Chekanov-Eliashberg dg-algebras and partially wrapped Floer cohomology

Johan Asplund

Uppsala University

June 4, 2021

Outline

Introduction:

Paper I:

Paper II:

Introduction

Symplectic and contact geometry

Topology is about shapes

In symplectic geometry we can measure areas

Symplectic geometry

Symplectic manifold
A symplectic form on an even dimensional manifold $M^{2 n}$ is a two-form $\omega \in \Omega^{2}(M)$ satisfying

1. $d \omega=0$
2. $\omega \underbrace{\wedge \cdots \wedge}_{n} \omega \neq 0$

We call (M, ω) a symplectic manifold.
Lagrangian submanifold
A half-dimensional submanifold $L^{n} \subset M^{2 n}$ is called Lagrangian if $\left.\omega\right|_{T L}=0$.

Flexibility and rigidity

Flexibility

The h-principle.

Many interesting and important problems lie at the "boundary" of flexibility and rigidity.

Rigidity
Symplectic geometry poses many constraints and restrictions.
Gromov's J-holomorphic curves are often used to "measure" to what extent the geometry is constrained.

Rigidity: Gromov's non-squeezing theorem

Fig. 1.3. The symplectic camel.

Contact geometry

Contact structure
A contact structure on an odd-dimensional manifold $M^{2 n+1}$ is a hyperplane distribution

ξ such that locally $\xi=\operatorname{ker} \alpha$ and
$\alpha \wedge(d \alpha)^{\wedge n} \neq 0$.
Figure: Standard
contact structure on \mathbb{R}^{3}.

Legendrian submanifold
An n-dimensional submanifold $\Lambda^{n} \subset M^{2 n+1}$ is called Legendrian if $T \Lambda \subset \xi$.

Weinstein domains

A Weinstein domain (M, λ, f) consists of

- A smooth manifold-with-boundary M.
- A one-form λ such that $d \lambda$ is a symplectic form on M.
- $\left.\lambda\right|_{\partial M}$ is a contact form on ∂M.
- The vector field Z defined by $d \lambda(Z,-)=\lambda$ points outwards along ∂M.
- $f: M \longrightarrow \mathbb{R}$ Morse function such that Z is pseudo-gradient for f.

Floer theory and the Chekanov-Eliashberg dg-algebra

Floer theory

Goal: Study a Lagrangian submanifold L by studying an invariant of L known as wrapped Floer cohomology.

Let $\varphi_{H}^{1}(L)$ be a Hamiltonian push-off of L. Then consider a cochain complex of \mathbb{Z}_{2}-vector spaces

$$
C W^{*}(L):=\mathbb{Z}_{2}\left\langle L \cap \varphi_{H}^{1}(L)\right\rangle .
$$

Let $\mathcal{M}(x, y)$ be the space of holomorphic maps

$$
d u+J \circ d u \circ j=0
$$

Wrapped Floer cohomology

Define

$$
\partial x=\sum_{|y|=|x|+1}\left(\#_{2} \mathcal{M}(x, y)\right) y .
$$

Then $\left(C W^{*}(L), \partial\right)$ is a cochain complex, and its cohomology is invariant under Hamiltonian isotopies of L.

Can define multiplication maps and extend this to an A_{∞}-algebra

The Chekanov-Eliashberg dg-algebra

 In a similar spirit, we can study Legendrian submanifolds $\Lambda \subset \partial M$ in the contact boundary of a Weinstein manifold.Study J-holomorphic disks in the symplectization $\mathbb{R} \times \partial M$ with boundary on $\mathbb{R} \times \Lambda$. This produces a dg-algebra called the Chekanov-Eliashberg dg-algebra $C E^{*}(\Lambda)$.

Paper I

Setup and main results

Introduction

Let M be a closed, orientable and spin n-manifold. Consider $\left(T^{*} M, \lambda=p d q\right)$ and $F=T_{\xi}^{*} M$ a cotangent fiber.

Let $K \subset M$ be a submanifold and

$$
\Lambda_{K}:=\left\{(x, p)\left|x \in K,|p|=1,\left\langle p, T_{x} K\right\rangle=0\right\} \subset S T^{*} M\right.
$$

- Construct a new Weinstein manifold $W_{K}=T^{*} M$ stopped at Λ_{K}. Denote the wrapped Floer cohomology of F in W_{K} by $H W_{\Lambda_{K}}^{*}(F)$.

Main results

Theorem A
Let $M_{K}:=M \backslash K$. There is an isomorphism of A_{∞}-algebras $\Psi: C W_{\Lambda_{K}}^{*}(F) \longrightarrow C_{-*}^{\text {cell }}\left(B_{\xi} M_{K}\right)$.

Remark
In particular we have an A_{∞}-quasi-isomorphism
$C W_{\Lambda_{K}}^{*}(F) \cong C_{-*}\left(\Omega_{\xi} M_{K}\right)$, and the above result holds true for $K=\varnothing$. (cf. Abbondandolo-Schwarz 2008, Abouzaid 2012).

Theorem B
Ψ induces an isomorphism of $\mathbb{Z}\left[\pi_{1}\left(M_{K}\right)\right]$-modules
$H W_{\Lambda_{K}}^{*}(F) \longrightarrow H_{-*}\left(\Omega_{\xi} M_{K}\right)$.

Application to knot theory

For certain codimension 2 knots $K \subset S^{n}$, we show that $H W_{\Lambda_{K}}^{*}(F)$ is related to the Alexander invariant of K.
Theorem C
Let $n=5$ or $n \geq 7$. Then there exists a codimension 2 knot $K \subset S^{n}$ with $\pi_{1}\left(M_{K}\right) \cong \mathbb{Z}$ such that $\Lambda_{K} \cup \partial F \not 千 \Lambda_{\text {unknot }} \cup \partial F$.

Remark

Chekanov-Eliashberg dg-algebra of $\Lambda_{K} \cup \partial F \subset S T^{*} \mathbb{R}^{3}$ for knots $K \subset \mathbb{R}^{3}$ is a complete knot invariant (Ekholm-Ng-Shende 2016).

Legendrian isotopy class of Λ_{K} is a complete knot invariant (Shende 2016).

Conormal stops and the A_{∞}-homomorphism

Surgery approach

Let $K \subset M$ be any submanifold and consider its unit conormal bundle $\Lambda_{K} \subset S T^{*} M$.

Attach a handle along Λ_{K} modeled on $D_{\varepsilon} T^{*}\left([0, \infty) \times \Lambda_{K}\right)$.

The complement Lagrangian

$M \cap L_{K}=K$ is a clean intersection. Lagrangian surgery along K gives an exact Lagrangian $M_{K} \cong M \backslash K$

The complement Lagrangian

Metric on M_{K}
Pick a generic metric g on M away from $N(K)$. Then define

$$
h= \begin{cases}d t^{2}+\left.f(t) g\right|_{\partial N(K)} & \text { in }[0, \infty) \times \partial N(K) \\ g & \text { in } M \backslash N(K)\end{cases}
$$

Moduli space of half strips

Let $k \geq 1$ and $\boldsymbol{a}=\left\{a_{1}, \ldots, a_{k}\right\}$ a set of generators of $C W_{\Lambda_{K}}^{*}(F)$.
Consider $\mathcal{M}(\boldsymbol{a})$ moduli space of holomorphic maps

The evaluation map

$$
\begin{aligned}
\mathrm{ev}: \overline{\mathcal{M}}(\boldsymbol{a}) & \longrightarrow \Omega_{\xi} M_{K} \\
u & \longmapsto \gamma
\end{aligned}
$$

Restriction of u to the boundary arc between the punctures $\zeta_{ \pm}$

The A_{∞}-homomorphism

We define

$$
\begin{aligned}
& \Psi_{k}: C W_{\Lambda_{K}}^{*}(F)^{\otimes k} \longrightarrow C_{-*}^{\text {cell }}\left(\Omega_{\xi} M_{K}\right) \\
& a_{k} \otimes \cdots \otimes a_{1} \longmapsto \operatorname{ev}_{*}([\overline{\mathcal{M}}(\boldsymbol{a})])
\end{aligned}
$$

Proposition
$\Psi:=\left\{\Psi_{k}\right\}_{k=1}^{\infty}$ is an A_{∞}-homomorphism.

Proof of main theorem

Correspondence between generators

Lemma

There is a one-to-one correspondence
$\left\{\begin{array}{c}\text { Reeb chords of } \partial F \\ \text { of index }-\lambda \text { and action } A\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\text { Geodesic loops in } M_{K} \\ \text { of index } \lambda \text { and length } A\end{array}\right\}$

Proof.

Let u_{0} be the trivial holomorphic strip over the Reeb chord a and consider $\beta:=\operatorname{cutoff}(p \mid) \cdot \frac{p d q}{|p|}$. Then

$$
0=\int_{D} u_{0}^{*} d \beta=\mathfrak{a}(a)-L(\gamma)
$$

Towards the proof of the main theorem

Lemma
u_{0} is transversely cut out
Proof of lemma.
Let $v \in \operatorname{ker} D_{u_{0}}$ and $\varepsilon>0$

$$
\left\{\begin{array}{l}
u_{\varepsilon}:=u_{0}+\varepsilon v+O\left(\varepsilon^{2}\right) \\
\gamma_{\varepsilon}:=\operatorname{ev}\left(u_{\varepsilon}\right)
\end{array}\right.
$$

Towards the proof of the main theorem

Proof of lemma.
Then

1. From $u_{0}: \mathfrak{a}(a)=L\left(\gamma_{0}\right)$
2. Can show: $\mathfrak{a}(a)-L\left(\gamma_{\varepsilon}\right)>0$

This implies

$$
L\left(\gamma_{\varepsilon}\right)-L\left(\gamma_{0}\right)<0 \Longrightarrow E_{* *}\left(\pi_{*} v, \pi_{*} v\right)<0
$$

where

$$
\pi_{*}: \operatorname{ker} D_{u_{0}} \longrightarrow\left\{w \in T_{\gamma_{0}} B M_{K} \mid E_{* *}(w, w)<0\right\}
$$

By unique continuation, π_{*} is injective and finally $\operatorname{dim} \operatorname{ker} D_{u_{0}} \leq \operatorname{ind} \gamma_{0}=\operatorname{ind} D_{u_{0}}$.

Paper II

Setup and main results

Setup

Let X be a $2 n$-dimensional Weinstein manifold.
Singular Legendrians
Let (V, λ) be a $(2 n-2)$-dimensional Weinstein domain.
Assume there is an embedding of V in ∂X such that it extends to a (strict) contact embedding

$$
F:\left(V \times(-\varepsilon, \varepsilon)_{z}, d z+\lambda\right) \longrightarrow(\partial X, \alpha)
$$

We call F a Legendrian embedding of V in ∂X.

Setup

Singular Legendrians

The union of the top dimensional strata of $F($ Skel $V) \subset \partial X$ is Legendrian.

$\rightsquigarrow C E^{*}((V, h) ; X)$
$(V, h) \subset \partial X$
Legendrian embedding

Setup

Stopped Weinstein manifolds
We attach a stop to X along $V \times(-\varepsilon, \varepsilon)$.

(X, V)
Weinstein pair

$C=$ union of co-core disks of top handles of $V \times D_{\varepsilon}^{*}[-1,1]$

Main results

Theorem A (A.-Ekholm)
There is a surgery isomorphism of A_{∞}-algebras

$$
\Phi: C W^{*}\left(C ; X_{V}\right) \longrightarrow C E^{*}((V, h) ; X)
$$

Let $\Lambda \subset \partial X$ be a smooth Legendrian and let $(V(\Lambda), h(\Lambda))$ denote a small disk cotangent neighborhood of Λ with a handle decomposition with a single top handle.

Theorem B (A.-Ekholm)

There is a quasi-isomorphism of dg-algebras

$$
\Psi: C E^{*}((V(\Lambda), h(\Lambda)) ; X) \longrightarrow C E^{*}\left(\Lambda, C_{-*}(\Omega \Lambda) ; X\right)
$$

Theorem A and B together prove a conjecture by Ekholm-Lekili and independently by Sylvan.

Main results

Now assume V is Legendrian embedded in ∂X and ∂X^{\prime}. We can join X and X^{\prime} together along V.

$C_{\#}=$ union of co-core disks of top handles of $V \times D_{\varepsilon}^{*}[-1,1]$. $\Sigma_{\#}:=$ union of attaching spheres dual to $C_{\#}$.

Main results

Theorem C (A.-Ekholm)
The diagram below is a pushout diagram.

$$
\begin{array}{cl}
C E^{*}\left(\partial l ; V_{0}\right) & \stackrel{\text { incl. }}{\text { in }} \\
\underset{\downarrow}{\text { incl. }} & \left\ulcorner E^{*}\left((V, h) ; X^{\prime}\right)\right. \\
C E^{*}((V, h) ; X) \xrightarrow{\text { incl. }} C E^{*}\left(\Sigma_{\#}(h) ; X \#_{V_{0}} X^{\prime}\right)
\end{array}
$$

The Chekanov-Eliashberg dg-algebra

$C E^{*}$ for singular Legendrians

Assume $V^{2 n-2}$ is a Weinstein domain which is Legendrian embedded in ∂X with handle decomposition h. Let V_{0} denote its subcritical part.

Let
$l:=\bigcup_{j=1}^{m} l_{j}=$ union of core disks of top handles in h
$\partial l:=\bigcup_{j=1}^{m} \partial l_{j}=$ union of the attaching spheres of top handles in h

$C E^{*}$ for singular Legendrians

Now attach $V_{0} \times D_{\varepsilon}^{*}[-1,1]$ to $V_{0} \times(-\varepsilon, \varepsilon) \subset \partial X$ to construct $X_{V_{0}}$.

Define

$$
\Sigma(h):=l \sqcup_{\partial l \times\{-1\}}(\partial l \times[-1,1]) \sqcup_{\partial l \times\{1\}} l
$$

$C E^{*}$ for singular Legendrians

Definition

We define the Chekanov-Eliashberg dg-algebra of a Legendrian embedding of (V, h) in ∂X as

$$
C E^{*}((V, h) ; X):=C E^{*}\left(\Sigma(h) ; X_{V_{0}}\right) .
$$

Theorem A
There is a surgery isomorphism of A_{∞}-algebras

$$
\Phi: C W^{*}\left(C ; X_{V}\right) \longrightarrow C E^{*}((V, h) ; X)
$$

Proof of the surgery formula

Proof of Theorem A.
Follows immediately from the definition together with the Bourgeois-Ekholm-Eliashberg surgery formula.

$$
C W^{*}\left(C ; X_{V}\right) \cong C E^{*}\left(\Sigma(h) ; X_{V_{0}}\right)=C E^{*}((V, h) ; X)
$$

Description of generators

Lemma

For any $\mathfrak{a}>0$, there is some $\varepsilon>0$ small enough (size of the stop) so that we have the following one-to-one correspondence

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
\text { Reeb chords of } \Sigma(h) \subset \partial X_{V_{0}} \\
\text { of action }<\mathfrak{a}
\end{array}\right\} \\
\{1: 1
\end{array}\right\}
$$

Lemma

There is a dg-subalgebra of $C E^{*}((V, h) ; X)$ which is freely generated by Reeb chords of $\partial l \subset \partial V_{0}$ and canonically isomorphic to $C E^{*}\left(\partial l ; V_{0}\right)$.

Proof of the pushout diagrams

Joining Weinstein manifolds along V

Recall the construction of $X \#_{V} X^{\prime}$. Assume V is Legendrian embedded in the ideal contact boundary of X and X^{\prime}. We can join X and X^{\prime} together via V.

Joining Weinstein manifolds along V

Theorem C (A.-Ekholm)
The diagram below is a pushout diagram.

$$
\begin{array}{cl}
C E^{*}\left(\partial l ; V_{0}\right) & \stackrel{\text { incl. }}{\text { r. }} \\
\underset{\downarrow}{\text { incl. }} & \left\ulcorner E^{*}\left((V, h) ; X^{\prime}\right)\right. \\
C E^{*}((V, h) ; X) \xrightarrow{\text { incl. }} C E^{*}\left(\Sigma_{\#}(h) ; X \#_{V_{0}} X^{\prime}\right)
\end{array}
$$

Proof of the pushout diagram for $C E^{*}$

Proof of Theorem C.
Consider $X \#_{V_{0}} X^{\prime}$, and $\Sigma_{\#}(h) \subset \partial\left(X \# V_{0} X^{\prime}\right)$ the attaching spheres obtained by joining l on either side by $\partial l \times[-1,1]$ through the handle.

Proof of the pushout diagram for $C E^{*}$

Proof of Theorem C.

By the description of the generators and holomorphic curves we obtain
$C E^{*}\left(\Sigma_{\#}(h) ; X \#_{V_{0}} X^{\prime}\right) \cong C E^{*}((V, h) ; X) *_{C E^{*}\left(\partial l ; V_{0}\right)} C E^{*}\left((V, h) ; X^{\prime}\right)$
which means that the diagram

$$
\begin{aligned}
& C E^{*}\left(\partial l ; V_{0}\right) \xrightarrow{\text { incl. }} C E^{*}\left((V, h) ; X^{\prime}\right) \\
& \downarrow_{\text {incl. }}\left\ulcorner\quad \downarrow_{\text {incl. }}\right. \\
& C E^{*}((V, h) ; X) \xrightarrow{\text { incl. }} C E^{*}\left(\Sigma_{\#}(h) ; X \# V_{0} X^{\prime}\right)
\end{aligned}
$$

is a pushout diagram.
Key observation: $C E^{*}((V, h) ; X) \subset C E^{*}\left(\Sigma_{\#}(h) ; X \#_{V_{0}} X^{\prime}\right)$ is a dg-subalgebra since curves can not "cross" the handle.

Thank you!

