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1 Recall
I’ll be following (parts of) Sections 2 and 3 of Toën’s survey “Derived Algebraic Geometry.” Some
of the 8-stuff will be loose, as Toën puts it. For technical stuff, you can check the references in the
survey.

I’ll review Toën’s definition of a derived scheme because he does it a bit differently from Amal.
We start by defining the 8-category dRgSp of derived ringed spaces. The objects of this 8-
category are pairs pX,OXq, where X is a space and OX P sCommpXq is a stack of derived rings
on X. The mapping spaces are given by

MapppX,OXq, pY,OY qq “
ğ

u:XÑY

MapsCommpY qpOY , u˚OXq.

Just as we can take π0 of a simplicial ring, any derived ringed space pX,OXq admits a truncation
t0pXq “ pX,π0pOXqq, its underlying ringed space.

We can then define the sub-8-category dRgSploc of derived locally ringed spaces whose
objects are derived ringed spaces pX,OXq such that t0pXq is a locally ringed space and whose
mapping spaces consist of morphisms whose truncations are local morphisms. We then define the
8-category of derived schemes to be the full sub-8-category of dRgSploc consisting of objects
pX,OXq satisfying:

(i) t0pXq is a scheme.

(ii) For all i, the sheaf of π0pOXq-modules πipOXq is quasi-coherent.

We denote the 8-category of derived schemes by dSch. We have an adjunction

t0 : dSch é Sch : i,

where i treats a scheme as a derived scheme. Moreover, we have a map t0pXq Ñ X for any X; this
is analogous to the closed embedding Yred ãÝÑ Y for a scheme.

2 Fiber products of derived schemes
In algebraic geometry, we have a lot of fiber products. However, sometimes, they’re really stupid; for
example, if X ãÝÑ Y is a closed embedding, then X ˆY X – X. One key feature of derived schemes
is that their intersections retain a lot more information.

We will describe fiber products of derived schemes on the level of affines. Suppose we have a
diagram of simplicial rings A Ð C Ñ B. The pushout D :“ A bL

C B can be computed by replacing
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B with a cellular C-algebra (i.e. a cofibrant replacement) and then taking the levelwise tensor
product. In the case that C is an ordinary ring, a cellular C-algebra is a simplicial C-algebra whose
components are all polynomial algebras in C. We globalize this to get fiber products of derived
schemes.

When A,B,C are ordinary rings, D has homotopy πnpDq – TorCn pA,Bq. Thus, when X Ñ

S Ð Y are schemes, the fiber product Z :“ X ˆS Y has πipOZq – T ≀∇OS
i pOX ,OY q. Thus, when

OX and OY are Tor-independent over OS , the derived fiber product agrees with the ordinary one.
Otherwise, they differ. This harkens back to Serre’s intersection formula: if X Ñ S Ð Y are closed
subschemes intersecting properly and S is regular, then the intersection multiplicity of X and Y at
a generic point s of X X Y is

ÿ

iě0

p´1qilengthOS,s
Tor

OS,s

i pOX,s,OY,sq.

According to Toën, Serre’s intersection formula is the origin of derived algebraic geometry.
One case that might be interesting is that of self-intersections. Suppose Y ãÝÑ X is a closed

embedding of schemes, and consider the derived scheme Y ˆX Y . The underlying scheme t0pY ˆX Y q

is just Y , but the derived scheme might have nontrivial higher information. For convenience, suppose
that Y ãÝÑ X is a regular embedding, i.e. the conormal sheaf I{I2 is a vector bundle, denoted N_.
Shrinking X, we may consider X “ SpecA and Y “ SpecA{I, where I “ pf1, . . . , frq is generated
by a regular sequence. We want to compute the derived tensor product B :“ A{IbL

AA{I. To do this,
we replace A{I by a simplicial ring KpA, f˚q (I think the K stands for Koszul), which is obtained by
freely adding 1-simplices hi to A such that d0phiq “ 0 and d1phiq “ fi, i.e. homotopies between the
fi and 0. Since f1, . . . , fr is a regular sequence, the map KpA, f˚q Ñ A{I can be shown to be an
equivalence. Moreover, KpA, f˚q is cellular because it is obtained by freely adjoining things. Now
B “ A{I bL

A A{I » A{I bA KpA, f˚q, so π˚pBq –
À

iě0 Λ
ipI{I2qris. In characteristic 0, it can be

shown that B » SymA{IpI{I2r1sq, so that Z » SpecpSymA{IpI{I2r1sqq is like the total space of the
normal bundle, except it’s shoved into higher homotopy.

3 Base change
Recall from last time that Amal defined the quasi-coherent derived 8-category of a derived
scheme X:

LqcohpXq :“ lim
ÐÝ

UĂX affine
LqcohpUq.

Given a morphism f : X Ñ Y , there are functors

f˚ : LqcohpY q é LqcohpXq : f˚.

Now suppose we are given a cartesian diagram of derived schemes.

X 1 X

Y 1 Y

g1

f 1 f

g

There is a natural transformation h : g˚f˚ ùñ f 1
˚g

1˚ between functors LqcohpXq Ñ LqcohpY 1q.
When X,Y, Y 1 are sufficiently nice ordinary schemes and g is flat, X 1 is an ordinary scheme, and
the flat base change theorem says that h is an equivalence. The base change theorem in derived
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algebraic geometry is an extension of flat base change: if all the derived schemes in the diagram
are qcqs, then h is an equivalence. In contrast, for a cartesian diagram of ordinary schemes, base
change is not an isomorphism in general. This reflects the fact that a cartesian diagram of ordinary
schemes is not necessarily a cartesian diagram of derived schemes.

4 The cotangent complex
Given a morphism of schemes f : X Ñ Y , the cotangent complex LX{Y P D´

qcohpXq governs the
deformation theory of f . We always have H0pLX{Y q – ΩX{Y . Thus, the cotangent complex is a
higher version of the sheaf of differentials. Some properties of the cotangent complex include the
following:

(1) f is smooth of relative dimension r iff f is locally of finite presentation and LX{Y is concentrated
in degree 0 and locally free of rank r.

(2) If f is a closed embedding and I is the ideal sheaf of X, then H1pLX{Y q – I{I2. If f is a
regular embedding, then LX{Y » I{I2r1s.

(3) For X
f

ÝÑ Y
g

ÝÑ Z, there is a distinguished triangle Lf˚LY {Z Ñ LX{Z Ñ LX{Y .

(4) If h : X Ñ Z factors as X
f

ÝÑ Y
g

ÝÑ Z with f a closed embedding and g a smooth morphism,
then τě´1LX{Z » rI{I2 Ñ f˚ΩY {Zs, where I is the ideal sheaf for f and the map is induced
by d : OY Ñ ΩY {Z . If f is additionally a regular embedding (i.e. h is an lci morphism), then
LX{Z » τě´1LX{Z » rI{I2 Ñ f˚ΩY {Zs.

We get the following familiar exact sequences from these axioms:

• For X
f

ÝÑ Y
g

ÝÑ Z, there is an exact sequence

f˚ΩY {Z Ñ ΩX{Z Ñ ΩX{Y Ñ 0.

• For X
f

ÝÑ Y
g

ÝÑ Z with f a closed embedding with ideal sheaf I, there is an exact sequence

I{I2 Ñ f˚ΩY {Z Ñ ΩX{Z Ñ 0.

This sequence is exact on the left if g and g ˝ f are smooth.

To construct the cotangent complex of a map of schemes, we first construct the cotangent complex
of a map of rings. For a map A Ñ B, the cotangent complex LB{A P D´pBq is defined as the left
derived functor of the Kähler differentials functor. What this means in the simplicial setting is that
instead of taking Kähler differentials of B, we first take a simplicial resolution (an equivalence from
a cofibrant simplicial ring) ϵ : P‚ Ñ B and then apply Kähler differentials, so that we don’t lose
information. We then let LB{A be the normalized complex associated to the simplicial B-module
ΩP‚{AbP‚

B, which can be shown to be independent of simplicial reoslution. In the model category of
simplicial commutative A-algebras, the cofibrant objects are those whose components are polynomial
algebras over A (it makes sense because polynomial algebras have a lifting property).

For a set S, let ArSs denote the free polynomial algebra whose generators are elements of S. For
any A Ñ B, there is a standard simplicial resolution P‚ Ñ B with P0 “ ArBs, P1 “ ArArBss, etc.
Here, all the face/degeneracy/augmentation maps collapse consecutive A’s or the A and B. Since
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this resolution is canonical, we can globalize it to a morphism of schemes f : X Ñ Y . We take LX{Y

to be the complex of sheaves associated to the complex of presheaves U ÞÑ LOXpUq{f´1OY pUq, where
L is computed with the standard resolution.

While the cotangent complex (or at least its first few terms) is useful in ordinary algebraic geom-
etry (e.g. deformation theory, virtual fundamental classes), it’s unclear what it means geometrically,
outside the 0th term H0pLX{Y q – ΩX{Y . However, in derived algebraic geometry, the cotangent
complex has a nice interpretation in terms of derivations.

Given a derived scheme X and an object M P LqcohpXq concentrated in nonpositive degrees,
we can form a derived scheme XrEs, which is the trivial square-zero extension of X by M . The
space of derivations with coefficients in M is the mapping space MapX{dSchpXrM s, Xq. The
absolute cotangent complex LX is an object of LqcohpXq with the universal property

MapX{dSchpXrM s, Xq » MapLqcohpXqpLX ,Mq.

In other words, LX carries the universal derivation on X. We can also define all these things relative
to f : X Ñ Y , in which case we get the relative cotangent complex LY :“ cofibpf˚LY Ñ LXq.

The cotangent complex lets us define smooth and étale morphisms of derived schemes. A mor-
phism f : X Ñ Y is étale (resp. smooth) if it is locally of finite presentation and LX{Y » 0 (resp.
LX{Y is a vector bundle on X).
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