WEEK 2: FRIEDLANDER-IWANIEC, CHAPTERS 2, 4, §5.5-10

ALAN ZHAO

1. Basic Setup

Recall that we are estimating $A(x)=\sum_{n \leq x} a_{n}$ by looking at $X_{d}=\sum_{d \mid n} a_{n}$, the latter of which is generally estimated by considering $A_{d}=g(d) X+r(d)$, where g is some set of weights coming close to being multiplicative and X well approximates $A(x)$. Recall that we also have some distinguished primes \mathcal{P} to avoid, up to some height z (denoted $\mathcal{P}(z)$). The Möbius μ-function lets us express this coprimality as a convolution, but it has the downside of being hard to estimate. We will choose some replacements λ_{n} for $\mu(n)$, supported up to height D, the level of distribution. If $D(x)=x^{\alpha}$, then call α the exponent of distribution. Recall further from the Legendre form that we expect $\sum_{(d, \mathcal{P}(z))=1} X_{d}$ to be something like $X \cdot \Pi(1-g(p)) \approx G=\sum_{d \mid \mathcal{P}(z)} \lambda_{d} g(d)$.

In what follows, we will be heavily using convolutions of arithmetic functions. If this is confusing, just know that every convolution takes the form $C *\left(\sum_{c d=n}, f\right) f(c) g(d)$ in some appropriate ambient group. In our case, we have Möbius inversion: convoluting by 1 is inverse to convoluting by μ.

2. Correction to First Week

There was a problem in the first week about how I explained Zhang's result on "raising the level" or "breaking through the square root barrier". Indeed, I meant that α goes from $1 / 2$ to $1001 / 2000$. The level of distribution D must satisfy that $R=\sum_{d \mid \mathcal{P}(z)} \lambda_{d} r_{d} \ll A(x)(\log x)^{-A}$. Of course, raising the exponent of distribution is non-trivial (and even that it has one!).

3. Dirichlet Hyperbola Trick

3.1. Basic Example. The function $\tau(n)$ returns the number of positive divisors of n. Then an over count gives

$$
\sum_{n \leq x} \tau(n)=\sum_{d \leq x}\lfloor x / d\rfloor=x \log (x)+O(x)
$$

We know that divisors come in pairs, as solutions to $c d=n$, so

$$
\sum_{n \leq x} \tau(n)=2 \sum_{d \leq \sqrt{x}}\lfloor x / d\rfloor-\lfloor\sqrt{x}\rfloor^{2}=x(\log x+2 \gamma-1)+O(\sqrt{x}) .
$$

The equation $c d=n$ can be viewed as the level set of a convolution, and apparently the technique above applies more generally to convolutions.
3.2. Another Example. Let $r(n)=4 \sum_{d \mid n} \chi_{4}(d)$. We use the trick above, but this time there's not a direct pairing, but rather we get

$$
\sum_{n \leq x} r(n)=4 \sum_{d \leq \sqrt{x}} \chi_{4}(d)\lfloor x / d\rfloor 4 \sum_{c \leq \sqrt{x}} \sum_{d \leq x / c} \chi_{4}(d)+O(\sqrt{x}) .
$$

Our target is the first summation on the RHS. Splitting into integral and fractional parts we get that

$$
\sum_{d \leq \sqrt{x}} \frac{\chi_{4}(d)}{d}=L\left(1, \chi_{4}\right)+O\left(x^{-1 / 2}\right)
$$

from which, after applying $L\left(1, \chi_{4}\right)=\pi / 4$, we get the estimate

$$
\sum_{n \leq x} r(n)=\pi x+O(\sqrt{x}) .
$$

3.3. A Harder Example. I have not studied this well. But the start is

$$
\sum_{n \leq x} \tau\left(n^{2}+1\right)=2 \sum_{d \leq x} \sum_{n \leq x, d \mid n^{2}+1} 1-\sum_{c d=n^{2}+1} 1+O(x)=2 x \sum_{d \leq x} \frac{\rho(d)}{d}+O(x) .
$$

From the generating series for $\rho(d)$ as $\zeta(2 s)^{-1} \zeta(s) L\left(s, \chi_{4}\right)$, one has $\rho(d)=\sum_{a^{2} b c=d} \mu(a) \chi_{4}(c)$ and we can get $\sum_{d \leq x} \frac{\rho(d)}{d}=\frac{L\left(1, \chi_{4}\right)}{\zeta(2)} \log x+O(1)$. Hence,

$$
\sum_{n \leq x} \tau\left(n^{2}+1\right)=\frac{3}{\pi} x \log x+O(x)
$$

4. The Von Magnoldt Function

It is the convolution Λ of μ and the logarithm. Also, convoluting the constant function with Λ gives the logarithm. We can use this function to detect large prime divisors. Let y be the cutoff and set

$$
S(x, y)=\sum_{n \leq x} a_{n}\left(\sum_{d \mid n, d>y} \Lambda(d)\right) .
$$

Note that ignoring $d>y$ means we get a regular convolution $A^{\prime}(x)=\sum a_{n} \log n=A(x)(\log x+$ $O(1)$), where the bound holds for many sequences. So, $S(x, y)$ is the difference between $A^{\prime}(x)$ and the contribution of low primes. Using the forms in $\S 1$, and noting a few natural approximations, we achieve

Proposition 4.1. Suppose the remainder terms satisfy $\sum_{d \leq y} \Lambda(d) r_{d}(x) \ll A(x)$ for a power of x between 0 and 1. Then,

$$
S(x, y)<_{\theta} A(x)(\log (x)+O(1)) .
$$

If x is large enough to outpace the $O(1)$, we get that some n has a primary factor larger than x^{θ}.

5. Further Generalities About Sieves

We want some regularity on the weights $g(p)$. Typically one has

$$
\sum_{p \leq z} g(p) \log (p)=\kappa \log z+O(1)
$$

Partial summation gives

$$
\sum_{p \leq z} g(p)=\kappa \log \log z+\alpha+O\left((\log z)^{-1}\right)
$$

(κ is the sieve dimension) whence a formula of Mertens gives

$$
\prod_{p \leq z}(1-g(p))=e^{-\gamma \kappa} H(\log z)^{-\kappa}\left(1+O\left((\log z)^{-1}\right) .\right.
$$

We will want V to grow at most like a logarihtmic power: $V(w) / V(z) \ll\left(\log _{w}(z)\right)^{k}$ and hence $g(p) \leq 1-K^{-1}$. Usually $K=1+\frac{L}{\log 2}$ works. If this K is too large, cut out some small primes from \mathcal{P} so that you can replace 2 with something larger, and then handle these small primes some other way. You can also instead enlarge κ. Increasing it by 1 adds a $(\log z)$ to the denominator.

If you have this logarithmic growth of V, you get nice bounds.
Lemma 5.1. Let h be continuous, non-negative, and non-decreasing. Let $\Delta=\sum_{y \leq p<z} g(p) h(p) V(p)$.

$$
\begin{gathered}
\Delta \leq-K V(z)=\int_{y}^{z} h(w) d\left(\log _{w} z\right)^{\kappa}+(K-1) h(z) V(z) \\
\Delta \leq-V(z) \int_{y}^{z} h(w) d\left(\log _{w}(z)\right)^{\kappa}+\left(1-\frac{1}{K}\right) h(z) V(y) \\
\Delta_{\text {without } V} \leq \kappa \int_{y}^{z} \frac{h(w)}{w \log w} d w+h(z) \log K
\end{gathered}
$$

5.1. Monotonicity. As a precursor, we will be taking upper and lower bound sieves with weights λ_{d}^{+}and λ_{d}^{-}respectively. It turns out that in the multiplicative weight case, the signs refer to the signs of the corresponding $\theta=1 * \lambda$ when things are not coprime to \mathcal{P}. It says nothing about the signs of the λ themselves.

By inversion,

$$
\lambda_{d}=\sum_{m n=d} \mu(m) \theta_{n}
$$

whence

$$
G=\sum_{m, n} \mu(m) g(m n) \theta_{n}
$$

If g is multiplicative, we can eventually derive that $G \geq V$ (resp. $G \leq V$) when $\theta_{n}^{+} \geq 0$ (resp. $\theta_{n}^{-} \leq 0$) for n not coprime to the sifting set. Admitting all of this, we have the following

Proposition 5.2. With assumptions as above, we have

$$
\sum_{(d, q)=1} \lambda_{d}^{+} g(d) \leq(1-g(q))^{-1} \sum_{d} \lambda_{d}^{+} g(d)
$$

and the reverse for the minus case.
We can also fiddle with the sieve weights.

Proposition 5.3. If $g^{\prime}(d) \geq g(d)$, one has

$$
G^{\prime} \geq G \prod\left(\frac{1-g^{\prime}(p)}{1-g(p)}\right) .
$$

6. Quick Comments on Composition

Composition of sieves with weights λ^{\prime} and $\lambda^{\prime \prime}$ just multiplies the θ 's involved. Also,

$$
G^{\prime} * G^{\prime \prime}=\sum_{\left(d_{1}, d_{2}\right)=1} \lambda_{d_{1}}^{\prime} \lambda_{d_{2}}^{\prime \prime} g^{\prime}\left(d_{1}\right) g^{\prime \prime}\left(d_{2}\right)
$$

which is useful when the two sequences are linearly dependent. See §14.7.

