Algebraic Geometry I, Fall 2021 Problem Set 3

Due Friday, September 24, 2021 at 5 pm

- 1. Read the statement of Yoneda's Lemma and work out the proof for yourself (see e.g. §1.3.10 of *Foundations of Algebraic Geometry* by Vakil). With this in mind, revisit the proof from class that $(g \circ f)^{-1}(\mathcal{H}) \cong f^{-1}g^{-1}(\mathcal{H})$ for continuous maps $f: X \to Y$ and $g: Y \to Z$ of topological spaces and $\mathcal{H} \in Sh(Z)$. For this problem, you do not need to submit any written work.
- 2. Let $f: X \to Y$ be a continuous map of topological spaces.
 - (a) Prove that the inverse image functor f^{-1} : Ab $(Y) \to$ Ab(X) between categories of abelian sheaves is *exact*, i.e. if $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ is an exact sequence in Ab(Y) then

$$0 \to f^{-1}\mathcal{F} \to f^{-1}\mathcal{G} \to f^{-1}\mathcal{H} \to 0$$

is an exact sequence in Ab(X).

(b) Prove that the pushforward functor $f_*: \operatorname{Ab}(X) \to \operatorname{Ab}(Y)$ between categories of abelian sheaves is *left exact*, i.e. if $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H}$ is an exact sequence in $\operatorname{Ab}(X)$ then

$$0 \to f_*\mathcal{F} \to f_*\mathcal{G} \to f_*\mathcal{H}$$

is an exact sequence in Ab(Y).

- (c) Show that the pushforward functor $f_*: Ab(X) \to Ab(Y)$ is not exact in general.
- 3. Let X be a topological space, and let \mathcal{B} be a basis for the topology of X which is closed under intersections, i.e. for $U_1, U_2 \in \mathcal{B}$ we have $U_1 \cap U_2 \in \mathcal{B}$. In class, given a sheaf of sets \mathcal{F} on \mathcal{B} , we defined a presheaf \mathcal{F}_X on X by the formula

$$\mathcal{F}_X(U) = \lim_{V \subset U, V \in \mathcal{B}} \mathcal{F}(V) \text{ for opens } U \subset X,$$

with the natural restriction maps.

- (a) Prove that \mathcal{F}_X is a sheaf on X such that $\mathcal{F}_X(U) = \mathcal{F}(U)$ for all $U \in \mathcal{B}$.
- (b) Prove that there is an equivalence between the category Sh(X) and the category of sheaves on \mathcal{B} . For this part of the problem, you do not need to submit any written work.
- 4. Let A be a ring and let $S \subset A$ be a multiplicative set. Prove that there is an isomorphism of rings

$$S^{-1}A \cong \operatorname{colim}_{f \in S} A_f,$$

where the maps appearing in the colimit diagram are, for every $f \in S$ dividing $f' \in S$, the canonical map $A_f \to A_{f'}$ (coming from the fact that f is invertible in $A_{f'}$).

5. Let A be a ring and let M be an A-module.

- (a) By imitating our construction of $\mathcal{O}_{\text{Spec}(A)}$ from class, construct a sheaf \widetilde{M} on Spec(A)whose sections over any distinguished open D(f) are given by the A_f -module M_f . Moreover, observe that \widetilde{M} is an $\mathcal{O}_{\text{Spec}(A)}$ -module (see §2.2.13 of Foundations of Algebraic Geometry by Vakil for the general definition of an \mathcal{O}_X -module on a ringed space (X, \mathcal{O}_X)). For this part of the problem, you do not need to submit any written work.
- (b) Describe the stalk of \widetilde{M} at a point $\mathfrak{p} \in \operatorname{Spec}(A)$ as an $A_{\mathfrak{p}}$ -module.
- 6. Let $X = \mathbf{C}$ with the Euclidean topology. Let \mathcal{F} be the presheaf of abelian groups given on open subsets $U \subset X$ by

$$\mathcal{F}(U) = \begin{cases} \mathbf{Z} & \text{if } U = X, \\ 0 & \text{if } U \neq X, \end{cases}$$

with the natural restriction maps. Give a formula for the sections $\mathcal{F}^{\mathrm{sh}}(U)$ of the sheafification $\mathcal{F}^{\mathrm{sh}}$ over any open $U \subset X$.