
WEEK 2: FRIEDLANDER-IWANIEC, CHAPTERS 2, 4, §5.5-10

ALAN ZHAO

1. Basic Setup

Recall that we are estimating A(x) =
∑

n≤x an by looking at Xd =
∑

d|n an, the latter of which is
generally estimated by considering Ad = g(d)X+r(d), where g is some set of weights coming close
to being multiplicative and X well approximates A(x). Recall that we also have some distinguished
primes P to avoid, up to some height z (denoted P(z)). The Möbius µ-function lets us express this
coprimality as a convolution, but it has the downside of being hard to estimate. We will choose
some replacements λn for µ(n), supported up to height D, the level of distribution. If D(x) = xα,
then call α the exponent of distribution. Recall further from the Legendre form that we expect∑

(d,P(z))=1 Xd to be something like X ·
∏

(1 − g(p)) ≈ G =
∑

d|P(z) λdg(d).
In what follows, we will be heavily using convolutions of arithmetic functions. If this is confus-

ing, just know that every convolution takes the form C ∗
(∑

cd=n,
∫ )

f (c)g(d) in some appropriate
ambient group. In our case, we have Möbius inversion: convoluting by 1 is inverse to convoluting
by µ.

2. Correction to FirstWeek

There was a problem in the first week about how I explained Zhang’s result on “raising the level”
or “breaking through the square root barrier”. Indeed, I meant that α goes from 1/2 to 1001/2000.
The level of distribution D must satisfy that R =

∑
d|P(z) λdrd ≪ A(x)(log x)−A. Of course, raising

the exponent of distribution is non-trivial (and even that it has one!).

3. Dirichlet Hyperbola Trick

3.1. Basic Example. The function τ(n) returns the number of positive divisors of n. Then an over
count gives ∑

n≤x

τ(n) =
∑
d≤x

⌊x/d⌋ = x log(x) + O(x).

We know that divisors come in pairs, as solutions to cd = n, so∑
n≤x

τ(n) = 2
∑

d≤
√

x

⌊x/d⌋ − ⌊
√

x⌋2 = x(log x + 2γ − 1) + O(
√

x).

The equation cd = n can be viewed as the level set of a convolution, and apparently the technique
above applies more generally to convolutions.
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3.2. Another Example. Let r(n) = 4
∑

d|n χ4(d). We use the trick above, but this time there’s not
a direct pairing, but rather we get∑

n≤x

r(n) = 4
∑

d≤
√

x

χ4(d)⌊x/d⌋4
∑
c≤
√

x

∑
d≤x/c

χ4(d) + O(
√

x).

Our target is the first summation on the RHS. Splitting into integral and fractional parts we get that∑
d≤
√

x

χ4(d)
d
= L(1, χ4) + O(x−1/2)

from which, after applying L(1, χ4) = π/4, we get the estimate∑
n≤x

r(n) = πx + O(
√

x).

3.3. A Harder Example. I have not studied this well. But the start is∑
n≤x

τ(n2 + 1) = 2
∑
d≤x

∑
n≤x,d|n2+1

1 −
∑

cd=n2+1

1 + O(x) = 2x
∑
d≤x

ρ(d)
d
+ O(x).

From the generating series for ρ(d) as ζ(2s)−1ζ(s)L(s, χ4), one has ρ(d) =
∑

a2bc=d µ(a)χ4(c) and we
can get

∑
d≤x

ρ(d)
d =

L(1,χ4)
ζ(2) log x + O(1). Hence,∑

n≤x

τ(n2 + 1) =
3
π

x log x + O(x).

4. The VonMagnoldt Function

It is the convolution Λ of µ and the logarithm. Also, convoluting the constant function with Λ
gives the logarithm. We can use this function to detect large prime divisors. Let y be the cutoff and
set

S (x, y) =
∑
n≤x

an

 ∑
d|n,d>y

Λ(d)

 .
Note that ignoring d > y means we get a regular convolution A′(x) =

∑
an log n = A(x)(log x +

O(1)), where the bound holds for many sequences. So, S (x, y) is the difference between A′(x) and
the contribution of low primes. Using the forms in §1, and noting a few natural approximations,
we achieve

Proposition 4.1. Suppose the remainder terms satisfy
∑

d≤yΛ(d)rd(x) ≪ A(x) for a power of x
between 0 and 1. Then,

S (x, y) ≪θ A(x)(log(x) + O(1)).

If x is large enough to outpace the O(1), we get that some n has a primary factor larger than xθ.
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5. Further Generalities About Sieves

We want some regularity on the weights g(p). Typically one has∑
p≤z

g(p) log(p) = κ log z + O(1).

Partial summation gives ∑
p≤z

g(p) = κ log log z + α + O((log z)−1)

(κ is the sieve dimension) whence a formula of Mertens gives∏
p≤z

(1 − g(p)) = e−γκH(log z)−κ(1 + O((log z)−1).

We will want V to grow at most like a logarihtmic power: V(w)/V(z) ≪ (logw(z))κ and hence
g(p) ≤ 1− K−1. Usually K = 1+ L

log 2 works. If this K is too large, cut out some small primes from
P so that you can replace 2 with something larger, and then handle these small primes some other
way. You can also instead enlarge κ. Increasing it by 1 adds a (log z) to the denominator.

If you have this logarithmic growth of V , you get nice bounds.

Lemma 5.1. Let h be continuous, non-negative, and non-decreasing. Let∆ =
∑

y≤p<z g(p)h(p)V(p).

∆ ≤ −KV(z) =
∫ z

y
h(w)d(logw z)κ + (K − 1)h(z)V(z),

∆ ≤ −V(z)
∫ z

y
h(w)d(logw(z))κ +

(
1 −

1
K

)
h(z)V(y),

∆without V ≤ κ

∫ z

y

h(w)
w log w

dw + h(z) log K.

5.1. Monotonicity. As a precursor, we will be taking upper and lower bound sieves with weights
λ+d and λ−d respectively. It turns out that in the multiplicative weight case, the signs refer to the
signs of the corresponding θ = 1 ∗ λ when things are not coprime to P. It says nothing about the
signs of the λ themselves.

By inversion,
λd =

∑
mn=d

µ(m)θn

whence
G =

∑
m,n

µ(m)g(mn)θn.

If g is multiplicative, we can eventually derive that G ≥ V (resp. G ≤ V) when θ+n ≥ 0 (resp.
θ−n ≤ 0) for n not coprime to the sifting set. Admitting all of this, we have the following

Proposition 5.2. With assumptions as above, we have∑
(d,q)=1

λ+d g(d) ≤ (1 − g(q))−1
∑

d

λ+d g(d)

and the reverse for the minus case.

We can also fiddle with the sieve weights.
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Proposition 5.3. If g′(d) ≥ g(d), one has

G′ ≥ G
∏(

1 − g′(p)
1 − g(p)

)
.

6. Quick Comments on Composition

Composition of sieves with weights λ′ and λ′′ just multiplies the θ’s involved. Also,

G′ ∗G′′ =
∑

(d1,d2)=1

λ′d1
λ′′d2

g′(d1)g′′(d2)

which is useful when the two sequences are linearly dependent. See §14.7.
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