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The relative Ginzburg algebra

Let k be a field, Q a quiver and F ⊂ Q a subquiver.
Define Qn(F ) to be the graded quiver consisting of

• g : v → w in degree 0 for each g : v → w in Q1.
• g∗ : w → v in degree 2 − n for each g : v → w in Q1 ∖ F1.
• hv : v → v in degree 1 − n for each v ∈ Q0 ∖ F0.

• • •α β

• • •α β

β∗

h
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The relative Ginzburg algebra
The n-dimensional relative Ginzburg algebra Gn(Q, F ) is the path
algebra kQn(F ) equipped with the differential defined by

dg = dg∗ = 0, dhv :=
∑

g : v→•
gg∗ −

∑
g : •→v

g∗g

Example

• • •α β

• • •α β

β∗

h

dα = dβ = dβ∗ = 0, dh = β∗β.

There is in general a natural map Gn−1(F ) → Gn(Q, F ).
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The Chekanov–Eliashberg algebra

The Chekanov–Eliashberg algebra is a dg-algebra defined for
Legendrian submanifolds of contact manifolds.

• Quasi-isomorphism class: Invariant of the Legendrian isotopy
class.

• Floer theory and Fukaya categories.
• “Computable”
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Main result
Theorem A (A.)
Let (Q, F ) be a quiver pair and let n ≥ 4. Then there exists a
(2n − 1)-dimensional contact manifold Y (Q) and a singular
(n − 1)-dimensional Legendrian submanifold Λ(Q, F ) ⊂ Y (Q)
such that:

1. There is a quasi-isomorphism of dg-algebras
CE∗(Λ(Q, F ); Y (Q)) ∼= Gn(Q, F ).

2. There is a canonical dg-subalgebra B ⊂ CE∗(Λ(Q, F ); Y (Q))
and a quasi-isomorphism of dg-algebras B ∼= Gn−1(F ) such
that the following diagram commutes

B CE∗(Λ(Q, F ); Y (Q))

Gn−1(F ) Gn(Q, F )

∼= ⟲ ∼=
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_ _ _

• The proof is constructive and every quasi-isomorphism in fact
comes from an explicit chain homotopy equivalence.

• Λ(Q, F ) is singular if and only if F1 ̸= ∅.
• If F1 = ∅, then there is a quasi-isomorphism
B ∼= C−∗(ΩΛ(F )) where Λ(F ) ⊂ Λ(Q, F ) are the frozen
components.



Main result Contact geometry and Legendrians The Chekanov–Eliashberg algebra Construction and computations

The natural map Gn−1(F ) → Gn(Q, F ) admits a strong relative
smooth n-Calabi–Yau structure
Corollary
The canonical inclusion B ↪→ CE∗(Λ(Q, F ); Y (Q)) admits a
strong relative smooth n-Calabi–Yau structure.

Known results
• Strong smooth n-Calabi–Yau structure on the wrapped

Fukaya category (Ganatra 2012,2019, Shende–Takeda 2016 +
Ganatra–Pardon–Shende 2024)

• Weak smooth (relative) n-Calabi–Yau structure on the
Chekanov–Eliashberg algebra (Legout 2023, Dimitroglou
Rizell–Legout in progress)

• Other related variants on augmentation categories (Chen in
progress, Sabloff–Ma in progress)
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Contact geometry and Legendrians
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Contact geometry

• A contact manifold is a tuple (Y 2n+1, ξ) where ξ is a
hyperplane field on Y , such that ξ = ker α and
α ∧ (dα)∧n ̸= 0.

• An n-dimensional submanifold Λ ⊂ Y is Legendrian if and
only if TxΛ ⊂ ξx for every x.

Figures from [Massot, Patrick. “Topological methods in 3-dimensional contact geometry.” Contact and

symplectic topology 26 (2014): 27–83.]
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Contact geometry
Example
The standard contact structure on R2n+1 ∋ (x1, y1, . . . , xn, yn, z)
is given by ξstd := ker αstd where

αstd := dz −
n∑

i=1
yidxi.

The Reeb vector field is the unique vector field Rα satisfying
1. dα(Rα, −) = 0
2. α(Rα) = 1

Example
The Reeb vector field associated to (R2n+1, αstd) is given by
Rαstd = ∂z.
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Legendrian knots
Study Legendrian embeddings S1 ↪→ R3 via two projections

πfront(x, y, z) := (x, z), πLagrangian(x, y, z) := (x, y).

Figure: An unknot

• Front: No vertical tangencies! Legendrian if and only if
y(t) = ż(t)/ẋ(t).

• Legendrian condition ensures unique lifts (up to a shift in the
Lagrangian case).
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The unknot is not unique(!)

̸≃

̸≃

Figure: Two non-isotopic Legendrian representatives of the smooth
unknot
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A Legendrian Hopf link

In the front always means due to the Legendrian condition
y = dz/dx.
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A Legendrian θ-graph
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A singular Legendrian Hopf link
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The Chekanov–Eliashberg algebra
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Setup
• (Y 2n−1, α) contact manifold that is the boundary of a

Weinstein domain (a kind of symplectic manifold with
boundary).

• Λ ⊂ Y singular or smooth Legendrian.

A Reeb chord of Λ is a trajectory of the Reeb vector field that
starts and ends at Λ.
The algebra
CE∗(Λ; Y ) is the free associative non-commutative algebra
generated by all Reeb chords of Λ.

x

y

Reeb chords in the Lagrangian projection correspond to double
points!
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Grading

a

|a| = 1
2

− 2FracRot(a) = 1
2

− 2 · 3
4

= −1.
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Differential
Defined by “counting” holomorphic maps from a boundary
punctured disk to the almost complex manifold R × Y

+

−−

−

u
−−−−−→

R×ΛR×Λ

c

R×ΛR×Λ

b3b2b1

R

∂c = b1b2b3 + · · ·

dimM(c; b1b2b3) = −|c| + |b1| + |b2| + |b3| − 1,

if dimension is 0 ⇝ count elements
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Combinatorially

Decorate all crossings with signs
−

−
++ and count “polygons” in

the plane.
Example (Unknot)

++
−

−

a

++
−

−

a

CE∗(unknot;R3) = Z2 ⟨a⟩ , |a| = −1, da = 1 + 1 = 0.

Note: This is equal to G2(•).
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Hopf link

CE∗(Hopf;R3) = Z2
⟨
a1, a2, p, p∗⟩

|a1| = |a2| = −1, |p| = |p∗| = 0

p∗

p

a1 a2
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Hopf link

CE∗(Hopf;R3) = Z2
⟨
a1, a2, p, p∗⟩

, |a1| = |a2| = −1, |p| = |p∗| = 0.

−

−
++++

+

+

p∗

p

−

−

a1 a2
−

−
++++

+

+

p∗

p

−

−

a1 a2

−

−
++++

+

+

p∗

p

−

−

a1 a2

da1 = 1 + 1 + pp∗ = pp∗

da2 = p∗p

dp = dp∗ = 0.

Note: This is equal to G2(1• p→ 2•).
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Construction and computations
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Idea of construction (acyclic case)

Assuming Q is acyclic we take Y (Q) = R2n−1.
The Legendrian Λ(Q, F ) is as follows:

• Each non-frozen vertex ↔ unknot
• Each frozen vertex ↔ unknot “with basepoint”
• Each non-frozen arrow ↔ two adjacent unknots link
• Each frozen arrow ↔ two adjacent unknots intersect

_ _ _
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Frozen vertex

CE∗(based unknot;R3) = Z2⟨a, t±1⟩, |a| = −1, |t±1| = 0

++
−

−

a t

++
−

−

a t

da = t + 1, dt±1 = 0

We then have a quasi-isomorphism

CE∗(based unknot;R3) ∼= Z2 = G2(•, •).

Note: B = Z2⟨t±1⟩ ∼= C−∗(ΩS1;Z2) and
Z2⟨t±1⟩ ⊂ CE∗(based unknot;R3) subalgebra is equal to G1(•).
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Low dimension is tricky

•

• • •
β∗

α∗
β

γ

α

h

γ∗

dh = αα∗ + ββ∗ + γγ∗

γ∗

γ

α

α∗

β∗ β

h

dh = αα∗ +ββ∗ +γγ∗ +γγ∗ββ∗

Good news
Extra term only exists when n = 2. This is the case of Legendrian
knots in R3.
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Hopf link again (in high dim)

p∗

p

a1 a2

CE∗(Hopf;R2n−1) = Z2 ⟨a1, a2, p, p∗⟩

|a1| = |a2| = 1 − n, |p| = 0, |p∗| = 2 − n

da1 = pp∗, da2 = p∗p.
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Singular Hopf link (in high dim)

−
++++

+

c

H

−a1 a2

Hidden in the “point” H is CE∗(Hopf;R2n−3). Denote those
generators by b1, b2, q, q∗. Then

CE∗(SingHopf;R2n−1) = Z2
⟨
a1, a2, c, b1, b2, q, q∗⟩

|a1| = |a2| = 1−n, |b1| = |b2| = |c| = 2−n, |q∗| = 3−n, |q| = 0.
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Singular Hopf link (in high dim)

−
++++

+

c

H

−a1 a2
−

++++
+

c

H

−a1 a2

−
++++

+

c

H

−a1 a2

da1 = b1 + qc, db1 = qq∗

da2 = b2 + cq, db2 = q∗q

dc = q∗, dq = dq∗ = 0

Quasi-isomorphic to Gn(• → •, • → •). Dg-subalgebra at H is
quasi-isomorphic to Gn−1(• → •).
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Idea of construction and proof (general case)
1. Take one copy of R2n−1 for each vertex of Q, and for each

arrow in Q, we take the “connected sum” between the various
copies of R2n−1.

2. The Legendrian Λ(Q, F ) is constructed as described earlier,
but stretches globally over the various copies of R2n−1.

Example

• •

R2n−1 R2n−1
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Idea of construction and proof (general case)

3. Main technical tool: Gluing formula for Chekanov–Eliashberg
algebras to compute via local pieces that are similar to the
examples we have seen.

4. Write down explicit chain homotopy equivalence



Thank you!
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