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1 Recall

I'll be following (parts of) Sections 2 and 3 of Toén’s survey “Derived Algebraic Geometry.” Some
of the co-stuff will be loose, as Toén puts it. For technical stuff, you can check the references in the
survey.

I'll review Toén’s definition of a derived scheme because he does it a bit differently from Amal.
We start by defining the oo-category dRgSp of derived ringed spaces. The objects of this co-
category are pairs (X, Ox), where X is a space and Ox € sComm(X) is a stack of derived rings
on X. The mapping spaces are given by

Map((Xa OX)?(K OY)) = |_| MapsComm(Y)(OYvu*OX)~
u:X—->Y

Just as we can take 7y of a simplicial ring, any derived ringed space (X, Ox) admits a truncation
to(X) = (X, m(Ox)), its underlying ringed space.

We can then define the sub-oco-category dRgSp™“ of derived locally ringed spaces whose
objects are derived ringed spaces (X,Ox) such that ¢y(X) is a locally ringed space and whose
mapping spaces consist of morphisms whose truncations are local morphisms. We then define the
co-category of derived schemes to be the full sub-co-category of dRgSp'?° consisting of objects
(X, Ox) satisfying:

loc

(i) to(X) is a scheme.
(ii) For all ¢, the sheaf of 7y(Ox)-modules 7;(Ox) is quasi-coherent.

We denote the co-category of derived schemes by dSch. We have an adjunction
to : dSch = Sch : 7,

where i treats a scheme as a derived scheme. Moreover, we have a map ¢y(X) — X for any X; this
is analogous to the closed embedding Y,..q <— Y for a scheme.

2 Fiber products of derived schemes

In algebraic geometry, we have a lot of fiber products. However, sometimes, they’re really stupid; for
example, if X — Y is a closed embedding, then X xy X =~ X. One key feature of derived schemes
is that their intersections retain a lot more information.

We will describe fiber products of derived schemes on the level of affines. Suppose we have a
diagram of simplicial rings A < C' — B. The pushout D := A®% B can be computed by replacing



B with a cellular C-algebra (i.e. a cofibrant replacement) and then taking the levelwise tensor
product. In the case that C' is an ordinary ring, a cellular C-algebra is a simplicial C-algebra whose
components are all polynomial algebras in C. We globalize this to get fiber products of derived
schemes.

When A, B,C are ordinary rings, D has homotopy m,(D) =~ Torg(A,B). Thus, when X —
S « Y are schemes, the fiber product Z := X x5 Y has m;(0z) = V9% (Ox, Oy). Thus, when
Ox and Oy are Tor-independent over Og, the derived fiber product agrees with the ordinary one.
Otherwise, they differ. This harkens back to Serre’s intersection formula: if X — S « Y are closed
subschemes intersecting properly and S is regular, then the intersection multiplicity of X and Y at
a generic point s of X nY is

Z (—1)ilengthosys Torlos’s (Ox,s5, Oy,s).

=0

According to Toén, Serre’s intersection formula is the origin of derived algebraic geometry.

One case that might be interesting is that of self-intersections. Suppose Y — X is a closed
embedding of schemes, and consider the derived scheme Y x x Y. The underlying scheme t,(Y xxY)
is just Y, but the derived scheme might have nontrivial higher information. For convenience, suppose
that Y < X is a regular embedding, i.e. the conormal sheaf Z/Z? is a vector bundle, denoted A'V.
Shrinking X, we may consider X = Spec A and Y = Spec A/I, where I = (f1,..., f) is generated
by a regular sequence. We want to compute the derived tensor product B := A/I®% A/I. To do this,
we replace A/I by a simplicial ring K (A, f4) (I think the K stands for Koszul), which is obtained by
freely adding 1-simplices h; to A such that dg(h;) = 0 and dy (h;) = f;, i.e. homotopies between the
fi and 0. Since f1,..., f is a regular sequence, the map K (A, fx) — A/I can be shown to be an
equivalence. Moreover, K (A, fy) is cellular because it is obtained by freely adjoining things. Now
B =A/IQ5 A/T ~ A/TQ®a K(A, f4), so m4(B) = @,;20 A'(I/1?)[i]. In characteristic 0, it can be
shown that B ~ Sym ,;(I/I1?[1]), so that Z ~ Spec(Sym 4,;(1/I?[1])) is like the total space of the
normal bundle, except it’s shoved into higher homotopy.

3 Base change

Recall from last time that Amal defined the quasi-coherent derived co-category of a derived
scheme X:
Lyon(X)i=  lm  Lyeon(U).
UcX affine

Given a morphism f: X — Y there are functors
f* : choh(Y> - choh(X) : f*

Now suppose we are given a cartesian diagram of derived schemes.

X 25X
VT
y' 25y
There is a natural transformation h : g* f, = fL¢’* between functors Lycon(X) — Lgecon(Y”).

When X,Y,Y” are sufficiently nice ordinary schemes and g is flat, X’ is an ordinary scheme, and
the flat base change theorem says that h is an equivalence. The base change theorem in derived



algebraic geometry is an extension of flat base change: if all the derived schemes in the diagram
are qcgs, then h is an equivalence. In contrast, for a cartesian diagram of ordinary schemes, base
change is not an isomorphism in general. This reflects the fact that a cartesian diagram of ordinary
schemes is not necessarily a cartesian diagram of derived schemes.

4 The cotangent complex

Given a morphism of schemes f : X — Y, the cotangent complex Lx/y € D__,,(X) governs the
deformation theory of f. We always have H°(Lx v) = Qx)y. Thus, the cotangent complex is a
higher version of the sheaf of differentials. Some properties of the cotangent complex include the
following:

(1) fissmooth of relative dimension r iff f is locally of finite presentation and L x /y- is concentrated
in degree 0 and locally free of rank r.

(2) If f is a closed embedding and I is the ideal sheaf of X, then H'(Lx,y) =~ I/I%. If f is a
regular embedding, then Ly ~ I/I?[1].

(3) For X Ly s Z, there is a distinguished triangle Lf*Ly,z — Lx/z — Lxy.

(4) If h: X — Z factors as X Ly % 7 with f a closed embedding and g a smooth morphism,
then 7> 1 Lx/z ~ [1/1? — [*Qy 7], where I is the ideal sheaf for f and the map is induced
by d: Oy — Qy,z. If f is additionally a regular embedding (i.e. h is an lci morphism), then
Lx/z ~7>_1lx/z ~ [I/I* > f*Qy 7]

We get the following familiar exact sequences from these axioms:
eFr XLy %z , there is an exact sequence

[*Qy 7 = Qx/7 = Qxy — 0.

o For X LV % Z with f a closed embedding with ideal sheaf I, there is an exact sequence
I/I? > f*Qy 7 — Qx/7 — 0.
This sequence is exact on the left if g and g o f are smooth.

To construct the cotangent complex of a map of schemes, we first construct the cotangent complex
of a map of rings. For a map A — B, the cotangent complex L 4 € D™(B) is defined as the left
derived functor of the Kéhler differentials functor. What this means in the simplicial setting is that
instead of taking Ké&hler differentials of B, we first take a simplicial resolution (an equivalence from
a cofibrant simplicial ring) € : P, — B and then apply Kéhler differentials, so that we don’t lose
information. We then let Lg,4 be the normalized complex associated to the simplicial B-module
Qp,/A®p, B, which can be shown to be independent of simplicial reoslution. In the model category of
simplicial commutative A-algebras, the cofibrant objects are those whose components are polynomial
algebras over A (it makes sense because polynomial algebras have a lifting property).

For a set S, let A[S] denote the free polynomial algebra whose generators are elements of S. For
any A — B, there is a standard simplicial resolution P, — B with Py = A[B], P, = A[A[B]], etc.
Here, all the face/degeneracy/augmentation maps collapse consecutive A’s or the A and B. Since



this resolution is canonical, we can globalize it to a morphism of schemes f : X — Y. We take Lx y
to be the complex of sheaves associated to the complex of presheaves U — Lo ()/r-10, (v), Where
L is computed with the standard resolution.

While the cotangent complex (or at least its first few terms) is useful in ordinary algebraic geom-
etry (e.g. deformation theory, virtual fundamental classes), it’s unclear what it means geometrically,
outside the Oth term H°(Ly )v) = Qx/y. However, in derived algebraic geometry, the cotangent
complex has a nice interpretation in terms of derivations.

Given a derived scheme X and an object M € Lgcon(X) concentrated in nonpositive degrees,
we can form a derived scheme X[FE], which is the trivial square-zero extension of X by M. The
space of derivations with coefficients in M is the mapping space Mapx jascn(X[M], X). The
absolute cotangent complex Lx is an object of Lycon(X) with the universal property

Mapx jasen(X[M], X) ~ Mapy, ., (x)(Lx, M).

In other words, Lx carries the universal derivation on X. We can also define all these things relative
to f: X — Y, in which case we get the relative cotangent complex Ly := cofib(f*Ly — Lx).

The cotangent complex lets us define smooth and étale morphisms of derived schemes. A mor-
phism f: X — Y is étale (resp. smooth) if it is locally of finite presentation and Ly ~ 0 (resp.
L,y is a vector bundle on X).
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