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Setup
Let X be a 2n-dimensional Weinstein manifold with ideal contact
boundary 0.X.

Acox " CE*(4)
smooth Legendrian Chekanov-Eliashberg dg-algebra

Singular Legendrians

Let (V,\) be a (2n — 2)-dimensional Weinstein domain, together
with a handle decomposition h.

Assume there is an embedding of V in 0X such that it extends to
a (strict) contact embedding

F: (Vx(—¢,€);,dz+\) — (0X, )

We call F' a Legendrian embedding of V' in 0.X.
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Setup

Singular Legendrians

In particular, the union of the top dimensional strata of Skel V' is
Legendrian, and we will refer to Skel V' as a “singular Legendrian”
in 0X.

~ CE*((V,h); X)

(V,h) C 0X
Legendrian embedding
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Setup

Stopped Weinstein manifolds
We consider stops using a surgery description.

ox
>
X
(X, V) Xy
‘Weinstein pair “X stopped at V"

C' = union of co-core disks of top handles of V' x D}[—1,1]
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Main results
Theorem A (A.—Ekholm)

There is a surgery isomorphism of A.-algebras

&: CW*(C; Xy) — CE*((V,h); X)

Let A C 0X be a smooth Legendrian and let (V(A), h(A)) denote
a small disk cotangent neighborhood of A with a handle
decomposition with a single top handle.

Theorem B (A.—Ekholm)

There is a quasi-isomorphism of dg-algebras
U: CE*((V(A),h(A)); X) — CE*(A,C_.(£24); X)
Theorem A and B together prove a conjecture by Ekholm—Lekili

and independently by Sylvan.

Johan Asplund (Uppsala University) CE dga for singular Legendrians 7/32



Setup and main results The Chekanov—Eliashberg dg-algebra Computations and examples Proof of the pushout diagrams
00000e0 000000000 000000 0000000

Main results

Now assume V is Legendrian embedded in the ideal contact
boundary of X and X’. We can join X and X’ together via V.

V x Dr[-1,1]

X#y X'

Cy = union of co-core disks of top handles of V' x D}[—1,1].
2y := union of attaching spheres dual to C4.
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Main results

Theorem C (A.—Ekholm)

Below, the front face is a pushout. After passing to cohomology,
the diagram commutes and the back face is a pushout.

CW*(e; V) CW*(C'; X1,)
CE*(I; Vo) J CE*((V, h); X)
CW*(C; Xy) CW*(C; X#4v X')
PR [5EE)
CE*((V,h); X) CE* (S X, X')
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The Chekanov—Eliashberg dg-algebra
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C'E* for smooth Legendrians

Setup

Let X be a 2n-dimensional Weinstein manifold with ideal contact

boundary 0X. (¢1(X) = 0)

Let A C 0X be a smooth Legendrian with vanishing Maslov class.
® « contact form on 0X

do(Ra,—) =0

a(Ry) =1

Consider R = {Reeb chords of A} and let A =", A;. Then

Rij C R is the set of Reeb chords from A; to A;.

Let F be a field. Let {e;};; be such that

.e%:ei

° eiej:()ifi;éj

® R, Reeb vector field, defined by
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CE* for smooth Legendrians

Graded algebra
Define k := @}, Fe;. Then R is a k-k-bimodule via

c, if c € Rji c, if c € fRij
€ C= . c-e = ]
0, otherwise 0, otherwise

Then define
CE*(A) =k (R) .

Grading is given by
le| = —CZ(c) + 1.
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CE* for smooth Legendrians

Differential

0: CE*(A) — CE*(A) counts (anchored) rigid J-holomorphic
disks in R x X with boundary on R x A with 1 positive puncture,
and several negative punctures.

N

by by b

A curve giving the term Jc = bibobs + - - -.
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C' E* for singular Legendrians

Assume V?"~2 is a Weinstein domain which is Legendrian
embedded in 0X with handle decomposition h and ¢; (V) = 0. Let
Vb denote its subcritical part.

Let

l:= U l; = union of core disks of top handles
j=1

ol = U Ol; = union of the attaching spheres of top handles
j=1
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CE* for singular Legendrians

Now attach Vy x DX[—1,1] to V) x (—¢,e) C X to construct
Xvp.

Vo x DX[-1.1]

Define
2(h) = 1Ugix{-1y (01 x [~1,1]) Uar 1y !
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CE* for singular Legendrians

Definition
We define the Chekanov—Eliashberg dg-algebra of a Legendrian
embedding of (V,h) in 0X as
CE*((V,h); X) := CE*(X(h); Xv;) -
Theorem A

There is a surgery isomorphism of A.-algebras

&: CW*(C; Xy) — CE*((V,h); X)
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Proof of the surgery formula
Proof of Theorem A.

Follows immediately from the definition together with the
Bourgeois—Ekholm—Eliashberg surgery formula.

CW*(C; Xy) = CE*(S(h): Xy) = CE*((V,h); X)
O
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Description of generators

Lemma
For any a > 0, there is some € > 0 small enough (size of the stop)
so that we have the following one-to-one correspondence

{Reeb chords of X(h) C (9XV0}
of action < a

i

{Reeb chords of | C 0X } U Reeb chords of 9l C 0V
of action < a of action < a

Lemma

There is a dg-subalgebra of CE*((V, h); X) which is freely
generated by Reeb chords of Ol C OV and canonically isomorphic
to CE*(0l; Vp).
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Computations and examples
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Special case: 0X =P xR

Assume V' C P x R is a Legendrian embedding so that =(Vy) C P
is embedded. Consider

P° = (P\ 7(Vb)) Uravy) ((—00,0] x 7(0Vp))

(—00,0] x T(OVp)
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Special case: 0X =P xR

Then we can consider CE*(I; P° x R), where [ is the Legendrian
lift of 7(1) C P°.

Proposition

There is an isomorphism of dg-algebras

CE*(I; P° x R) = CE*((V,h);R x (P x R)).

Upshot

Can compute CE*(l; P° x R) and hence CE*((V,h); R x (P xR))
by projecting [ and holomorphic curves to P°.
(cf. An—Bae)
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Computations

Example (n points in the circle, I,,)

Let X = R? and A = n pts C
0X =St

Let V =T*A C S'. The only generators of CE*((V, h);R?) are
Reeb chords in S' of the top handles [ = A

o c?jfor1§i<j§n
° cfjforlgi,jgn
The differential 0 is given by

a(ng) =(=1)" Z ngcgk
k=1

n n
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Computations

Example (Link of Lagrangian arboreal A,-singularity)

Let X =R* and A C S2. Then V = T*A has 0-handles z and y
and 1-handles I1,l> and 5.
Generators are Reeb chords of I: a and b, and generators of

ol C 9Vy: {xf;} and {y};}.

3
1

2

3
1

2
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Computations

Example (Link of Lagrangian arboreal A,-singularity)

The dg-subalgebra C'E*(0l; Vj) consists of two copies of I3. The
differential of a and b is as follows

1.0 1.0 1.0 0 0
da = e1 + y31bx7y + Y3171 — Y21 279, b = w33 — Yog
3
1
2
3
1
2
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Computations

Example (Singular torus)
Let X = RS and A C S° is given by the following front.

The intersection [ N ORY is a standard Hopf link in S3.

The dg-subalgebra CE*(0l;Vp) is generated by the generators of
the Hopf link together with with a copy of I5.

Suitable augmentation of C'E*(0l; Vp) gives Chekanov—Eliashberg
dg-algebra of nearby smooth tori obtained by smoothing.
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Proof of the pushout diagrams
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Joining Weinstein manifolds along V'

Recall the construction of X#y X’. Assume V is Legendrian
embedded in the ideal contact boundary of X and X’. We can
join X and X' together via V.

V x Df[-1,1]

Xty X!
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Joining Weinstein manifolds along V'

Theorem C (A.—Ekholm)

Below, the front face is a pushout. After passing to cohomology,
the diagram commutes and the back face is a pushout.

CW*(e; V) CW*(C'; X1,)
CE*(I; Vo) J CE*((V, h); X)
CW*(C; Xy) CW*(C; X#4v X')
PR [5EE)
CE*((V,h); X) CE* (S X, X')
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Proof of the pushout diagram for C'E*

Proof of Theorem C.
Consider X#v;, X', and X4 (h) C 0(X#v,X') the attaching
spheres obtained by joining [ on either side by 0l x [—1,1] through

the handle.

Vo x DZ[-1,1]
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Proof of the pushout diagram for C'E*

Proof of Theorem C.
By the description of the generators we obtain

CE*(Zy(h); X4y, X') = CE*((V, h); X)*cp=1v,) CE (V. h); X')
which means that the diagram

CE*(9l; Vo) —%— CE*((V,h); X')

Jinel. " Jinel.

CE*((V,h); X) " CE*(24(h); X#v, X')

is a pushout.
Key observation: CE*((V,h); X) C CE*(X4(h); X#v,X') since
curves can not “cross” the handle. O
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Stop removal

Corollary (Stop removal)

Let X' :=V x Di[—1,1] equipped with the Liouville vector field
Zy 4+ x0y +y0y. Then CW*(Cy; X#vX') has trivial cohomology.

Proof.

The key is to observe that after rounding corners

V x {(=1,0)} € 9 (V x Di[—1,1]) is loose (meaning that each
core disk [; of every top handle of V' admits a loose chart).
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Stop removal

Proof.

Since we can create loose charts it means that there is at least one
generator b € CE*((V, h); X') such that 9b = 1.
Use

CE*(9L: Vo) —"%— CE*((V,h): X')

Jinet. " Jinel.

CE*((V,h); X) " CE*(24(h); X#v, X')

to conclude that the same is true for CE*( X4 (h); X#v, X').
By surgery we therefore have

CW*(Cy; X#vX') = CE*(Zy(h); X#v, X') =0
O
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Thank you!
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