WEEK 2: FRIEDLANDER-IWANIEC, CHAPTERS 2, 4, §5.5-10

ALAN ZHAO

1. Basic SETup

Recall that we are estimating A(x) = }’,., a, by looking at X; = >, a,, the latter of which is
generally estimated by considering A; = g(d)X + r(d), where g is some set of weights coming close
to being multiplicative and X well approximates A(x). Recall that we also have some distinguished
primes P to avoid, up to some height z (denoted P(z)). The Mdbius u-function lets us express this
coprimality as a convolution, but it has the downside of being hard to estimate. We will choose
some replacements A, for u(n), supported up to height D, the level of distribution. If D(x) = x¢,
then call « the exponent of distribution. Recall further from the Legendre form that we expect
2 dP()=1 Xa to be something like X - [1(1 — g(p)) = G = X yp () Aag(d).

In what follows, we will be heavily using convolutions of arithmetic functions. If this is confus-
ing, just know that every convolution takes the form C x (ch:n’ f ) f(c)g(d) in some appropriate
ambient group. In our case, we have Mobius inversion: convoluting by 1 is inverse to convoluting

by u.

2. CORRECTION TO FIRST WEEK

There was a problem in the first week about how I explained Zhang’s result on “raising the level”
or “breaking through the square root barrier”. Indeed, I meant that @ goes from 1/2 to 1001/2000.
The level of distribution D must satisfy that R = }’,p ) Aars < A(x)(log x)™. Of course, raising
the exponent of distribution is non-trivial (and even that it has one!).

3. DiricHLET HYPERBOLA TRICK

3.1. Basic Example. The function 7(n) returns the number of positive divisors of n. Then an over
count gives

Z T(n) = Zl_x/d] = xlog(x) + O(x).

n<x d<x

We know that divisors come in pairs, as solutions to cd = n, so

2,7 =2 ) Lx/d] = LVxf = alogx +2y = 1) + (V.
n<x d<+/x
The equation cd = n can be viewed as the level set of a convolution, and apparently the technique

above applies more generally to convolutions.
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3.2. Another Example. Let r(n) = 4 3, x4(d). We use the trick above, but this time there’s not
a direct pairing, but rather we get

Dirmy =4 ya@dlx/dla Y Y xald) + O(Vx).

n<x d<+/x c<x d<x/c

Our target is the first summation on the RHS. Splitting into integral and fractional parts we get that

D L+ 06
d<+/x

from which, after applying L(1, x4) = n/4, we get the estimate

Z r(n) = x + O(Vx).

n<x

3.3. A Harder Example. I have not studied this well. But the start is

D=2y Y 1= > 1+0(x)=2x2'%d)+0(x)-

n<x d<x n<x,din?+1 cd=n?+1 d<x

From the generating series for p(d) as £(2s5)~'Z(s)L(s, x4), one has p(d) = 3 2peeq @)y s(c) and we

can get ., ‘%d) = % log x + O(1). Hence,

PR GESE gxlogx + O(x).
T

n<x

4. TaE VoN MacgNoLDT FuNcTION

It is the convolution A of ¢ and the logarithm. Also, convoluting the constant function with A
gives the logarithm. We can use this function to detect large prime divisors. Let y be the cutoff and

set
S(x,y) = Zan[ > A@)

n<x din,d>y

Note that ignoring d > y means we get a regular convolution A’(x) = >, a,logn = A(x)(logx +
O(1)), where the bound holds for many sequences. So, S (x,y) is the difference between A’(x) and
the contribution of low primes. Using the forms in §1, and noting a few natural approximations,
we achieve

Proposition 4.1. Suppose the remainder terms satisfy 3. ,., A(d)rs(x) < A(x) for a power of x
between 0 and 1. Then,

S (x,y) <o A(x)(og(x) + O(1)).

If x is large enough to outpace the O(1), we get that some n has a primary factor larger than x°.
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5. FURTHER GENERALITIES ABOUT SIEVES

We want some regularity on the weights g(p). Typically one has
> s(p)log(p) = klogz + O(1).

P<z
Partial summation gives
Z g(p) = kloglogz + a + O((logz)™)
Pz

(k is the sieve dimension) whence a formula of Mertens gives

[ [(1 - 2y = e*Hlog )™ (1 + O((log )™
p<z
We will want V to grow at most like a logarihtmic power: V(w)/V(z) < (log, (z)) and hence
g(p) <1-K ' Usually K =1+ @ works. If this K is too large, cut out some small primes from
% so that you can replace 2 with something larger, and then handle these small primes some other
way. You can also instead enlarge «. Increasing it by 1 adds a (log z) to the denominator.
If you have this logarithmic growth of V, you get nice bounds.

Lemma 5.1. Let h be continuous, non-negative, and non-decreasing. Let A = ¥, .. g(p)h(p)V(p).

A< -KV(z) = f h(w)d(log,, 2)" + (K — 1)h(2)V(2),
y

) h2)V(y),

A<-V(@) f h(w)d(log, (2))* + (1 _ 1
: K

Y4
h
Avithour v < Kf ) dw + h(z)log K.
y wlogw

5.1. Monotonicity. As a precursor, we will be taking upper and lower bound sieves with weights
A} and A} respectively. It turns out that in the multiplicative weight case, the signs refer to the
signs of the corresponding 6 = 1 * A when things are not coprime to #. It says nothing about the
signs of the A themselves.
By inversion,
A=) pomy,
mn=d

whence

G = ) um)g(mn)6.
If g is multiplicative, we can eventually derive that G > V (resp. G < V) when 6; > 0 (resp.

6, < 0) for n not coprime to the sifting set. Admitting all of this, we have the following

Proposition 5.2. With assumptions as above, we have

> Lig) < (- g Y. Ajg(d)

(d.g)=1 d

and the reverse for the minus case.

We can also fiddle with the sieve weights.



Proposition 5.3. If g'(d) > g(d), one has
1-¢ (p))
>G
l—[ ( 1 —g(p)
6. Quick CoMMENTS ON COMPOSITION

Composition of sieves with Weights A" and A” just multiplies the €’s involved. Also,
«G'= ) A8 (d)g”(dy)
(dy,d2)=1
which is useful when the two sequences are linearly dependent. See §14.7.



