Algebraic Geometry I, Fall 2021 Problem Set 1

Due Friday, September 10, 2021 at 5 pm

- 1. Familiarize yourself with the following notions from category theory: categories, functors, equivalences of categories, adjoint functors, and limits/colimits. There are many sources for this material. For instance, among the reference books for the class, you could look at
 - Appendix A of Algebraic Geometry I by Görtz and Wedhorn, or
 - Chapter 1 of Foundations of Algebraic Geometry by Vakil.
- 2. Prove the following result stated in class. Please feel free to use results we proved in class.

Theorem 1. Let k be an algebraically closed field. Let $AffVar_k$ denote the category of affine varieties over k, and let Alg_k^{rfg} denote the category of reduced finitely generated k-algebras. Then the functor Γ : $(AffVar_k)^{op} \to Alg_k^{rfg}$ is an equivalence of categories, where $(-)^{op}$ denotes the opposite category.

Hint: Use the criterion that a functor is an equivalence if and only if it is fully faithful and essentially surjective.

- 3. Let $X = V(y^2 x^3) \subset \mathbb{C}^2$. Show that there exists a bijective morphism of affine varieties $\mathbb{C} \to X$, but that there does not exist an isomorphism of affine varieties $\mathbb{C} \cong X$.
- 4. Let k be an algebraically closed field. Prove that all elements of $\operatorname{Spec}(k[x,y])$ are given as follows:
 - (x-a, y-b) for $a, b \in k$.
 - (f(x,y)) where $f(x,y) \in k[x,y]$ is an irreducible polynomial.
 - (0).

Hint: One way to think about this geometrically is by studying the fibers of the map $\operatorname{Spec}(k[x,y]) \to \operatorname{Spec}(k[x])$ corresponding to the ring map $k[x] \to k[x,y]$.

- 5. Describe all elements of $Spec(\mathbf{Z}[x])$, in the spirit of Problem 4.
- 6. For rings A_1, \ldots, A_n , prove that there is a homeomorphism

$$\operatorname{Spec}\left(\prod_{i=1}^{n} A_i\right) \cong \coprod_{i=1}^{n} \operatorname{Spec}(A_i).$$

Prove or disprove that there is a homeomorphism

$$\operatorname{Spec}\left(\prod_{i=1}^{\infty}\mathbf{F}_{2}\right)\cong\coprod_{i=1}^{\infty}\operatorname{Spec}(\mathbf{F}_{2}).$$

7. Find the decomposition of $V(xy, xz, yz) \subset \text{Spec}(\mathbf{C}[x, y, z])$ into irreducible components.