Relative Ginzburg algebras and Chekanov–Eliashberg dg-algebras

Johan Asplund

Stony Brook University

Paris Algebra Seminar January 15, 2024
 Main result
 Contact geometry and Legendrians
 The Chekanov–Eliashberg algebra
 Construction and computations

 •0000000
 •0000000
 •0000000
 •0000000
 •0000000

Main result

The relative Ginzburg algebra

Let k be a field, Q a quiver and $F \subset Q$ a subquiver. Define $\overline{Q}_n(F)$ to be the graded quiver consisting of

- $g: v \to w$ in degree 0 for each $g: v \to w$ in Q_1 .
- $g^*: w \to v$ in degree 2-n for each $g: v \to w$ in $Q_1 \smallsetminus F_1$.
- $h_v: v \to v$ in degree 1 n for each $v \in Q_0 \setminus F_0$.

The relative Ginzburg algebra

The *n*-dimensional relative Ginzburg algebra $\mathcal{G}_n(Q, F)$ is the path algebra $k\overline{Q}_n(F)$ equipped with the differential defined by

$$dg = dg^* = 0, \qquad dh_v := \sum_{g: v \to \bullet} gg^* - \sum_{g: \bullet \to v} g^*g$$

Example

There is in general a natural map $\mathfrak{G}_{n-1}(F) \to \mathfrak{G}_n(Q, F)$.

The Chekanov–Eliashberg algebra

The Chekanov–Eliashberg algebra is a dg-algebra defined for *Legendrian submanifolds* of *contact manifolds*.

- Quasi-isomorphism class: Invariant of the Legendrian isotopy class.
- Floer theory and Fukaya categories.
- "Computable"

Main result

Theorem A (A.)

Let (Q, F) be a quiver pair and let $n \ge 4$. Then there exists a (2n-1)-dimensional contact manifold Y(Q) and a singular (n-1)-dimensional Legendrian submanifold $\Lambda(Q, F) \subset Y(Q)$ such that:

- 1. There is a quasi-isomorphism of dg-algebras $CE^*(\Lambda(Q,F);Y(Q)) \cong \mathfrak{G}_n(Q,F).$
- 2. There is a canonical dg-subalgebra $\mathcal{B} \subset CE^*(\Lambda(Q,F);Y(Q))$ and a quasi-isomorphism of dg-algebras $\mathcal{B} \cong \mathcal{G}_{n-1}(F)$ such that the following diagram commutes

$$\begin{array}{cccc} \mathcal{B} & & & CE^*(\Lambda(Q,F);Y(Q)) \\ & & & & \\ \downarrow \cong & & & \\ \mathcal{G}_{n-1}(F) & & & \\ \end{array} \\ \begin{array}{cccc} \mathcal{B}_n(Q,F) \end{array}$$

- The proof is constructive and every quasi-isomorphism in fact comes from an explicit chain homotopy equivalence.
- $\Lambda(Q, F)$ is singular if and only if $F_1 \neq \emptyset$.
- If $F_1 = \emptyset$, then there is a quasi-isomorphism $\mathcal{B} \cong C_{-*}(\Omega \Lambda(F))$ where $\Lambda(F) \subset \Lambda(Q,F)$ are the frozen components.

The natural map ${\mathfrak G}_{n-1}(F)\to {\mathfrak G}_n(Q,F)$ admits a strong relative smooth n-Calabi-Yau structure

Corollary

The canonical inclusion $\mathcal{B} \hookrightarrow CE^*(\Lambda(Q,F);Y(Q))$ admits a strong relative smooth n-Calabi–Yau structure.

Known results

- Strong smooth *n*-Calabi-Yau structure on the wrapped Fukaya category (Ganatra 2012,2019, Shende-Takeda 2016 + Ganatra-Pardon-Shende 2024)
- Weak smooth (relative) *n*-Calabi-Yau structure on the Chekanov-Eliashberg algebra (Legout 2023, Dimitroglou Rizell-Legout in progress)
- Other related variants on augmentation categories (Chen in progress, Sabloff–Ma in progress)

Contact geometry and Legendrians

Contact geometry

- A contact manifold is a tuple (Y^{2n+1}, ξ) where ξ is a hyperplane field on Y, such that $\xi = \ker \alpha$ and $\alpha \wedge (d\alpha)^{\wedge n} \neq 0$.
- An n-dimensional submanifold Λ ⊂ Y is Legendrian if and only if T_xΛ ⊂ ξ_x for every x.

Figures from [Massot, Patrick. "Topological methods in 3-dimensional contact geometry." Contact and symplectic topology 26 (2014): 27–83.]

Contact geometry

Example

The standard contact structure on $\mathbb{R}^{2n+1} \ni (x_1, y_1, \dots, x_n, y_n, z)$ is given by $\xi_{\text{std}} := \ker \alpha_{\text{std}}$ where

$$\alpha_{\text{std}} := dz - \sum_{i=1}^{n} y_i dx_i.$$

The *Reeb vector field* is the unique vector field R_{α} satisfying

- 1. $d\alpha(R_{\alpha}, -) = 0$
- $2. \ \alpha(R_{\alpha}) = 1$

Example

The Reeb vector field associated to $(\mathbb{R}^{2n+1},\alpha_{\rm std})$ is given by $R_{\alpha_{\rm std}}=\partial_z.$

Legendrian knots

Study Legendrian embeddings $S^1 \hookrightarrow \mathbb{R}^3$ via two projections

$$\pi_{\mathsf{front}}(x,y,z) \mathrel{\mathop:}= (x,z), \qquad \pi_{\mathsf{Lagrangian}}(x,y,z) \mathrel{\mathop:}= (x,y).$$

Figure: An unknot

- Front: No vertical tangencies! Legendrian if and only if $y(t) = \dot{z}(t)/\dot{x}(t).$
- Legendrian condition ensures unique lifts (up to a shift in the Lagrangian case).

The unknot is not unique(!)

Figure: Two non-isotopic Legendrian representatives of the smooth unknot

A Legendrian Hopf link

In the front \times always means \times due to the Legendrian condition y=dz/dx.

A Legendrian θ -graph

A singular Legendrian Hopf link

The Chekanov–Eliashberg algebra

Setup

- (Y^{2n-1}, α) contact manifold that is the boundary of a *Weinstein domain* (a kind of symplectic manifold with boundary).
- $\Lambda \subset Y$ singular or smooth Legendrian.

A Reeb chord of Λ is a trajectory of the Reeb vector field that starts and ends at $\Lambda.$

The algebra

 $CE^*(\Lambda;Y)$ is the free associative non-commutative algebra generated by all Reeb chords of $\Lambda.$

Reeb chords in the Lagrangian projection correspond to double points!

Grading

$$|a| = \frac{1}{2} - 2 \mathrm{FracRot}(a) = \frac{1}{2} - 2 \cdot \frac{3}{4} = -1.$$

Differential

Defined by "counting" holomorphic maps from a boundary punctured disk to the almost complex manifold $\mathbb{R} \times Y$

 $\partial c = b_1 b_2 b_3 + \cdots$

$$\dim \overline{\mathcal{M}}(c; b_1 b_2 b_3) = -|c| + |b_1| + |b_2| + |b_3| - 1,$$

if dimension is $0 \rightsquigarrow \text{count elements}$

Combinatorially

Decorate all crossings with signs + and count "polygons" in the plane.

Example (Unknot)

 $CE^*(\text{unknot}; \mathbb{R}^3) = \mathbb{Z}_2 \langle a \rangle, \quad |a| = -1, \quad da = 1 + 1 = 0.$ Note: This is equal to $\mathcal{G}_2(\bullet)$.

Hopf link

$$CE^*(\mathsf{Hopf}; \mathbb{R}^3) = \mathbb{Z}_2 \langle a_1, a_2, p, p^* \rangle$$

 $|a_1| = |a_2| = -1, \ |p| = |p^*| = 0$

Hopf link

$$CE^*(\mathsf{Hopf};\mathbb{R}^3) = \mathbb{Z}_2\langle a_1, a_2, p, p^* \rangle, \quad |a_1| = |a_2| = -1, \ |p| = |p^*| = 0.$$

$$da_1 = 1 + 1 + pp^* = pp^*$$
$$da_2 = p^*p$$
$$dp = dp^* = 0.$$

Note: This is equal to $\mathcal{G}_2(\stackrel{1}{\bullet} \stackrel{p}{\rightarrow} \stackrel{2}{\bullet}).$

Construction and computations

Idea of construction (acyclic case)

Assuming Q is acyclic we take $Y(Q) = \mathbb{R}^{2n-1}$. The Legendrian $\Lambda(Q, F)$ is as follows:

- Each non-frozen vertex \leftrightarrow unknot
- Each frozen vertex \leftrightarrow unknot "with basepoint"
- Each non-frozen arrow \leftrightarrow two adjacent unknots link
- Each frozen arrow \leftrightarrow two adjacent unknots intersect

Frozen vertex

$$CE^*(\mathsf{based} \; \mathsf{unknot}; \mathbb{R}^3) = \mathbb{Z}_2 \langle a, t^{\pm 1}
angle, \quad |a| = -1, \; |t^{\pm 1}| = 0$$

 $da = t + 1, dt^{\pm 1} = 0$

We then have a quasi-isomorphism

$$CE^*(\mathsf{based unknot}; \mathbb{R}^3) \cong \mathbb{Z}_2 = \mathfrak{G}_2(\bullet, \bullet).$$

Note: $\mathcal{B} = \mathbb{Z}_2 \langle t^{\pm 1} \rangle \cong C_{-*}(\Omega S^1; \mathbb{Z}_2)$ and $\mathbb{Z}_2 \langle t^{\pm 1} \rangle \subset CE^*$ (based unknot; \mathbb{R}^3) subalgebra is equal to $\mathcal{G}_1(\bullet)$.

Low dimension is tricky

 $dh = \alpha \alpha^* + \beta \beta^* + \gamma \gamma^* \qquad dh = \alpha \alpha^* + \beta \beta^* + \gamma \gamma^* + \gamma \gamma^* \beta \beta^*$

Good news

Extra term only exists when n = 2. This is the case of Legendrian knots in \mathbb{R}^3 .

Hopf link again (in high dim)

 $CE^*(\mathsf{Hopf};\mathbb{R}^{2n-1}) = \mathbb{Z}_2\langle a_1,a_2,p,p^* \rangle$

$$|a_1| = |a_2| = 1 - n, \quad |p| = 0, \quad |p^*| = 2 - n$$

 $da_1 = pp^*, \quad da_2 = p^*p.$

Singular Hopf link (in high dim)

Hidden in the "point" H is $CE^*(Hopf; \mathbb{R}^{2n-3})$. Denote those generators by b_1, b_2, q, q^* . Then

$$CE^*(\mathsf{SingHopf}; \mathbb{R}^{2n-1}) = \mathbb{Z}_2 \langle a_1, a_2, c, b_1, b_2, q, q^* \rangle$$
$$a_1| = |a_2| = 1-n, \quad |b_1| = |b_2| = |c| = 2-n, \quad |q^*| = 3-n, \quad |q| = 0.$$

0000000000

Singular Hopf link (in high dim)

$$da_{1} = b_{1} + qc, \quad db_{1} = qq^{*}$$

$$da_{2} = b_{2} + cq, \quad db_{2} = q^{*}q$$

$$dc = q^{*}, \qquad dq = dq^{*} = 0$$

Quasi-isomorphic to $\mathfrak{G}_n(\bullet \to \bullet, \bullet \to \bullet)$. Dg-subalgebra at H is quasi-isomorphic to $\mathfrak{G}_{n-1}(\bullet \to \bullet)$.

Idea of construction and proof (general case)

- 1. Take one copy of \mathbb{R}^{2n-1} for each vertex of Q, and for each arrow in Q, we take the "connected sum" between the various copies of \mathbb{R}^{2n-1} .
- 2. The Legendrian $\Lambda(Q, F)$ is constructed as described earlier, but stretches globally over the various copies of \mathbb{R}^{2n-1} .

Example

Idea of construction and proof (general case)

- 3. Main technical tool: Gluing formula for Chekanov–Eliashberg algebras to compute via local pieces that are similar to the examples we have seen.
- 4. Write down explicit chain homotopy equivalence

Thank you!