Algebraic Geometry I, Fall 2021

Problem Set 11

Due Monday, November 22, 2021 at 11:59 pm

1. Let $X = \operatorname{Spec}(A)$ be an affine scheme. Show that the functor (-): $\operatorname{Mod}_A \to \operatorname{Mod}_{\mathcal{O}_X}$ is left adjoint to the global sections functor $\Gamma \colon \operatorname{Mod}_{\mathcal{O}_X} \to \operatorname{Mod}_A$. That is, for $M \in \operatorname{Mod}_A$ and $\mathcal{F} \in \operatorname{Mod}_{\mathcal{O}_X}$, construct a natural isomorphism

 $\operatorname{Hom}_A(M, \Gamma(X, \mathcal{F})) \cong \operatorname{Hom}_{\mathcal{O}_X}(\widetilde{M}, \mathcal{F}).$

(You don't need to write out the details of why the isomorphism is functorial in M and \mathcal{F} , just construct the isomorphism.)

- 2. Let X = Spec(A) for an integral domain A with fraction field K. Let $\mathcal{F} = i_{p*}\underline{K}$ where i_p is the inclusion of a point $p \in X$ and \underline{K} is the constant sheaf with value K on $\{p\}$. Show that \mathcal{F} has a natural \mathcal{O}_X -module structure, and determine for which p it is quasi-coherent.
- 3. Consider the following finiteness conditions on an \mathcal{O}_X -module \mathcal{F} on a scheme X:
 - (i) \mathcal{F} is of finite type if for all $p \in X$ there exists an open neighborhood U of p, an integer $n \geq 0$ (depending on p), and an exact sequence $\mathcal{O}_U^n \to \mathcal{F}|_U \to 0$.
 - (ii) \mathcal{F} is of finite presentation if for all $p \in X$ there exists an open neighborhood U of p, integers $m, n \geq 0$ (depending on p), and an exact sequence $\mathcal{O}_{U}^{m} \to \mathcal{O}_{U}^{n} \to \mathcal{F}|_{U} \to 0$.
 - (iii) \mathcal{F} is *coherent* if it is of finite type and for every open subset $U \subset X$, every integer $n \geq 0$, and every \mathcal{O}_U -module map $u : \mathcal{O}_U^n \to \mathcal{F}|_U$, the kernel ker(u) is of finite type.

Now let X be a locally noetherian scheme. Prove the following:

- (a) \mathcal{F} is coherent if and only if \mathcal{F} is of finite presentation, if and only if \mathcal{F} is of finite type and quasi-coherent, if and only if for every open affine $U = \operatorname{Spec}(A) \subset X$ we have $\mathcal{F}|_U \cong \widetilde{M}$ for a finitely generated A-module M.
- (b) The full subcategory $\operatorname{Coh}(X) \subset \operatorname{QCoh}(X)$ of coherent sheaves is preserved under finite direct sums, kernels, and cokernels. Hence $\operatorname{Coh}(X)$ is an abelian category, as $\operatorname{QCoh}(X)$ is.
- 4. Let $f: X \to Y$ be a morphism of locally noetherian schemes.
 - (a) Show that if $\mathcal{G} \in \operatorname{Coh}(Y)$, then $f^*\mathcal{G} \in \operatorname{Coh}(X)$.
 - (b) Show that if f is a finite morphism and $\mathcal{F} \in \operatorname{Coh}(X)$, then $f_*\mathcal{F} \in \operatorname{Coh}(Y)$. *Remark*: A fundamental result that you will eventually learn about is that this is true more generally for f a proper morphism.
 - (c) Give an example where X and Y are varieties over a field and $\mathcal{F} \in \operatorname{Coh}(X)$ is a coherent sheaf on X, but $f_*\mathcal{F}$ is not coherent.

5. This problem does not need to be submitted:

Let $i: Z \to X$ be a closed immersion of schemes. Let $\mathcal{I} \subset \mathcal{O}_X$ be the quasi-coherent ideal sheaf corresponding to Z.

(a) Show that the functor

$$i_* \colon \operatorname{Mod}_{\mathcal{O}_Z} \to \operatorname{Mod}_{\mathcal{O}_X}$$

is exact and fully faithful, with essential image consisting of \mathcal{O}_X -modules \mathcal{G} such that $\mathcal{I} \cdot \mathcal{G} = 0$. Here, $\mathcal{I} \cdot \mathcal{G}$ is defined as the image of the multiplication map $\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{G} \to \mathcal{G}$, induced by the multiplication map $\mathcal{I}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U) \to \mathcal{G}(U)$ on opens $U \subset X$.

- (b) Deduce that the analogous statement holds for the restriction of i_* to the subcategory $\operatorname{QCoh}(Z) \subset \operatorname{Mod}_{\mathcal{O}_Z}$.
- 6. Recall that if \mathcal{F} is a sheaf of abelian groups on a topological space X, then its support $\operatorname{Supp}(\mathcal{F}) \subset X$ is the subset of $p \in X$ such that $\mathcal{F}_p \neq 0$.
 - (a) Give an example of a quasi-coherent sheaf on a scheme whose support is not closed.
 - (b) Show that if \mathcal{F} is a finite type \mathcal{O}_X -module on a scheme X, then $\operatorname{Supp}(\mathcal{F}) \subset X$ is closed.

For the rest of this problem we assume that \mathcal{F} is a finite type quasi-coherent sheaf on a scheme X. Note that if $U \subset \mathcal{F}$ is an open subset and $f \in \mathcal{O}_X(U)$, then there is a map of sheaves $f \colon \mathcal{F}|_U \to \mathcal{F}|_U$ given on an open subset $V \subset U$ by multiplication by $f|_V$. We define the *annihilator* Ann (\mathcal{F}) of \mathcal{F} by the formula

$$\operatorname{Ann}(\mathcal{F})(U) = \{ f \in \mathcal{O}_X(U) \mid f \colon \mathcal{F}|_U \to \mathcal{F}|_U \text{ is } 0 \}.$$

- (c) Show that $\operatorname{Ann}(\mathcal{F})$ is a quasi-coherent sheaf of ideals on \mathcal{O}_X .
- (d) In class we will see that for any quasi-coherent sheaf of ideals \mathcal{I} , there is an associated closed subscheme $V(\mathcal{I}) \subset X$. Show that the underlying topological space of $V(\operatorname{Ann}(\mathcal{F}))$ is equal to $\operatorname{Supp}(\mathcal{F})$ — we thus call $V(\operatorname{Ann}(\mathcal{F}))$ the scheme theoretic support of \mathcal{F} — and give an example of two finite type quasi-coherent sheaves $\mathcal{F}_1, \mathcal{F}_2$ on a scheme X which have $\operatorname{Supp}(\mathcal{F}_1) = \operatorname{Supp}(\mathcal{F}_2)$ but different scheme theoretic support.
- (e) Let $i: Z = V(\operatorname{Ann}(\mathcal{F})) \to X$ be the closed immersion described above. Show that there exists $\mathcal{G} \in \operatorname{QCoh}(Z)$ such that $i_*\mathcal{G} \cong \mathcal{F}$.