Algebraic Geometry I, Fall 2021 Problem Set 4

Due Friday, October 1, 2021 at 5 pm

- 1. Give an example of a locally ringed space (X, \mathcal{O}_X) whose underlying topological space X consists of 1 point, but (X, \mathcal{O}_X) is not a scheme.
- 2. Let X be a scheme whose underlying topological space has ≤ 2 points. Prove that X is an affine scheme.
- 3. Let $X = \{x, y, y'\}$ be a three point set. Topologize X by declaring the open sets to be $\emptyset, \{x\}, \{x, y\}, \{x, y'\}$, and X. Fix a prime number $p \in \mathbf{Z}$ and define a presheaf of rings \mathcal{O}_X on X by setting

$$\mathcal{O}_X(X) = \mathcal{O}_X(\{x,y\}) = \mathcal{O}_X(\left\{x,y'\right\}) = \mathbf{Z}_{(p)}, \quad \mathcal{O}_X(\{x\}) = \mathbf{Q}, \quad \mathcal{O}_X(\varnothing) = 0,$$

where the restriction maps $\mathcal{O}_X(X) \to \mathcal{O}_X(\{x,y\})$ and $\mathcal{O}_X(X) \to \mathcal{O}_X(\{x,y'\})$ are the identity maps, and $\mathcal{O}_X(\{x,y\}) \to \mathcal{O}_X(\{x\})$ and $\mathcal{O}_X(\{x,y'\}) \to \mathcal{O}_X(\{x\})$ are the natural inclusions.

- (a) Check that the presheaf defined above is a sheaf, and that (X, \mathcal{O}_X) is a scheme.
- (b) Prove that (X, \mathcal{O}_X) is not an affine scheme.
- 4. Let X be a nonempty quasi-compact scheme. Prove that there exists a closed point of X.
- 5. Show by example that the intersection of two affine open subschemes of a scheme X is not necessarily an affine open subscheme.
- 6. Prove that for any ring A, there is an isomorphism $\Gamma(\mathbf{P}_A^n, \mathcal{O}_{\mathbf{P}_A^n}) \cong A$, where \mathbf{P}_A^n is projective n-space over A, defined as in class via glueing.
- 7. (a) Let X and Y be locally ringed spaces. If $U \subset X$ is an open subset, then we regard U as a locally ringed space with structure sheaf $\mathcal{O}_U = \mathcal{O}_X|_U$. Show that if $X = \bigcup_{i \in I} U_i$ is an open cover and $f_i \colon U_i \to Y$ are morphisms of locally ringed spaces such that $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ for all $i, j \in I$, then there is a unique morphism $f \colon X \to Y$ of locally ringed spaces such that $f|_{U_i} = f_i$ for all $i \in I$.

More succinctly: the functor $U \mapsto \operatorname{Hom}_{LRS}(U,Y)$ is a sheaf of sets on X.

(b) Let X be a topological space and $X = \bigcup_{i \in I} U_i$ an open cover. Suppose we are given a sheaf (of say sets) \mathcal{F}_i on U_i for each $i \in I$, together with isomorphisms

$$\phi_{ij} \colon \mathcal{F}_i|_{U_i \cap U_j} \xrightarrow{\sim} \mathcal{F}_j|_{U_i \cap U_j}$$

for $i, j \in I$. Further, for every $i, j, k \in I$, suppose that on the open subset $U_i \cap U_j \cap U_k$ we have $\phi_{jk} \circ \phi_{ij} = \phi_{ik}$, where by abuse of notation we have written ϕ_{ij} still for the isomorphism $\mathcal{F}_i|_{U_i \cap U_j \cap U_k} \xrightarrow{\sim} \mathcal{F}_j|_{U_i \cap U_j \cap U_k}$ given by the restriction of ϕ_{ij} (and similarly for ϕ_{jk}, ϕ_{ik}). Prove that there is a sheaf \mathcal{F} on X together with isomorphisms $\psi_i \colon \mathcal{F}|_{U_i} \to \mathcal{F}_i$ such that $\phi_{ij} \circ \psi_i = \psi_j$ on $U_i \cap U_j$ for all $i, j \in I$.

(c) Check the details of the general glueing lemma for schemes from class. For this part of the problem, you do not need to submit any written work.