Chekanov–Eliashberg dg-algebras for singular Legendrians

Johan Asplund

Uppsala University

April 2, 2021

Based on joint work with Tobias Ekholm (arXiv:2102.04858)

Setup and main results

Johan Asplund (Uppsala University)

CE dga for singular Legendrians 3 / 32

Setup

Let X be a 2n-dimensional Weinstein manifold with ideal contact boundary ∂X .

 $\begin{array}{ccc} \Lambda \subset \partial X & CE^*(\Lambda) \\ \text{smooth Legendrian} & \stackrel{\sim \rightarrow}{\longrightarrow} & \text{Chekanov-Eliashberg dg-algebra} \end{array}$

Singular Legendrians

Let (V,λ) be a $(2n-2)\text{-dimensional Weinstein domain, together with a handle decomposition <math display="inline">h.$

Assume there is an embedding of V in ∂X such that it extends to a (strict) contact embedding

$$F \colon (V \times (-\varepsilon, \varepsilon)_z, dz + \lambda) \longrightarrow (\partial X, \alpha)$$

We call F a Legendrian embedding of V in ∂X .

Setup

Singular Legendrians

In particular, the union of the top dimensional strata of $\operatorname{Skel} V$ is Legendrian, and we will refer to $\operatorname{Skel} V$ as a "singular Legendrian" in ∂X .

 $\rightsquigarrow CE^*((V,h);X)$

 $(V,h) \subset \partial X$ Legendrian embedding

Setup

Stopped Weinstein manifolds

We consider stops using a surgery description.

C = union of co-core disks of top handles of $V imes D^*_{arepsilon}[-1,1]$

Main results

Theorem A (A.–Ekholm)

There is a surgery isomorphism of A_{∞} -algebras

 $\Phi\colon CW^*(C;X_V)\longrightarrow CE^*((V,h);X)$

Let $\Lambda \subset \partial X$ be a smooth Legendrian and let $(V(\Lambda), h(\Lambda))$ denote a small disk cotangent neighborhood of Λ with a handle decomposition with a single top handle.

Theorem B (A.–Ekholm)

There is a quasi-isomorphism of dg-algebras

 $\Psi\colon\thinspace CE^*((V(\Lambda),h(\Lambda));X)\longrightarrow CE^*(\Lambda,C_{-*}(\varOmega\Lambda);X)$

Theorem A and B together prove a conjecture by Ekholm–Lekili and independently by Sylvan.

Main results

Now assume V is Legendrian embedded in the ideal contact boundary of X and X'. We can join X and X' together via V.

$$\begin{split} C_{\#} &= \text{union of co-core disks of top handles of } V \times D_{\varepsilon}^{*}[-1,1]. \\ \Sigma_{\#} &:= \text{union of attaching spheres dual to } C_{\#}. \end{split}$$

Johan Asplund (Uppsala University)

CE dga for singular Legendrians 8 / 32

Main results

Theorem C (A.–Ekholm)

Below, the front face is a pushout. After passing to cohomology, the diagram commutes and the back face is a pushout.

Setup and main results	The Chekanov–Eliashberg dg-algebra	Computations and examples	Proof of the pushout diagrams
0000000	●00000000	000000	0000000

The Chekanov–Eliashberg dg-algebra

Setup and main results 0000000 The Chekanov–Eliashberg dg-algebra 0000000 Proof of the pushout diagrams 000000 000000

CE^* for smooth Legendrians

Setup

Let X be a 2n-dimensional Weinstein manifold with ideal contact boundary ∂X . $(c_1(X) = 0)$

Let $\Lambda \subset \partial X$ be a smooth Legendrian with vanishing Maslov class.

.

• α contact form on ∂X

•
$$R_{\alpha}$$
 Reeb vector field, defined by
$$\begin{cases} d\alpha(R_{\alpha}, -) = 0\\ \alpha(R_{\alpha}) = 1 \end{cases}$$

Consider $\mathfrak{R} = \{ \text{Reeb chords of } \Lambda \}$ and let $\Lambda = \bigsqcup_{i=1}^{n} \Lambda_i$. Then $\mathfrak{R}_{ij} \subset \mathfrak{R}$ is the set of Reeb chords from Λ_i to Λ_j . Let \mathbb{F} be a field. Let $\{e_i\}_{i=1}^{n}$ be such that

•
$$e_i^2 = e_i$$

•
$$e_i e_j = 0$$
 if $i \neq j$

CE^* for smooth Legendrians

Graded algebra

Define $\mathbf{k} := \bigoplus_{i=1}^{n} \mathbb{F}e_i$. Then \mathcal{R} is a \mathbf{k} - \mathbf{k} -bimodule via

$$e_i \cdot c = \begin{cases} c, & \text{if } c \in \mathcal{R}_{ji} \\ 0, & \text{otherwise} \end{cases} \qquad c \cdot e_i = \begin{cases} c, & \text{if } c \in \mathcal{R}_{ij} \\ 0, & \text{otherwise} \end{cases}$$

Then define

$$CE^*(\Lambda) := \boldsymbol{k} \langle \mathfrak{R} \rangle$$
.

Grading is given by

$$|c| = -\operatorname{CZ}(c) + 1.$$

Setup and main results 0000000 The Chekanov–Eliashberg dg-algebra 0000000 Proof of the pushout diagrams 0000000 000000

CE^* for smooth Legendrians

Differential

 $\partial \colon CE^*(\Lambda) \longrightarrow CE^*(\Lambda)$ counts (anchored) rigid *J*-holomorphic disks in $\mathbb{R} \times \partial X$ with boundary on $\mathbb{R} \times \Lambda$ with 1 positive puncture, and several negative punctures.

A curve giving the term $\partial c = b_1 b_2 b_3 + \cdots$.

CE^* for singular Legendrians

Assume V^{2n-2} is a Weinstein domain which is Legendrian embedded in ∂X with handle decomposition h and $c_1(V) = 0$. Let V_0 denote its subcritical part. Let

$$l := \bigcup_{j=1}^{m} l_j = \text{union of core disks of top handles}$$
$$\partial l := \bigcup_{j=1}^{m} \partial l_j = \text{union of the attaching spheres of top handles}$$

CE^* for singular Legendrians

Now attach $V_0 \times D^*_{\varepsilon}[-1,1]$ to $V_0 \times (-\varepsilon, \varepsilon) \subset \partial X$ to construct X_{V_0} .

Define

$$\Sigma(h) := l \sqcup_{\partial l \times \{-1\}} \left(\partial l \times [-1,1] \right) \sqcup_{\partial l \times \{1\}} b$$

CE^* for singular Legendrians

Definition

We define the Chekanov–Eliashberg dg-algebra of a Legendrian embedding of (V,h) in ∂X as

$$CE^*((V,h);X) := CE^*(\Sigma(h);X_{V_0}).$$

Theorem A

There is a surgery isomorphism of A_{∞} -algebras

$$\Phi\colon CW^*(C;X_V)\longrightarrow CE^*((V,h);X)$$

Setup and main results 0000000 The Chekanov–Eliashberg dg-algebra 0000000 Proof of the pushout diagrams 0000000

Proof of the surgery formula

Proof of Theorem A.

Follows immediately from the definition together with the Bourgeois–Ekholm–Eliashberg surgery formula.

$$CW^*(C;X_V) \cong CE^*(\Sigma(h);X_{V_0}) = CE^*((V,h);X)$$

Description of generators

Lemma

For any a > 0, there is some $\varepsilon > 0$ small enough (size of the stop) so that we have the following one-to-one correspondence

$$\begin{cases} \text{Reeb chords of } \Sigma(h) \subset \partial X_{V_0} \\ \text{of action } < \mathfrak{a} \end{cases}$$

$$\hat{\downarrow}^{1:1}$$

$$\begin{cases} \text{Reeb chords of } l \subset \partial X \\ \text{of action } < \mathfrak{a} \end{cases} \cup \begin{cases} \text{Reeb chords of } \partial l \subset \partial V_0 \\ \text{of action } < \mathfrak{a} \end{cases}$$

Lemma

There is a dg-subalgebra of $CE^*((V,h);X)$ which is freely generated by Reeb chords of $\partial l \subset \partial V_0$ and canonically isomorphic to $CE^*(\partial l; V_0)$.

Setup and main results the Chekanov–Eliashberg dg-algebra Computations and examples Proof of the pushout diagrams

Computations and examples

Johan Asplund (Uppsala University)

CE dga for singular Legendrians 19 / 32

Special case: $\partial X = P \times \mathbb{R}$

Assume $V \subset P \times \mathbb{R}$ is a Legendrian embedding so that $\pi(V_0) \subset P$ is embedded. Consider

$$P^{\circ} := (P \setminus \pi(V_0)) \sqcup_{\pi(\partial V_0)} ((-\infty, 0] \times \pi(\partial V_0))$$

Special case: $\partial X = P \times \mathbb{R}$

Then we can consider $CE^*(l; P^\circ \times \mathbb{R})$, where l is the Legendrian lift of $\pi(l) \subset P^\circ$.

Proposition

There is an isomorphism of dg-algebras

$$CE^*(l; P^\circ \times \mathbb{R}) \cong CE^*((V, h); \mathbb{R} \times (P \times \mathbb{R})).$$

Upshot

Can compute $CE^*(l; P^{\circ} \times \mathbb{R})$ and hence $CE^*((V, h); \mathbb{R} \times (P \times \mathbb{R}))$ by projecting l and holomorphic curves to P° . (cf. An–Bae)

Computations

Example (n points in the circle, I_n)

Let
$$X = \mathbb{R}^2$$
 and $\Lambda = n$ pts $\subset \partial X = S^1$.

Let $V=T^*\Lambda\subset S^1.$ The only generators of $CE^*((V,h);\mathbb{R}^2)$ are Reeb chords in S^1 of the top handles $l=\Lambda$

•
$$c_{ij}^0$$
 for $1 \le i < j \le n$

•
$$c^p_{ij}$$
 for $1 \leq i, j \leq n$

The differential ∂ is given by

$$\partial(c_{ij}^{0}) = (-1)^{*} \sum_{k=1}^{n} c_{kj}^{0} c_{ik}^{0}$$
Johan Asign (c_{ij}^{1}) product Spirite Spirite (-1)^{*} $\sum_{k=1}^{n} c_{ki}^{1} c_{ik}^{0} \subseteq \text{density} (-1)^{*} \sum_{k=1}^{n} c_{ki}^{1} c_{ik}^{0} \subseteq \text{density} (-1)^{*}$

Computations

Example (Link of Lagrangian arboreal A_2 -singularity) Let $X = \mathbb{R}^4$ and $\Lambda \subset S^3$. Then $V = T^*\Lambda$ has 0-handles x and yand 1-handles l_1, l_2 and l_3 . Generators are Reeb chords of l: a and b, and generators of $\partial l \subset \partial V_0$: $\{x_{ij}^p\}$ and $\{y_{ij}^p\}$.

Computations

Example (Link of Lagrangian arboreal A_2 -singularity) The dg-subalgebra $CE^*(\partial l; V_0)$ consists of two copies of I_3 . The differential of a and b is as follows

$$\partial a = e_1 + y_{31}^1 b x_{12}^0 + y_{31}^1 x_{12}^0 - y_{21}^1 x_{12}^0, \qquad \partial b = x_{23}^0 - y_{23}^0$$

Computations

Example (Singular torus)

Let $X=\mathbb{R}^6$ and $\Lambda\subset S^5$ is given by the following front.

The intersection $l \cap \partial h^0$ is a standard Hopf link in S^3 . The dg-subalgebra $CE^*(\partial l; V_0)$ is generated by the generators of the Hopf link together with with a copy of I_2 . Suitable augmentation of $CE^*(\partial l; V_0)$ gives Chekanov–Eliashberg dg-algebra of nearby smooth tori obtained by smoothing.

Johan Asplund (Uppsala University)

CE dga for singular Legendrians 25 / 32

Proof of the pushout diagrams

Johan Asplund (Uppsala University)

CE dga for singular Legendrians 26 / 32

Setup and main results The Chekanov–Eliashberg dg-algebra Computations and examples **Proof of the pushout diagrams**

Joining Weinstein manifolds along V

Recall the construction of $X \#_V X'$. Assume V is Legendrian embedded in the ideal contact boundary of X and X'. We can join X and X' together via V.

Joining Weinstein manifolds along V

Theorem C (A.–Ekholm)

Below, the front face is a pushout. After passing to cohomology, the diagram commutes and the back face is a pushout.

Proof of the pushout diagram for CE^*

Proof of Theorem C.

Consider $X \#_{V_0} X'$, and $\Sigma_{\#}(h) \subset \partial(X \#_{V_0} X')$ the attaching spheres obtained by joining l on either side by $\partial l \times [-1, 1]$ through the handle.

Proof of the pushout diagram for CE^*

Proof of Theorem C. By the description of the generators we obtain

 $CE^*(\Sigma_{\#}(h); X \#_{V_0} X') \cong CE^*((V, h); X) *_{CE^*(\partial l; V_0)} CE^*((V, h); X')$

which means that the diagram

is a pushout.

Key observation: $CE^*((V,h);X) \subset CE^*(\Sigma_{\#}(h);X\#_{V_0}X')$ since curves can not "cross" the handle.

Stop removal

Corollary (Stop removal)

Let $X' := V \times D_1^*[-1, 1]$ equipped with the Liouville vector field $Z_V + x\partial_x + y\partial_y$. Then $CW^*(C_{\#}; X \#_V X')$ has trivial cohomology.

Proof.

The key is to observe that after rounding corners $V \times \{(-1,0)\} \subset \partial (V \times D_1^*[-1,1])$ is loose (meaning that each core disk l_i of every top handle of V admits a loose chart).

Stop removal

Proof.

Since we can create loose charts it means that there is at least one generator $b \in CE^*((V,h);X')$ such that $\partial b = 1$. Use

$$CE^{*}(\partial l; V_{0}) \xrightarrow{\text{incl.}} CE^{*}((V, h); X')$$

$$\downarrow \text{incl.} \qquad \qquad \downarrow \text{incl.}$$

$$CE^{*}((V, h); X) \xrightarrow{\text{incl.}} CE^{*}(\Sigma_{\#}(h); X \#_{V_{0}} X')$$

to conclude that the same is true for $CE^*(\Sigma_{\#}(h); X \#_{V_0}X')$. By surgery we therefore have

$$CW^*(C_{\#}; X \#_V X') \cong CE^*(\Sigma_{\#}(h); X \#_{V_0} X') \cong 0$$

Thank you!