
Topics in Analytic Number Theory Notes
Austin Lei

Spring 2025

These notes were taken in the Spring 2025 version of the Topics in Analytic Number Theory Class, taught
by Dorian Goldfeld. If you spot any mistakes, please let me know.
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Austin Lei

1 Lecture 1 - 1/21/25

The real content will start on January 31st. There are colloquium talks on Thursday and next Tuesday -
you are strongly recommmended to attend.
Some of the content in the course will follow his book Automorphic Forms and L-Functions for the Group
GL(n,R). When I refer to “Dorian’s book” in the notes, this is the book I refer to.

1.1 History of Analytic Number Theory

• 1700s - Euler invents the zeta function ζ(s) =
∑∞
n=1

1
ns . Discovers the Euler product

ζ(s) =
∏
p

(1− p−s)−1.

Gets the functional equation for ζ in special cases (like for s = i).

• 1859 - Riemann gets the functional equation for all s; letting

ξ(s) = π−s/2Γ(s/2)ζ(s),

with

Γ(s) =

ˆ ∞
0

e−uus
du

u
,

he proves the functional equation
ξ(s) = ξ(1− s).

How? Riemann uses the known identity

∞∑
n=−∞

e−πn
2y =

1
√
y

∞∑
n=−∞

e−πn
2/y

then applies the Mellin transform: for a smooth function f : R≥0 → C, the Mellin transform is

f̃(s) =
´∞

0
f(y)ys dy

y . (This arises from a change of variable from the Fourier transform). More
specifically, you have to take

ˆ ∞
0

( ∞∑
n=−∞

e−πn
2y − 1

)
ys

dy

y
= π−sΓ(s)ζ(2s).

• Dirichlet, 1800s: Taking χ : (Z/qZ)∗ → C∗, you get the Dirichlet L function L(s, χ) =
∑∞
n=1 χ(n)/ns.

Shows that everything one can do with the zeta function can be applied to L-function. Can use them
to show that there are infinitely many primes in an arithmetic progression.

• Hecke, early 1900s: Generalizes previous exponential sums to theta functions

θ(z) =

∞∑
n=−∞

e2πin2z,

where z = x+ iy ∈ H. This function turns out to be modular: for

(
a b
c d

)
= Γ0(4),

θ

(
az + b

cz + d

)
= ε−1

d χc(d)
√
cz + dθ(z),

where χc is a Dirichlet character mod c and εd = 1 if d ≡ 1 (mod 4) and −1 if d ≡ −1 (mod 4).
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Hecke looks at modular functions: Recall that for

(
a b
c d

)
∈ SL(2,Z), a modular function f satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z),

for k ∈ Z>0. This implies f(z + 1) = f(z), giving periodicity in the x direction. If f is holomorphic,
we get a Fourier expansion

f(z) =

∞∑
n=0

ane
2πinz.

Hecke defines the Hecke L-function

L(s, f) =

∞∑
n=1

an
ns
.

We also have S =

(
0 −1
1 0

)
∈ SL(2,Z), taking z 7→ −1/z. This corresponds to taking y to 1/y.

This gives a functional equation for Hecke L-functions, with a symmetry on the completed L-functions
taking s→ k − s.
Moreover, using Hecke operators, Hecke was able to show that Hecke L-functions have a Euler product.
Everything Hecke does can be generalized to subgroups of SL2(Z).

• Gelfand, Piatetski-Shapiro: Replace the upper half plane with matrices: points x + iy are replaced

with

(
y x
0 1

)
=

(
1 x
0 1

)(
y 0
0 1

)
, where x ∈ R and y > 0, and examine functions of the matrices:

f(z) is replaced by f

((
y x
0 1

))
and f

(
az+b
cz+d

)
= f

((
a b
c d

)(
y x
0 1

))
. How can you do this? Will

be explained later. They also introduced automorphic representations.

This course will primarily focus on SL(n,Z), especially when n ≥ 3. Hence the matrix approach
becomes necessary.

• Jacquet-Godement: Introduced analogue of Hecke L-functions for cuspidal automorphic forms for
higher rank. Lots of results due to Shalika-Jacquet-Piatetski-Shapiro.

• Eisenstein series: Selberg proves analytic continuation and functional equation (proof involves Fredholm
operators). Langlands generalizes Selberg’s proof to arbitrary reductive groups. We will talk about
Eisenstein series for SL(n,Z) in this course.

1.2 Iwasawa decomposition for GL(n,R)
Before we mentioned functions of matrices as a replacement for functions on H. How do we make this work?
Recall that a matrix m ∈ Mn(R) is orthogonal if m ·mT = I, or equivalently if all the rows/columns of m
form an orthonormal basis. We denote the set of such matrices O(n,R).

In particular, note that O(2,R) =

{(
± cos t ∓ sin t
± sin t ± cos t

)}
.

Theorem 1.1 (Iwasawa). Every g ∈ GL(n,R) is of the form

g = xykd,

where

• x is an upper triangular matrix with 1s on the diagonal, whose elements are denoted xij, all real.

• y is a diagonal matrix, with y1y2 . . . yn−1 in the top left, y1y2 . . . yn−2 in the next entry, going down to
1 in the bottom right, with all the yi > 0.

• k ∈ O(n,R) = K, where K is used to denoted the maximal compact group.

3



Austin Lei

• d is a diagonal matrix with d0 on all entries on the diagonal, with d0 6= 0.

Example 1.2. In the GL(2,R) case, the Iwasawa decomposition g =

(
1 x
0 1

)(
y 0
0 1

)
kd. Hence we can

express
H = GL(2,R)/(O(2,R) · R∗).

In general, we get the generalized upper half plane

hn := GL(n,R)/(O(n,R) · R∗).

Proof. Recall that a positive definite matrix is a matrixm ∈M(n,R) such thatm is symmetric and xmxT > 0
for all nonzero x ∈ Rn, or equivalently m is symmetric and all its eigenvalues are positive. Moreover, note
that for any u ∈ GL(n,R), uuT is positive definite.
Consider any g ∈ GL(n,R).

Claim 1.3. There exists upper triangular matrix u, lower triangular matrix ` and diagonal matrix d, such
that uggT = `d.

Proof. View this as solving for u. There are n(n − 1)/2 parameters for u and n(n − 1)/2 equations (the
upper elements of `d need to be 0). This can be solved because ggT is full rank.

This gives that
ggT = u−1`d = d`T (uT )−1,

hence `duT = ud`T . Note that the LHS is an lower triangular matrix, and the right is an upper triangular
matrix, so ud`T = d∗, some diagonal matrix.
Further manipulation gives that uggT = d∗(uT )−1, so uggTuT = d∗. The LHS must be positive definite, d∗

must consist of positive entries on the diagonal. Let a be its squareroot. Then we can write

(aug)(aug)T = I.

Hence aug ∈ O(n,R), and hence we get the decomposition.

Here is an alternative proof using Gram-Schmidt:

Proof. Let a1, . . . , an be the column vectors of g−1 ∈ GL(n,R) and q1, . . . , qn be the outputs of the Gram-
Schmidt process for the ai. Let q be the matrix with the qi as columns. The Gram-Schmidt process gives
us an upper triangular matrix r such that

g−1 = qr.

Taking the inverse precisely gives the Iwasawa decomposition for g, as desired.
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2 Lecture 2 - 1/30/25

Last time, we talked about the Iwasawa decomposition. We defined

hn = GL(n,R)/(O(n,R) · R∗),

and showed that every g ∈ hn has the decomposition

g = xy =


1

1 xij
. . .

1
1




y1y2 . . . yn−1

y1y2 . . . yn−2

. . .

y1

1

 ,

where the xij ∈ R and yj > 0.

Example 2.1. In the case n = 2, we have

h2 =

(
1 x
0 1

)(
y 0
0 1

)
=

(
x y
0 1

)
.

This is isomorphic to the upper half place, with z = x+ iy, x ∈ R, y > 0.
This has complex structure, making it easier to study (holomorphic modular forms). However, hn, for n ≥ 3,
has no complex structure.

2.1 GL(n,Z) action on hn

We have an action of GL(n,Z) acting on hn, given via left-multiplication of matrices (modulo O(n,R) ·R∗).
This will be notated α · g, but sometimes I might be lazy and write it like pure multiplication.

Example 2.2. Consider α =

(
a b
c d

)
and g =

(
y x
0 1

)
, or equivalently z = x+ iy. (We will use g to denote

elements of hn, rather than z in Dorian’s book. We will reserve z for the classical n = 2 upper half plane
approach.) Then αz = az+b

cz+d , and similarly for α · g

α · g =

(
ay a+ bx
cy c+ dx

)
,

which we then need to quotient by the right element of O(n,R) · R∗ to get back into hn.

The theory of automorphic forms is all about functions

f : GL(n,Z)\hn → C.

Equivalently, for α ∈ GL(n,Z), g ∈ hn, k ∈ K = O(n,R), and d =


d0

d0

. . .

d0

, for d0 = 0, we want

functions
f(αgkd) = f(g).

Example 2.3. When n = 2, this is precisely the theory of modular forms.
In this case, we have the standard fundamental domain for SL(2,Z)\h2{

z ∈ h2 : |x| ≤ 1/2, |z| ≥ 1
}
.

What is the area of this region? It is precisely the integral

ˆ 1/2

−1/2

ˆ ∞
√

1−x2

dxdy

y2
=
π

3
.
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Here dxdy
y2 is the hyperbolic measure. It is an invariant measure: it is invariant under the action z 7→ az+b

cz+d .
How does one show this? Note that we can write

d

dz
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

d

dz
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

so d
dz = 1 and d

dz = 0. Hence a holomorphic function can be defined as a function f : C → C such that
∂
∂z f = 0.
Then we can express

dxdy

y2
=
−i
4

dz ∧ dz

Im(z)2
,

where dz = dx+ i dy and dz = dx− i dy.

Now, applying the action of

(
α β
γ δ

)
∈ SL2(R) on the RHS and applying the quotient rule gives

−i
4

dαz+βγz+δ ∧ dαz+βγz+δ

Im
(
αz+β
γz+δ

)2 = − i
4

dz
(γz+δ)2 ∧

dz
(γz+δ)2

Im(z)2

|γz+δ|4
=
−i
4

dz ∧ dz

Im(z)2
,

hence the measure is invariant.

We’ll want to generalize this idea to GL(n), but this approach doesn’t generalize naturally, since we lack
complex structure.

2.2 Invariant measure on hn

We will want to integrate GL(n,Z) invariant functions over hn, so we need to define an invariant measure.
Let g = xy ∈ hn.

Proposition 2.4. The measure

dg =

 ∏
1≤i<j≤n

dxij

(n−1∏
k=1

y
−k(n−k)−1
k dyk

)

is invariant under g 7→ αg with α ∈ GL(n,R).

Proof. It suffices to prove that measure is invariant for a set of generators for GL(n,R). In particular,
GL(n,R) is generated by matrices Bn,Wn, Dn, where Bn are upper triangular matrices, Wn is the Weyl
group of GL(n,R) (the set of all matrices in GL(n,Z) with precisely one 1 in each column and row), and

Dn =


a1a2 . . . an−1

a1a2 . . . an−2

. . .

a1

1


are diagonal matrices.

Remark 2.5. Why this notation for the diagonal matrices? Since we quotient out by R∗, we can have the
lower right element be 1. The formulas are all nicer with the ai written this way. (There’s also intuition
involving root systems that Dorian doesn’t want to get into.)
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First, we check the invariance under the action by Dn. Let α =


a1a2 . . . an−1

a1a2 . . . an−2

. . .

a1

1

.

For any g = xy, we can write αg = (αxα−1)(αy), where (αxα−1) is an upper triangular matrix with 1s on
the diagonal and

(αxα−1)ij =

 n−i∏
k=n−j+1

ak

xij

for all i < j, and

(αy)ii =

n−i∏
k=1

(αkyk).

Plugging everything in, the ak will all cancel, giving the desired invariance.
Dorian leaves the invariance by the upper triangular matrices and Weyl elements to the reader. Alternatively,
details can be found in his book (Section 1.5).

2.3 Volume of fundamental domain

Let Γn = SL(n,Z).

Theorem 2.6 (Siegel, 1936).

Vol(Γn\hn) = n2n−1
n∏
`=2

ζ(`)

Vol(S`−1)
,

where

Vol(S`−1) =
2(
√
π)`

Γ
(
`
2

) .
The proof will require (a generalization of) the Poisson summation formula. Recall the standard Poisson
summation formula:

Proposition 2.7 (Poisson summation). Let f : R→ C be a smooth function (with some technical conditions,
i.e. exponential decay). Then ∑

n∈Z
f(n) =

∑
n∈Z

f̂(n),

where f̂(y) =
´∞
−∞ f(u)e−2πiyu du is the Fourier transform.

Proof. Define the new function G(x) =
∑
n∈Z f(x + n). Note that G(x + 1) = G(x), so we have a Fourier

expansion

G(x) =
∑
k∈Z

Ake
2πikx

where

Ak =

ˆ 1

0

G(u)e−2πiuk du .

Hence

G(x) =
∑
k∈Z

(ˆ 1

0

∑
n∈Z

f(u+ n)e−2πiuk du

)
e2πikx

=
∑
k∈Z

ˆ ∞
−∞

f(u)e−2πiu(k−x) du ,
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so we conclude that ∑
n∈Z

f(x+ n) =
∑
k

f̂(k − x).

Substituting x = 0 gives the result.

In particular, we will need a GL(2) version of Poisson summation.

Proposition 2.8 (Poisson summation for GL(2,R)). Consider a smooth, compactly supported function
f : R2/SO(2,R)→ C; i.e. f((u, v)k) = f((u, v)) for any (u, v) ∈ R2 and k ∈ K = SO(2,R). Then we have∑

(m,n)∈Z

f((m,n) · g) =
∑

(m,n)∈Z2

f̂((m,n) · (gT )−1).

Here f̂ is the (double) Fourier transform

f̂((x, y)) =

ˆ ∞
−∞

ˆ ∞
−∞

f((u, v))e−2πixue−2πiyv dudv .

Proof. Consider g ∈ SL(2,R) of the form g =

(
y1/2 xy−1/2

0 y−1/2

)
. We define

F (g) :=
∑

(m,n)∈Z2

f((m,n) · g) =
∑

(m,n)∈Z2

f(my1/2,mxy−1/2 + ny−1/2),

and for fixed g and n, define

Gg(n) :=
∑
m∈Z

f(my1/2,mxy−1/2 + ny−1/2).

By standard Poisson Summation (in n),

F (g) =
∑
n∈Z

Gg(n) =
∑
n∈Z

Ĝg(n).

Hence

F (g) =
∑

(m,n)∈Z

f̂(my1/2,mxy−1/2 + ny−1/2) =
∑

(m,n)∈Z2

ˆ ∞
−∞

f(my1/2,mxy−1/2 + uy−1/2)e−2πiun du ,

where above the Fourier transform is taken only in the n variable.
We now do the same thing in the m variable. Define

Hg(m) :=
∑
n∈Z

ˆ ∞
−∞

f(my1/2,mxy−1/2 + uy−1/2)e−2πiun du .

Poisson summation again gives that

F (g) =
∑
m∈Z

Hg(m) =
∑
m∈Z

Ĥg(m).

Hence, we can write

F (g) =
∑
m∈Z

∑
n∈Z

ˆ ∞
−∞

f(vy1/2, vxy−1/2 + uy−1/2)e−2πinue−2πimv dudv .

Making the transformation u′ = vy1/2 and v′ = vxy−1/2 + uy−1/2 finishes the proof.

We’ll get to Siegel’s proof next time.

Remark 2.9. Siegel’s proof for the volume of the fundamental domain was generalized by Langlands in the
paper The volume of the fundamental domain for some arithmetic subgroups of Chevalley groups, Proc AMS,
1965.
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3 Lecture 3 - 2/4/25

3.1 Fundamental Domains

Consider a topological space X and group G, with G acting on X. Recall that a (left) group action is a map
◦ : G×X → X such that e ◦ x = x for all x, and (g1g2) ◦ x = g1 ◦ (g2 ◦ x).

Proposition 3.1. GL(n,Z) acts on hn = GL(n,R)/(O(n,R) ·R∗). If γ ∈ GL(n,Z) and g ∈ hn, γ ◦g := γ ·g
as matrix multiplication.

Proof. This is clear.

Note that
hn = GL(n,R)/(O(n,R) · R∗) = SL(n,R)/SO(n,R).

Hence we can talk about the action of SL(n,Z) on hn = SL(n,R)/SO(n,R) (via matrix multiplication).
What is a fundamental domain for this action?
Recall that a fundamental domain for G acting on X, typically denoted G\X), has the properties

• Every x ∈ X is equivalent to some y ∈ G\X, where x = g ◦ y for some g ∈ G.

• No two points in the fundamental domain are equivalent to each other.

In the n = 2 case, we have the standard fundamental domain

SL(2,Z)\h2 =

{
z = x+ iy ∈ h2 | |x| ≤ 1

2
, |z| ≥ 1

}
.

To generalize this idea, we will consider a Siegel set:

Σ√3
2 , 12

=

{
x+ iy ∈ h2 | |x| ≤ 1

2
, y ≥

√
3

2

}
.

This set is bigger than the fundamental domain, but small enough to be a good approximation for analytic
purposes. Specifically, ⋃

γ∈SL(2,Z)

γ · Σ√3
2 , 12

= h2.

Theorem 3.2 (Siegel). The Siegel set for SL(n,Z)\hn

Σ√3
2 , 12

=

{
xy ∈ hn | |xij | ≤

1

2
, y ≥

√
3

2

}
satisfies ⋃

γ∈SL(n,Z)

γ · Σ√3
2 , 12

= hn.

The proof can be found in Dorian’s book.

3.2 Volume of fundamental domain SL(2,Z)\h2

Last time we stated

Theorem 3.3 (Siegel, 1936).

Vol(Γn\hn) = n2n−1
n∏
`=2

ζ(`)

Vol(S`−1)
,

where

Vol(S`−1) =
2(
√
π)`

Γ
(
`
2

) .
9
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The proof is inductive, so we’ll want to prove the statement for n = 2.

Proof for n = 2. Let K = O(2,R). Consider a smooth and compactly supported function f : R2/K → C.
We can then define

F (g) =
∑

(m,n)∈Z2

f((m,n) · g),

where multiplication is taken as a row vector multiplied by a matrix. Since f is right-invariant by K, we
have that

F (gk) = F (g)

for all g ∈ GL(2,R) and k ∈ K.

Claim 3.4. F (γg) = F (g) for all γ ∈ SL(2,Z).

Proof. Let γ =

(
a b
c d

)
∈ SL(2,Z). Since we want g ∈ SL(2,R), we take g =

(
1 x
0 1

)(
y1/2 0

0 y−1/2

)
. Then

F (γg) =
∑

(m,n)

f

(
(m,n)

(
a b
c d

)
g

)

=
∑

(m,n)

F

(
(am+ cn, bm+ dn)

(
1 x
0 1

)(
y1/2 0

0 y−1/2

))

=
∑
M,N

F

(
(M,N)

(
1 x
0 1

)(
y1/2 0

0 y−1/2

))
= F (g)

which proves the claim. Here there are no convergence issues because f has compact support.

Next, letting Γ = SL(2,Z), consider

ˆ
Γ\h2

F (g) dg =

ˆ
Γ\h2

F

((
1 x
0 1

)(
y1/2 0

0 y−1/2

))
dx dy

y2
.

Again, this integral converges because f is compactly supported.
Note that we can write

{(m,n) | m,n ∈ Z} = {(0, 0)} ∪
∞⋃
`=1

γ∈Γ∞\Γ

{`(0, 1)γ} ,

where Γ∞ =

{(
1 r
0 1

)
| r ∈ Z

}
. This follows because

Γ∞\Γ =

{(
∗ ∗
c d

)
| (c, d) = 1

}
.

Thus,

ˆ
Γ\h2

F (g) dg =

ˆ
Γ\h2

F (0, 0) dg +

ˆ
Γ\h2

∞∑
`=1

∑
γ∈Γ∞\Γ

f(`(0, 1)γg) dg

= F ((0, 0)) ·Vol(Γ\h2) + 2

ˆ
Γ∞\h2

∞∑
`=1

f((0, `) · g) dg ,

where the factor of 2 arises because

(
−1

−1

)
is in the stabilizer for h2.
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Hence

ˆ
Γ\h2

F (g) dg = F ((0, 0)) ·Vol(Γ\h2) + 2

ˆ
Γ∞\h2

∞∑
`=1

f

(
(0, `) ·

(
1 x
0 1

)(
y1/2 0

0 y−1/2

))
dx dy

y2

= F ((0, 0)) ·Vol(Γ\h2) + 2

ˆ
Γ∞\h2

∞∑
`=1

f
(

(0, `y−1/2)
) dxdy

y2

= F ((0, 0)) ·Vol(Γ\h2) + 2

ˆ 1

x=0

ˆ ∞
y=0

∞∑
`=1

f
(

(0, `y−1/2)
) dxdy

y2
.

Taking the transformations y 7→ `2y in the first line and then y → y−2 in the second line, we get

2

ˆ 1

x=0

ˆ ∞
y=0

∞∑
`=1

f
(

(0, `y−1/2)
) dxdy

y2
= 2

ˆ 1

x=0

ˆ ∞
y=0

∞∑
`=1

f
(

(0, y−1/2)
) 1

`2
dxdy

y2

= 4ζ(2)

ˆ ∞
0

f ((0, y)) y dy .

Now, we convert to polar coordinates. Since f is right invariant by k =

(
cos θ − sin θ
sin θ cos θ

)
∈ K,

f((0, y)) = f((y sin θ, y cos θ))

for any θ.
Thus we get that

4ζ(2)

ˆ ∞
y=0

f ((0, y)) y dy =
2ζ(2)

π

ˆ 2π

0

ˆ ∞
y=0

f ((y sin θ, y cos θ)) y dy dθ

=
2ζ(2)

π

ˆ
R2

f(u, v) dudv =
2ζ(2)

π
f̂((0, 0)).

Hence we have shown that
ˆ

Γ\h2

F (g) dg = f((0, 0))Vol(Γ\h2) +
2ζ(2)

π
f̂((0, 0)).

Now, consider replacing f by f̂ . By Poisson summation for GL(2,R),∑
(m,n)∈Z2

f((m,n)g) =
∑

(m,n)∈Z2

f̂((m,n)(gT )−1).

We can replace g by (gT )−1 in all of the computation above, and nothing would change. Hence, we get that

ˆ
Γ\h2

F (g) dg = f̂((0, 0))Vol(Γ\h2) +
2ζ(2)

π
f((0, 0)),

using that
̂̂
f(x) = f(−x). Subtracting the two equations and solving for the volume gives the desired

formula.

Next time, we will finish the proof for general n.

11
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4 Lecture 4 - 2/6/25

4.1 Proof of Siegel’s Theorem

This time we will finish the proof of Siegel’s theorem:

Theorem 4.1 (Siegel, 1936).

Vol(Γn\hn) = n2n−1
n∏
`=2

ζ(`)

Vol(S`−1)
,

where

Vol(S`−1) =
2(
√
π)`

Γ
(
`
2

) .
We proved it for n = 2 last time. Now we will finish the proof for n > 2 inductively.
We will use the Poisson summation formula for GL(n,R):

Proposition 4.2. For a function f : Rn/Kn → C, where Kn = O(n,R), we have that∑
m∈Zn

f(m · g) =
∑
m∈Zn

f̂(m · (gT )−1).

We showed this for n = 2; it can be generalized to higher n inductively.

Proof of Siegel’s Theorem. For more details, one can check Dorian’s book, section 1.6.
Let Γn = SL(n,Z). Recall that for g ∈ hn, we write g = xy with the usual notation for x and y. We want
to this to lie in SL(n,R)/SO(n,R), so we instead consider

y =


y1y2 . . . yn−1t

y1y2 . . . yn−2t
. . .

y1t
t

 ,

where t =
(∏n−1

j=1 y
n−j
j

)−1

.

Emulating the proof for n = 2, let f : Rn/Kn → C be a smooth and compactly supported function. Again
we define

F (g) =
∑
m∈Zn

f(m · g).

Then we can show F (γg) = F (g) for all γ ∈ SL(n,Z).

Definition 4.3. The mirabolic subgroup of GL(n) is

Pn =

{(
∗

0 0 . . . 0 1

)}
Then one can check that

F (g) = f((0, . . . , 0)) +

∞∑
`=1

∑
γ∈Pn\Γn

f(` · en · γg),

where en = (0, . . . , 0, 1).
Now, we have that

ˆ
Γn\hn

F (g) dg = f((0, . . . , 0))Vol(Γn\hn) +

ˆ
Γn\hn

∞∑
`=1

∑
γ∈Pn\Γn

f(` · en · γg) dg

= f((0, . . . , 0))Vol(Γn\hn) + 2

∞∑
`=1

ˆ
Pn\hn

f(` · en · g) dg ,

12
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where again the 2 appears because the diagonal element with −1 on the diagonal lies in the stabilizer for
hn. (TODO: Only for n even? This will change the formula slightly – will need to double check this.)
Now we can write

g =


1

1 xij
. . .

1
1




y1y2 . . . yn−1t

y1y2 . . . yn−2t
. . .

y1t
t


(
t

1
n−1 In−1

t

)(
t−

1
n−1 In−1

t

)

=


1 x1n

1 x2n

. . .
...

1 xn−1,n

1


(
g′

1

)(
t−

1
n−1 In−1

t

)

where g′ is the n− 1 by n− 1 matrix

g′ =


1 x12 x13 . . . x1,n−1

1 x23 . . . x2,n−1

. . .
. . .

...
1 xn−2,n−1

1



y1y2 . . . yn−1t

n/(n−1)

y1y2 . . . yn−2t
n/(n−1)

. . .

y1t
n/(n−1)

 ∈ hn−1

Recall that

dg =

 ∏
1≤i<j≤n

dxij

 n−1∏
k=1

y
−k(n−k)−1
k dyk ,

and we have that

dg′ =

 ∏
1≤i<j≤n−1

dxij

 n−2∏
k=1

y
−k(n−k−1)−1
k+1 dyk+1 .

Computation thus gives us that

dg = − n

n− 1
dg′

n−1∏
j=1

dxj,n

 tn
dt

t
.

Now, to apply induction, we will want to relate Pn\hn to Γn−1\hn−1.
Every p ∈ Pn is of the form

p =

(
γ b

1

)
=

(
In−1 b

1

)(
γ

1

)
with Γ ∈ SL(n− 1,Z) and b ∈ Zn−1. Moreover, every g ∈ hn is of the form

g =

(
g′ u

1

)(
t−

1
n−1 In−1

t

)
=

(
In−1 u

1

)(
g′

1

)(
t−

1
n−1 In−1

t

)
,

where

u =


u1,n

u2,n

...
un−1,n

 .

13
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Then

p · g =

(
In−1 b

1

)(
γ

1

)(
In−1 u

1

)(
g′

1

)(
t−

1
n−1 In−1

t

)
.

Let Un(Z) denote matrices with 1s on the diagonal, integers in the right most column, and 0s elsewhere, and
similarly for Un(R).

Lemma 4.4. Fix a γ ∈ SL(n − 1,Z). We have an action of Un(Z) on Rn−1 given by left multiplication of

Un(Z) on

(
γ

1

)
· Un(R), with fundamental domain given by


(
γ

1

)


1 u1

1 u2

. . .
...

1 un−1

1

 | 0 ≤ ui < 1


Moreover,

Un(Z)\
(
γ

1

)
Un(R) ∼= (Z\R)n−1.

Proof. One can write⋃
m∈Zn−1

(
In−1 m

1

)(
γ

1

)(
In−1 (Z\R)n−1

1

)
=

⋃
m∈Zn−1

(
γ

1

)(
In−1 γ−1m

1

)(
In−1 (Z\R)n−1

1

)
=

(
γ

1

) ⋃
m∈Zn−1

(
In−1 (Z\R)n−1 + γ−1m

1

)
=

(
γ

1

)
Un(R).

Hence, examining our expression p · g and applying the lemma, we get the decomposition

Pn\hn ∼= (SL(n− 1,Z)\hn−1)× (Z\R)n−1 × (0,∞).

Moreover, note that

f(`eng) = f

(
`en

(
g′ u

1

)(
t−

1
n−1 In−1

t

))
= f(`ten).

Thus we can write

2

∞∑
`=1

ˆ
Pn\hn

f(` · en · g) dg =
2n

n− 1

∞∑
`=1

(ˆ
Γn−1\hn−1

dg′

)(ˆ
(Z\R)n−1

n−1∏
i=1

dxi,n

)(ˆ ∞
0

f(`ten)tn
dt

t

)
.

By induction, the first integral on the RHS is the volume Γn−1\hn−1. The second integral is 1. Thus, it
suffices to compute the third integral.
Making a transformation t→ t

` , we have that

∞∑
`=1

ˆ ∞
0

f(`ten)tn
dt

t
= ζ(n)

ˆ ∞
0

f(`ten)tn
dt

t
.

Lemma 4.5. ˆ ∞
0

f(`ten)tn
dt

t
=
f̂((0, . . . , 0))

Vol(Sn−1)
.

14
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Proof. Use the n dimensional spherical coordinates

x1 = t(sin θn−1) · · · (sin θ2)(sin θ1)

x2 = t(sin θn−1) · · · (sin θ2)(cos θ1)

...

xn−1 = t(sin θn−1)(cos θn−2)

xn = t cos θn−1

In particular, note that x2
1 + · · ·+ x2

n = 1. We have the invariant measure on Sn−1

dθ =
∏

1≤j<n

(sin θj)
j−1 dj ,

so
dx1 · · · dxn = tn−1 dtdθ .

This measure is invariant under rotations, so

f((0, . . . , 0, t)) =
1

Vol(Sn−1)

ˆ
Sn−1

f(x1, . . . , xn)) dθ ,

and thus
ˆ ∞

0

f((0, . . . , 0, t))tn
dt

t
=

1

Vol(Sn−1)

ˆ
Rn

f(x1, . . . , xn) dx1 . . . dxn = f̂((0, . . . , 0)),

where we apply polar coordinates.

Now, we repeat the same process replacing f̂ and f , using the Poisson summation formula. Subtracting the
two formulas gives an inductive formula for the volume.

Next time, we start the theory of automorphic forms.
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