑
𝑛≤𝑥
𝑑|𝑛

𝑎𝑛.

So now
𝑆(𝒜,𝑧,𝑥) = ∑

𝑑|𝑃(𝑧)
𝜇(𝑑)𝐴𝑑(𝑥)

Suppose 𝑋 is some smooth approximation for 𝐴1(𝑥) =∑𝑛≤𝑥𝑎𝑛, and assume we can write

𝐴𝑑(𝑥) = 𝑔(𝑑)𝑋 +𝑟𝑑(𝑥).

Here, the idea is that 𝑔(𝑑) behaves like a probability density. We assume 𝑔(1) = 1, and
𝑔 is multiplicative as an arithmetic function. We also assume that 𝑔(𝑑1) ≤ 𝑔(𝑑2) if 𝑑2|𝑑1.
With this expression for 𝐴𝑑(𝑥), we can write

𝑆(𝒜,𝑧,𝑥) = ∑
𝑑|𝑃(𝑧)

𝜇(𝑑)𝑔(𝑑)𝑋 + ∑
𝑑|𝑃(𝑧)

𝜇(𝑑)𝑟𝑑(𝑥)

And to simply notation we define

𝑉(𝑧) = ∑
𝑑|𝑃(𝑧)

𝜇(𝑑)𝑔(𝑑).

By the multiplicativity assumption on 𝑔, we observe that

𝑉(𝑧) = ∏
𝑝|𝑃(𝑧)

(1−𝑔(𝑝)).
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2 Brun’s Pure Sieve
Lemma 2.1 (Buchstab formula). Keep the notation from the previous section. Let 𝒜𝑑
denote the subset of 𝒜 whose indices are divisible by 𝑑. We have

𝑆(𝒜,𝑧) =𝐴1(𝑥)− ∑
𝑝|𝑃(𝑧)

𝑆(𝒜𝑝,𝑝) (1)

Proof. The quantity 𝑆(𝒜,𝑧) is obtained by first summing 𝑎𝑛 over all 𝑛 ≤ 𝑥, and then
subtracting the ones whose indices are divisible by some prime factor of 𝑃(𝑧). The first is
just 𝐴1(𝑥). For each prime 𝑝|𝑃(𝑧), the quantity 𝑆(𝒜𝑝,𝑝) is the sum of 𝑎𝑛 whose indices
are divisible by 𝑝 but not divisible by any prime smaller than 𝑝. Going through the list of
primes dividing 𝑃(𝑧) in increasing order gives the formula. �

Let 𝜔(𝑛) denote the number of prime divisors of 𝑛.

Lemma 2.2. Let 𝑝(𝑑) denote the least prime divisor of 𝑑. Then each positive integer
𝑟, we have

𝑆(𝒜,𝑧) = ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)𝐴𝑑(𝑥)+(−1)𝑟 ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑆(𝒜𝑑,𝑝(𝑑))

Proof. We use induction on 𝑟. When 𝑟 = 1, the equality is just (1) in Lemma 2.1. Now
assume the desired equality is true for some 𝑟. Using Lemma 2.1, we have

𝑆(𝒜𝑑,𝑝(𝑑)) = 𝐴𝑑(𝑥)− ∑
𝑝|𝑃(𝑝(𝑑))

𝑆(𝒜𝑝𝑑,𝑝)

The terms (−1)𝑟𝐴𝑑(𝑥) is equal to 𝜇(𝑑)𝐴𝑑(𝑥) since in the second sum 𝑑 has 𝑟 distinct prime
divisors. So we obtain

𝑆(𝒜,𝑧) = ∑
𝑑|𝑃(𝑧)

𝜔(𝑑)<𝑟+1

𝜇(𝑑)𝐴𝑑(𝑥)+(−1)𝑟+1 ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

∑
𝑝|𝑃(𝑝(𝑑))

𝑆(𝒜𝑝𝑑,𝑝)

But if 𝑝 divides 𝑃(𝑝(𝑑)), we must have 𝑝 < 𝑝(𝑑), so 𝑝 is the least prime divisor of 𝑝𝑑,
and 𝑝𝑑 has 𝑟+1 distinct prime divisors. The inner sum collects all the possible (𝑟+1)-th
prime divisors, so we obtain the desired equality for 𝑟 +1. This completes the proof. �

We have a version of both Lemma 2.1 and Lemma 2.2 for the 𝑉(𝑧) function. From Lemma
2.1 we get that

𝑋𝑉(𝑧)+ ∑
𝑑|𝑃(𝑧)

𝜇(𝑑)𝑟𝑑(𝑥) =𝑋 +𝑟1(𝑥)− ∑
𝑝|𝑃(𝑧)

(𝑔(𝑝)𝑋𝑉(𝑝)+ ∑
𝑑|𝑃(𝑝)

𝜇(𝑝𝑑)𝑟𝑝𝑑(𝑥))

The remainder terms all cancel out, and dividing through by 𝑋 we obtain

𝑉(𝑧) = 1− ∑
𝑝|𝑃(𝑧)

𝑔(𝑝)𝑉 (𝑝)
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This is the Buchstab formula for 𝑉(𝑧). Similarly, applying it 𝑟 times, we obtain

𝑉(𝑧) = ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)𝑔(𝑑)+(−1)𝑟 ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑔(𝑑)𝑉 (𝑝(𝑑)). (2)

If we substitute 𝐴𝑑(𝑥) = 𝑔(𝑑)𝑋 +𝑟𝑑(𝑥) into the formula in Lemma 2.2, we will get

𝑆(𝒜,𝑧) = ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)𝑔(𝑑)𝑋 + ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)𝑟𝑑(𝑥)+(−1)𝑟 ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑆(𝒜𝑑,𝑝(𝑑))

By (2), the first summation is equal to

𝑋𝑉(𝑧)−𝑋(−1)𝑟 ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑔(𝑑)𝑉 (𝑝(𝑑)).

Therefore

𝑆(𝒜,𝑧) =𝑋𝑉(𝑧)+ ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)𝑟𝑑(𝑥)+(−1)𝑟 ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

(𝑆(𝒜𝑑,𝑝(𝑑))−𝑔(𝑑)𝑋𝑉(𝑝(𝑑)))

We can use the crude bound 0 ≤ 𝑆(𝒜𝑑,𝑝(𝑑)) ≤ 𝐴𝑑(𝑥) and 0 ≤ 𝑉 ≤ 1 to estimate the third
term. It is between

(−1)𝑟+1𝑋 ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑔(𝑑)

and
(−1)𝑟𝑋 ∑

𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑔(𝑑)+(−1)𝑟 ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑟𝑑(𝑥)

So in summary, if we let

𝐺𝑟 = ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑔(𝑑) and 𝑅𝑟 = ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)≤𝑟

|𝑟𝑑(𝑥)|

then
𝑆(𝒜,𝑧) =𝑋𝑉(𝑧)+𝜃𝑋𝐺𝑟+𝜃𝑅𝑟

for some |𝜃| ≤ 1.

Notice that for 𝐺1 we can estimate

𝐺1 = ∑
𝑝|𝑃(𝑧)

𝑔(𝑝) ≤ ∑
𝑝|𝑃(𝑧)

− log(1−𝑔(𝑝)) =− log𝑉(𝑧).

Also we have the following observation:
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Lemma 2.3. For any 𝑟 ≥ 1,
𝐺𝑟 ≤

𝐺𝑟
1

𝑟!
.

Proof. Expanding the product

𝐺𝑟
1 =( ∑

𝑝|𝑃(𝑧)
𝑔(𝑝))⋯( ∑

𝑝|𝑃(𝑧)
𝑔(𝑝))

and use the multiplicativity of 𝑔, we see that for each 𝑑|𝑃(𝑧), the term 𝑔(𝑑) appears 𝑟!
times where 𝑟 = 𝜔(𝑑) is the number of distinct prime factors of 𝑑. Ignoring terms involving
repeated factors and dividing by 𝑟! gives the inequality. �

An example
Now suppose |𝑟𝑑(𝒜)| ≤ 𝑔(𝑑)𝑑 whenever 𝑑|𝑃(𝑧). Then we have

𝑅𝑟 = ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)≤𝑟

|𝑟𝑑(𝑥)| ≤ ∑
𝑑|𝑃(𝑧)
𝜔(𝑑)≤𝑟

𝑔(𝑑)𝑑

Again 𝑑 is at most 𝑧𝜔(𝑑). Grouping together all possible 𝑘 =𝜔(𝑑), we have

∑
𝑑|𝑃(𝑧)
𝜔(𝑑)≤𝑟

𝑔(𝑑)𝑑 ≤
𝑟

∑
𝑘=0

𝐺𝑘𝑧𝑘.

By Lemma 2.3, we get

𝑅𝑟 ≤
𝑟

∑
𝑘=0

𝐺𝑘
1

𝑘!
𝑧𝑘 ≤

𝑟
∑
𝑘=0

𝐴𝑟(𝑧𝐺1
𝐴

)
𝑘 1
𝑘!

= 𝐴𝑟𝑒𝑧𝐺/𝐴

for any 𝐴 ≥ 1. In particular, we take 𝐴 =max(1,𝑧𝐺/𝑟). If 𝑧𝐺/𝑟 ≥ 1, then substituting 𝐴
we get 𝐴𝑟𝑒𝑧𝐺/𝐴 = (𝑧𝐺/𝑟)𝑟𝑒𝑟, and if 𝑧𝐺/𝑟 < 1 then 𝑧𝐺 < 𝑟, so 𝐴𝑟𝑒𝑧𝐺/𝐴 = 𝑒𝑧𝐺 < 𝑒𝑟. In any
case

𝑅𝑟 ≤ (𝑧𝑒𝐺/𝑟)𝑟+𝑒𝑟

Recall that we showed
𝐺𝑟 ≤

1
𝑒
(𝑒𝐺

𝑟
)
𝑟

Therefore using our new estimates for 𝑅𝑟, we get

|𝑆(𝒜,𝑧)−𝑋𝑉(𝑧)| ≤ 𝑋
𝑒
(𝑒𝐺

𝑟
)
𝑟
+(𝑧𝑒𝐺

𝑟
)
𝑟
+𝑒𝑟 ≤(𝑒𝐺

𝑟
)
𝑟
(𝑋 +𝑧𝑟)+𝑒𝑟

Now we choose 𝑟 = [log𝑋/ log𝑧], so in the above bound 𝑧𝑟 becomes 𝑋. Recall that 𝐺 ≤
| log𝑉 |. When

4 ≤ 𝑧 ≤𝑋1/𝑐 log(𝑉−1 log𝑋) (3)
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we have that
log𝑧 ≤ log𝑋/𝑐 log(𝑉−1 log𝑋)

so
𝑟 ≥ 𝑐 log(𝑉−1 log𝑋), i.e. 𝑒𝑟/𝑐 ≥𝑉−1 log𝑋.

We want to the inequality

(𝑒 log𝑉−1

𝑟
)
𝑟
≤ 𝑒−𝑟/𝑐 (4)

Taking log, this is
𝑟(1+ log log𝑉−1− log𝑟) ≤ −𝑟

𝑐
When 𝑟 = 𝑐 log(𝑉−1 log𝑋), the right side is − log(𝑉−1 log𝑋). The left side is

𝑐 log(𝑉−1 log𝑋)(1+log log𝑉−1−log𝑐−log log(𝑉−1 log𝑋)) = log(𝑉−1 log𝑋)(−1−log loglog𝑋)

which is smaller than the right side. The derivative of the left side is negative and decreas-
ing, so for 𝑟 greater than the said value, we always have the inequality (4). The inequality
(4) implies

(𝑒𝐺
𝑟
)
𝑟
≤𝑉(𝑧)(log𝑋)−1

The derivation in teal is not reliable and unimportant. The conclusion is that when (3) is
satisfied, we have that

|𝑆(𝒜,𝑧)−𝑋𝑉(𝑧)| ≤ 2𝑉(𝑧)𝑋(log𝑋)−1+𝑋 3
4 (5)

Let us now see why these nasty formulas are useful. Let 𝐹 be a polynomial that is a product
of 𝑘 distinct irreducible polynomials over Z with positive leading coefficient. Let the
sequence 𝒜 be the indicator sequence for 𝐹(𝑚) for 1 ≤𝑚≤𝑥. This is a sieve of dimension
𝑘, and using generalities in Chapter 5 of [FI10], we have that 𝑉(𝑧)−1 ≤ (𝐾 log𝑥)𝑘, which
implies 𝑉(𝑧) ≍ (log𝑧)−𝑘. Let

𝜋𝐹(𝑥,𝑧) =#{1≤𝑚≤𝑥 ∣ (𝐹(𝑚),𝑃(𝑧)) = 1}

This is just 𝑆(𝒜,𝑧). Then using (5), we get

𝜋𝐹(𝑥,𝑧) ≍ 𝑥(log𝑧)−𝑘

provided that
4 ≤ 𝑧 ≤ 𝑥 1

𝑐 (𝑘+1) log(𝐾 log𝑥)

i..e log𝑧 ll log𝑥 log log𝑥. This implies that

𝜋𝐹(𝑥)ll𝑥( log log𝑥
log𝑥

)
𝑘

For 𝐹(𝑚)=𝑚(𝑚−2), we established an upper bound for the number of twin primes 𝜋2(𝑥)
up to 𝑥. This implies that the sum of reciprocals of twin primes converges.
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3 Sifting Weights
So far we have only used the “pure” sieve: we rewrote the summation over the condition
(𝑛,𝑃(𝑧)) = 1 in terms of the Mobius function. More sophisticated sieves replace the Mobius
function 𝜇(𝑑) by some other (truncated) sequence Λ= (𝜆𝑑). In particular, if the sequence
𝜆𝑑 is all 0 after 𝑑 ≥𝐷 for some 𝐷, we say that (𝜆𝑑) is a choice of sifting weights (or sieve
weights) of level 𝐷. We refer to the ratio

𝑠 = log𝐷
log𝑧

as the sifting variable.

We had 𝑆(𝒜,𝑧) =∑𝑑|𝑃(𝑧)𝜇(𝑑)𝐴𝑑(𝑥), but with different sifting weights we won’t have this
equality. Instead, we defined the sifted sum

𝑆Λ(𝒜,𝑧) = ∑
𝑑|𝑃(𝑧)

𝜆𝑑𝐴𝑑(𝑥).

We see that with 𝜃 = 1⋆𝜆, i.e. 𝜃𝑛 =∑𝑑|𝑛𝜆𝑑, we have

𝑆Λ(𝒜,𝑧) =∑
𝑛

𝑎𝑛𝜃𝑛

If Λ makes 𝑆Λ(𝒜,𝑧) a upper (resp. lower) bound for 𝑆(𝒜,𝑧), then we say that Λ is an
upper (resp. lower) bound sieve.

Definition 3.1. A choice of sifting weights (𝜆𝑑) gives a combinatorial sieve if 𝜆𝑑 takes
only the values 𝜇(𝑑) and 0.

In the previous section, we used a combinatorial sieve controlled by the parameter 𝑟. The
parity of 𝑟 determines whether it is an upper bound sieve or a lower bound sieve. Now we
will construct upper bound and lower bound sieves using a different method of Brun.

This method is again motivated by the Buchstab formula:

𝑆(𝒜,𝑧) =𝐴1(𝑥)− ∑
𝑝1|𝑃(𝑧)

𝑆(𝒜𝑝1 ,𝑝1)

We wrote 𝑝1 since we are going to do apply this procedure many times. If 𝑝1 is large, the
subsequence 𝒜𝑝1 will contain few terms, so maybe dropping these terms won’t hurt much.
In any case, we can choose some 𝑦1 as the criterion of being “large”, and obtain an upper
bound

𝑆(𝒜,𝑧) ≤𝐴1(𝑥)− ∑
𝑝1|𝑃(𝑧)
𝑝1<𝑦1

𝑆(𝒜𝑝1 ,𝑝1).

As long as 𝑦1 ≤𝑃(𝑧), we can drop the 𝑝1|𝑃(𝑧) condition. Now we can apply the Buchstab
formula again to get

𝐴1(𝑥)− ∑
𝑝1<𝑦1

𝐴𝑝1(𝑥)+ ∑
𝑝2<𝑝1<𝑦1

𝑆(𝒜𝑝1𝑝2 ,𝑝2)
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Nothing can be done here: we can’t ignore 𝑝2’s that are larger than a certain value, because
they are positive terms and we are in the process of finding an upper bound. However,
applying the Buchstab formula again, we can ignore 𝑝3’s that are larger than some 𝑦3:

𝑆(𝒜,𝑧) ≤𝐴1(𝑥)− ∑
𝑝1<𝑦1

𝐴𝑝1(𝑥)+ ∑
𝑝2<𝑝1<𝑦1

𝐴𝑝1𝑝2(𝑥)− ∑
𝑝3<𝑦3<𝑝2<𝑝1<𝑦1

𝑆(𝒜𝑝1𝑝2𝑝3 ,𝑝3)

So we see that for 𝑚 odd, we can set some 𝑦𝑚, and only consider 𝑝𝑚 < 𝑦𝑚 in that step of
the Buchstab iteration. This motivates us to fix a sequence of these 𝑦𝑚, and define

𝒟+ = {𝑑 = 𝑝1⋯𝑝𝑙 ∣ 𝑝𝑚 < 𝑦𝑚 for 𝑚 odd}.

The prime factors 𝑝1,⋯,𝑝𝑙 are always ordered in decreasing order. Notice that this is
a finite set since 𝑝1 is bounded. (This comment is actually meaningless since we always
implicitly intersect with the divisors of 𝑃(𝑧), but it is easy to get confused here.)

We get
𝑆(𝒜,𝑧) ≤ ∑

𝑑|𝑃(𝑧)
𝑑∈𝒟+

𝜇(𝑑)𝐴𝑑(𝑥) = 𝑆+(𝒜,𝑧) (6)

Note that in the last step of such iteration, i.e. we have used all primes smaller than 𝑝1,
then the smallest one 𝑝𝑙 must be 2, and 𝑆(𝒜,2) is just the sum of 𝒜, so the bound above
has no leftover terms on the right side, unlike when the process has not terminated.

What did we lose? At each odd 𝑛, we ignored

𝑆𝑛(𝒜,𝑧) = ∑
𝑦𝑛≤𝑝𝑛<⋯<𝑝1

𝑝𝑚<𝑦𝑚,𝑚<𝑛,𝑚 odd

𝑆(𝒜𝑝1⋯𝑝𝑛 ,𝑝𝑛)

So actually
𝑆(𝒜,𝑧) = 𝑆+(𝒜,𝑧)− ∑

𝑛 odd
𝑆𝑛(𝒜,𝑧).

Similarly, we can define

𝒟+ = {𝑑 = 𝑝1⋯𝑝𝑙 ∣ 𝑝𝑚 < 𝑦𝑚 for 𝑚 even}.

and obtain a lower bound

𝑆(𝒜,𝑧) ≥ ∑
𝑑|𝑃(𝑧)
𝑑∈𝒟−

𝜇(𝑑)𝐴𝑑(𝑥) = 𝑆−(𝒜,𝑧) (7)

A completely analogous procedure can be carried out for the 𝑉 function. Recall that

𝑉(𝑧) = ∑
𝑑|𝑃(𝑧)

𝜇(𝑑)𝑔(𝑑) = ∏
𝑝|𝑃(𝑧)

(1−𝑔(𝑝))

and using the procedure described above we obtain

𝑉(𝑧) = 𝑉+(𝐷,𝑧)− ∑
𝑛 odd

𝑉𝑛(𝑧)
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where
𝑉+(𝐷,𝑧) = ∑

𝑑|𝑃(𝑧)
𝑑∈𝒟+

𝜇(𝑑)𝑔(𝑑)

and
𝑉𝑛(𝑧) = ∑

𝑦𝑛≤𝑝𝑛<⋯<𝑝1<𝑧
𝑝𝑚<𝑦𝑚,𝑚<𝑛,𝑚 odd

𝑔(𝑝1⋯𝑝𝑛)𝑉 (𝑝𝑛).

The question now is how to choose the truncating parameters 𝑦𝑚 appropriately. A possible
choice is

𝑦𝑚 =( 𝐷
𝑝1⋯𝑝𝑚

)
1
𝛽
.

A sieve given by these parameters is called a beta-sieve of level 𝐷. Note that for a different
number of final stage, these parameters will be different. We will not cover the reason
behind this choice.

4 The Fundamental Lemma
Suppose we selected the parameters 𝑦𝑚 according to some fixed 𝛽 and 𝐷.

We only need upper bounds for 𝑉𝑛(𝑧). The summation condition of 𝑉𝑛 is complicated,
but the terms are non-negative, so we will try to simplify the summation condition at the
cost of summing more terms.

Lemma 4.1. Suppose 𝑝1 >⋯>𝑝𝑛 satisfies the summation condition for 𝑉𝑛(𝑧). Then
for any 1 ≤ ℓ≤ 𝑛−1 and ℓ ≡ 𝑛−1 mod 2, we have

𝑝1⋯𝑝𝑙 <𝐷𝑧𝜖ℓ

where 𝜖ℓ =−(𝑠−1)(𝛽−1
𝛽+1)

[ℓ/2]
.

Proof. We use induction on ℓ. We know that ℓ−1≡𝑛 mod 2, so 𝑝ℓ−1 < 𝑦ℓ−1, and thus

𝑝1⋯𝑝ℓ−2𝑝
𝛽+1
ℓ−1 <𝐷.

Now use 𝑝ℓ < 𝑝ℓ−1 to get

𝑝1⋯𝑝ℓ < 𝑝1⋯𝑝ℓ−2𝑝2ℓ−1 < 𝑝1⋯𝑝ℓ−2(
𝐷

𝑝1⋯𝑝ℓ−2
)
2/(𝛽+1)

and use the induction hypothesis. �

Corollary 4.2. Suppose 𝑝1 > ⋯ > 𝑝𝑛 satisfies the summation condition for 𝑉𝑛(𝑧).
Then

𝑝𝑛 ≥ 𝑧𝛿𝑛
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where

𝛿𝑛 = 𝑠−1
𝛽−1

(𝛽−1
𝛽+1

)
[(𝑛+1)/2]

Proof. Apply the previous lemma with ℓ = 𝑛−1 we get

𝑝1⋯𝑝𝑛−1 <𝐷𝑧−(𝑠−1)(𝛽−1
𝛽+1)

[(𝑛−1)/2]

So

𝑝𝑛 ≥ 𝑦𝑛 =( 𝐷
𝑝1⋯𝑝𝑛

)
1
𝛽
≥ 𝑧

𝑠−1
𝛽 (𝛽−1

𝛽+1)
[(𝑛−1)/2]

𝑝−1/𝛽
𝑛

Rearranging gives the desired inequality. �

Assuming 𝑠 ≥ 𝛽+1, we let 𝑧𝑛 = 𝑧(
𝛽−1
𝛽+1)

𝑛/2

, and the Corollary implies 𝑝𝑛 ≥ 𝑧𝑛 provided that
the 𝑝𝑖’s satisfy the summation condition. Therefore, we can drop all those condition and
only require 𝑝𝑛 ≥ 𝑧𝑛 to get an upper bound

𝑉𝑛(𝑧) ≤ ∑
𝑧𝑛≤𝑝𝑛<⋯<𝑝1<𝑧

𝑔(𝑝1⋯𝑝𝑛)𝑉 (𝑝𝑛).

Theorem 4.3 (The Fundamental Lemma). Suppose we have a beta sieve with dimension
𝜅 and 𝛽 = 9𝜅+1. Assume the function 𝑔 satisfies

∏
𝑤≤𝑝<𝑧

(1−𝑔(𝑝))−1 ≤𝐾( log𝑧
log𝑤

)
𝜅

and 𝑠 ≥ 9𝜅+1. Then
𝑉+(𝐷,𝑧) ≤ (1+𝑒9𝜅−𝑠𝐾10)𝑉 (𝑧).

Proof. We obtained that

𝑉𝑛(𝑧) ≤ ∑
𝑧𝑛≤𝑝𝑛<⋯<𝑝1<𝑧

𝑔(𝑝1⋯𝑝𝑛)𝑉 (𝑝𝑛)

Notice that 𝑉(𝑝𝑛) ≤ 𝑉(𝑧𝑛) since 𝑉 is a product of terms less than 1. Then, using the same
proof as in Lemma 2.3, we get that

∑
𝑧𝑛≤𝑝𝑛<⋯<𝑝1<𝑧

𝑔(𝑝1⋯𝑝𝑛)𝑉 (𝑝𝑛) ≤ 𝑉(𝑧𝑛)
1
𝑛!

( ∑
𝑧𝑛≤𝑝≤𝑧

𝑔(𝑝))
𝑛

For each 𝑔(𝑝) we use the inequality 𝑔(𝑝) ≤− log(1−𝑔(𝑝)), and we get the above is bounded
above by

𝑉(𝑧𝑛)
𝑛!

(log 𝑉(𝑧𝑛)
𝑉 (𝑧)

)
𝑛
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Our assumption implies that
𝑉(𝑧𝑛)
𝑉 (𝑧)

≤𝐾( log𝑧
log𝑧𝑛

)𝜅

Remembering the definition of 𝑧𝑛, we have log𝑧
log𝑧𝑛 = (𝛽+1

𝛽−1)
𝑛/2

. To simplify notation, let

𝛼 = 𝜅
2 log

𝛽+1
𝛽−1 . Then

𝑉𝑛(𝑧)
𝑉 (𝑧)

≤ 𝐾
𝑛!

(𝑒𝛼 log(𝐾𝑒𝛼𝑛))𝑛 = 𝐾
𝑛!

(𝑒𝛼 log𝐾 +𝑒𝛼𝛼𝑛)𝑛

We estimate

𝑒𝛼(log𝐾 +𝛼𝑛)= 𝑒𝛼𝛼𝑛(1+ log𝐾
𝛼𝑛

)≤ 𝑒𝛼𝛼𝑛exp( log𝐾
𝛼𝑛

)= 𝑒𝛼𝛼𝑛𝐾 1
𝛼𝑛 .

So in summary
𝑉𝑛(𝑧)
𝑉 (𝑧)

≤ 1
𝑛!

(𝑒𝛼𝛼𝑛)𝑛𝐾1+ 1
𝛼 .

Now sum this over 𝑛, choose 𝛽 appropriately (𝛽 = 9𝜅+1), and get the desired bound. �

Let’s apply this to the 𝜋𝐹(𝑥,𝑧) example considered in section 2. Recall that 𝐹 is a polyno-
mial that is a product of 𝑘 distinct irreducible polynomials over Z, and 𝒜 is the indicator
sequence for 𝐹(𝑚) for 1 ≤𝑚 ≤ 𝑥. To apply our beta sieve, we let 𝐷 = 𝑥 =𝑋 and 𝜅 = 𝑘.
So the fundamental lemma implies that 𝜋𝐹(𝑥,𝑧) ≍ 𝑋𝑉(𝑧) = 𝑥(log𝑧)−𝑘, provided that
𝑧9𝜅+1 ≤𝐷. This means that we are trying to consider all primes up to 𝐷 =𝑥 and sift out
their multiples, but our estimate is only true (to our knowledge) when we only sift out
not so many prime. However, we still have log𝑧 ll log𝐷 = log𝑥, so we obtain

𝜋𝐹(𝑥,𝑧)ll𝑥(log𝑥)−𝑘.

Notice that this is a big improvement comparing to the result in section 2: we get rid of
the (log log𝑥)𝑘 factor.

In fact, by being slightly more careful, we obtain

Theorem 4.4. We have
𝜋𝐹(𝑥,𝑧) ≍ 𝑥(log𝑧)−𝑘

for 𝑥 ≥ 𝑧9𝑘+1. In particular, there are infinitely many pairs of integers 𝑚 and 𝑚−2
such that together they have at most 19 prime divisors.

Proof. The general estimate is what we got before we substituted log𝑧 ll log𝑥. Now let
𝐹(𝑚) = 𝑚(𝑚−2), so 𝑘 = 2 and 9𝑘 + 1 = 19. Then the estimate says that for 𝑥 large
enough, in the range [0,𝑥], the number of integers of the form 𝑚(𝑚−2) where no prime
smaller than 𝑧 divides 𝑚(𝑚−2) is at least a constant multiple of 𝑥(log𝑧)−𝑘. We may
choose 𝑧 to be close to 𝑥1/19, so so any such 𝑚(𝑚−2) < 𝑥 cannot have more than 19
prime divisors, since these divisors are all at least 𝑥1/19. Now taking 𝑥 to infinity gives
the infinitude result.

�
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In fact, with some more estimates, one can show this result for 9 primes, rather than 19.
This is done in the book. Other refinements of Brun’s sieve can reduce this number to 4.
This illustrates the power of these sieves in attacking the twin prime conjecture.
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