Chekanov-Eliashberg dg-algebras for singular Legendrians

Johan Asplund
Uppsala University

April 2, 2021

Based on joint work with Tobias Ekholm (arXiv:2102.04858)

Setup and main results

Setup

Let X be a $2 n$-dimensional Weinstein manifold with ideal contact boundary ∂X.

$$
\begin{array}{cc}
\Lambda \subset \partial X \\
\text { smooth Legendrian }
\end{array} \rightsquigarrow \begin{gathered}
C E^{*}(\Lambda) \\
\text { Chekanov-Eliashberg dg-algebra }
\end{gathered}
$$

Singular Legendrians

Let (V, λ) be a $(2 n-2)$-dimensional Weinstein domain, together with a handle decomposition h.
Assume there is an embedding of V in ∂X such that it extends to a (strict) contact embedding

$$
F:\left(V \times(-\varepsilon, \varepsilon)_{z}, d z+\lambda\right) \longrightarrow(\partial X, \alpha)
$$

We call F a Legendrian embedding of V in ∂X.

Setup

Singular Legendrians

In particular, the union of the top dimensional strata of $\operatorname{Skel} V$ is Legendrian, and we will refer to Skel V as a "singular Legendrian" in ∂X.

$\rightsquigarrow C E^{*}((V, h) ; X)$
$(V, h) \subset \partial X$
Legendrian embedding

Setup

Stopped Weinstein manifolds

We consider stops using a surgery description.

$C=$ union of co-core disks of top handles of $V \times D_{\varepsilon}^{*}[-1,1]$

Main results

Theorem A (A.-Ekholm)

There is a surgery isomorphism of A_{∞}-algebras

$$
\Phi: C W^{*}\left(C ; X_{V}\right) \longrightarrow C E^{*}((V, h) ; X)
$$

Let $\Lambda \subset \partial X$ be a smooth Legendrian and let $(V(\Lambda), h(\Lambda))$ denote a small disk cotangent neighborhood of Λ with a handle decomposition with a single top handle.
Theorem B (A.-Ekholm)
There is a quasi-isomorphism of dg-algebras

$$
\Psi: C E^{*}((V(\Lambda), h(\Lambda)) ; X) \longrightarrow C E^{*}\left(\Lambda, C_{-*}(\Omega \Lambda) ; X\right)
$$

Theorem A and B together prove a conjecture by Ekholm-Lekili and independently by Sylvan.

Main results

Now assume V is Legendrian embedded in the ideal contact boundary of X and X^{\prime}. We can join X and X^{\prime} together via V.

$C_{\#}=$ union of co-core disks of top handles of $V \times D_{\varepsilon}^{*}[-1,1]$. $\Sigma_{\#}:=$ union of attaching spheres dual to $C_{\#}$.

Main results

Theorem C (A.-Ekholm)
Below, the front face is a pushout. After passing to cohomology, the diagram commutes and the back face is a pushout.

The Chekanov-Eliashberg dg-algebra

CE* for smooth Legendrians

Setup

Let X be a $2 n$-dimensional Weinstein manifold with ideal contact boundary $\partial X .\left(c_{1}(X)=0\right)$
Let $\Lambda \subset \partial X$ be a smooth Legendrian with vanishing Maslov class.

- α contact form on ∂X
- R_{α} Reeb vector field, defined by $\left\{\begin{array}{l}d \alpha\left(R_{\alpha},-\right)=0 \\ \alpha\left(R_{\alpha}\right)=1\end{array}\right.$

Consider $\mathcal{R}=\{$ Reeb chords of $\Lambda\}$ and let $\Lambda=\bigsqcup_{i=1}^{n} \Lambda_{i}$. Then $\mathcal{R}_{i j} \subset \mathcal{R}$ is the set of Reeb chords from Λ_{i} to Λ_{j}.
Let \mathbb{F} be a field. Let $\left\{e_{i}\right\}_{i=1}^{n}$ be such that

- $e_{i}^{2}=e_{i}$
- $e_{i} e_{j}=0$ if $i \neq j$

$C E^{*}$ for smooth Legendrians

Graded algebra
Define $\boldsymbol{k}:=\bigoplus_{i=1}^{n} \mathbb{F} e_{i}$. Then \mathcal{R} is a \boldsymbol{k} - \boldsymbol{k}-bimodule via

$$
e_{i} \cdot c=\left\{\begin{array}{ll}
c, & \text { if } c \in \mathcal{R}_{j i} \\
0, & \text { otherwise }
\end{array} \quad c \cdot e_{i}= \begin{cases}c, & \text { if } c \in \mathcal{R}_{i j} \\
0, & \text { otherwise }\end{cases}\right.
$$

Then define

$$
C E^{*}(\Lambda):=\boldsymbol{k}\langle\mathcal{R}\rangle .
$$

Grading is given by

$$
|c|=-\mathrm{CZ}(c)+1
$$

$C E^{*}$ for smooth Legendrians

Differential

$\partial: C E^{*}(\Lambda) \longrightarrow C E^{*}(\Lambda)$ counts (anchored) rigid J-holomorphic disks in $\mathbb{R} \times \partial X$ with boundary on $\mathbb{R} \times \Lambda$ with 1 positive puncture, and several negative punctures.

A curve giving the term $\partial c=b_{1} b_{2} b_{3}+\cdots$.

$C E^{*}$ for singular Legendrians

Assume $V^{2 n-2}$ is a Weinstein domain which is Legendrian embedded in ∂X with handle decomposition h and $c_{1}(V)=0$. Let V_{0} denote its subcritical part.
Let

$$
\begin{aligned}
l & :=\bigcup_{j=1}^{m} l_{j}=\text { union of core disks of top handles } \\
\partial l & :=\bigcup_{j=1}^{m} \partial l_{j}=\text { union of the attaching spheres of top handles }
\end{aligned}
$$

$C E^{*}$ for singular Legendrians

Now attach $V_{0} \times D_{\varepsilon}^{*}[-1,1]$ to $V_{0} \times(-\varepsilon, \varepsilon) \subset \partial X$ to construct $X_{V_{0}}$.

Define

$$
\Sigma(h):=l \sqcup_{\partial l \times\{-1\}}(\partial l \times[-1,1]) \sqcup_{\partial l \times\{1\}} l
$$

$C E^{*}$ for singular Legendrians

Definition
We define the Chekanov-Eliashberg dg-algebra of a Legendrian embedding of (V, h) in ∂X as

$$
C E^{*}((V, h) ; X):=C E^{*}\left(\Sigma(h) ; X_{V_{0}}\right) .
$$

Theorem A
There is a surgery isomorphism of A_{∞}-algebras

$$
\Phi: C W^{*}\left(C ; X_{V}\right) \longrightarrow C E^{*}((V, h) ; X)
$$

Proof of the surgery formula

Proof of Theorem A.
Follows immediately from the definition together with the Bourgeois-Ekholm-Eliashberg surgery formula.

$$
C W^{*}\left(C ; X_{V}\right) \cong C E^{*}\left(\Sigma(h) ; X_{V_{0}}\right)=C E^{*}((V, h) ; X)
$$

Description of generators

Lemma

For any $\mathfrak{a}>0$, there is some $\varepsilon>0$ small enough (size of the stop) so that we have the following one-to-one correspondence

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
\text { Reeb chords of } \Sigma(h) \subset \partial X_{V_{0}} \\
\text { of action }<\mathfrak{a}
\end{array}\right\} \\
\{1: 1
\end{array}\right\}
$$

Lemma

There is a dg-subalgebra of $C E^{*}((V, h) ; X)$ which is freely generated by Reeb chords of $\partial l \subset \partial V_{0}$ and canonically isomorphic to $C E^{*}\left(\partial l ; V_{0}\right)$.

Computations and examples

Special case: $\partial X=P \times \mathbb{R}$

Assume $V \subset P \times \mathbb{R}$ is a Legendrian embedding so that $\pi\left(V_{0}\right) \subset P$ is embedded. Consider

$$
P^{\circ}:=\left(P \backslash \pi\left(V_{0}\right)\right) \sqcup_{\pi\left(\partial V_{0}\right)}\left((-\infty, 0] \times \pi\left(\partial V_{0}\right)\right)
$$

Special case: $\partial X=P \times \mathbb{R}$

Then we can consider $C E^{*}\left(l ; P^{\circ} \times \mathbb{R}\right)$, where l is the Legendrian lift of $\pi(l) \subset P^{\circ}$.

Proposition

There is an isomorphism of dg-algebras

$$
C E^{*}\left(l ; P^{\circ} \times \mathbb{R}\right) \cong C E^{*}((V, h) ; \mathbb{R} \times(P \times \mathbb{R}))
$$

Upshot
Can compute $C E^{*}\left(l ; P^{\circ} \times \mathbb{R}\right)$ and hence $C E^{*}((V, h) ; \mathbb{R} \times(P \times \mathbb{R}))$ by projecting l and holomorphic curves to P°.
(cf. An-Bae)

Computations

Example (n points in the circle, I_{n})

Let $X=\mathbb{R}^{2}$ and $\Lambda=n$ pts \subset $\partial X=S^{1}$.

Let $V=T^{*} \Lambda \subset S^{1}$. The only generators of $C E^{*}\left((V, h) ; \mathbb{R}^{2}\right)$ are Reeb chords in S^{1} of the top handles $l=\Lambda$

- $c_{i j}^{0}$ for $1 \leq i<j \leq n$
- $c_{i j}^{p}$ for $1 \leq i, j \leq n$

The differential ∂ is given by

$$
\partial\left(c_{i j}^{0}\right)=(-1)^{*} \sum_{k=1}^{n} c_{k j}^{0} c_{i k}^{0}
$$

Johan Astof $4 c_{i=1}^{d}$

Computations

Example (Link of Lagrangian arboreal A_{2}-singularity) Let $X=\mathbb{R}^{4}$ and $\Lambda \subset S^{3}$. Then $V=T^{*} \Lambda$ has 0 -handles x and y and 1-handles l_{1}, l_{2} and l_{3}.
Generators are Reeb chords of $l: a$ and b, and generators of $\partial l \subset \partial V_{0}:\left\{x_{i j}^{p}\right\}$ and $\left\{y_{i j}^{p}\right\}$.

Computations

Example (Link of Lagrangian arboreal A_{2}-singularity)

The dg-subalgebra $C E^{*}\left(\partial l ; V_{0}\right)$ consists of two copies of I_{3}. The differential of a and b is as follows

$$
\partial a=e_{1}+y_{31}^{1} b x_{12}^{0}+y_{31}^{1} x_{12}^{0}-y_{21}^{1} x_{12}^{0}, \quad \partial b=x_{23}^{0}-y_{23}^{0}
$$

Computations

Example (Singular torus)
Let $X=\mathbb{R}^{6}$ and $\Lambda \subset S^{5}$ is given by the following front.

The intersection $l \cap \partial h^{0}$ is a standard Hopf link in S^{3}.
The dg-subalgebra $C E^{*}\left(\partial l ; V_{0}\right)$ is generated by the generators of the Hopf link together with with a copy of I_{2}.
Suitable augmentation of $C E^{*}\left(\partial l ; V_{0}\right)$ gives Chekanov-Eliashberg dg-algebra of nearby smooth tori obtained by smoothing.

Proof of the pushout diagrams

Joining Weinstein manifolds along V

Recall the construction of $X \#_{V} X^{\prime}$. Assume V is Legendrian embedded in the ideal contact boundary of X and X^{\prime}. We can join X and X^{\prime} together via V.

Joining Weinstein manifolds along V

Theorem C (A.-Ekholm)
Below, the front face is a pushout. After passing to cohomology, the diagram commutes and the back face is a pushout.

Proof of the pushout diagram for $C E^{*}$

Proof of Theorem C.

Consider $X \#_{V_{0}} X^{\prime}$, and $\Sigma_{\#}(h) \subset \partial\left(X \# V_{0} X^{\prime}\right)$ the attaching spheres obtained by joining l on either side by $\partial l \times[-1,1]$ through the handle.

Proof of the pushout diagram for $C E^{*}$

Proof of Theorem C.

By the description of the generators we obtain
$C E^{*}\left(\Sigma_{\#}(h) ; X \#_{V_{0}} X^{\prime}\right) \cong C E^{*}((V, h) ; X) *_{C E}\left(\partial l ; V_{0}\right) C E^{*}\left((V, h) ; X^{\prime}\right)$
which means that the diagram

$$
\begin{aligned}
& C E^{*}\left(\partial l ; V_{0}\right) \xrightarrow{\text { incl. }} C E^{*}\left((V, h) ; X^{\prime}\right) \\
& \downarrow \text { incl. }\left\ulcorner\quad \downarrow_{\text {incl. }}\right. \\
& C E^{*}((V, h) ; X) \xrightarrow{\text { incl. }} C E^{*}\left(\Sigma_{\#}(h) ; X \#_{V_{0}} X^{\prime}\right)
\end{aligned}
$$

is a pushout.
Key observation: $C E^{*}((V, h) ; X) \subset C E^{*}\left(\Sigma_{\#}(h) ; X \#_{V_{0}} X^{\prime}\right)$ since curves can not "cross" the handle.

Stop removal

Corollary (Stop removal)

Let $X^{\prime}:=V \times D_{1}^{*}[-1,1]$ equipped with the Liouville vector field $Z_{V}+x \partial_{x}+y \partial_{y}$. Then $C W^{*}\left(C_{\#} ; X \#_{V} X^{\prime}\right)$ has trivial cohomology.

Proof.
The key is to observe that after rounding corners
$V \times\{(-1,0)\} \subset \partial\left(V \times D_{1}^{*}[-1,1]\right)$ is loose (meaning that each core disk l_{j} of every top handle of V admits a loose chart).

Stop removal

Proof.

Since we can create loose charts it means that there is at least one generator $b \in C E^{*}\left((V, h) ; X^{\prime}\right)$ such that $\partial b=1$. Use

$$
\begin{aligned}
& C E^{*}\left(\partial l ; V_{0}\right) \xrightarrow{\text { incl. }} C E^{*}\left((V, h) ; X^{\prime}\right) \\
& \downarrow \text { incl. }\left\ulcorner\quad \downarrow_{\text {incl. }}\right. \\
& C E^{*}((V, h) ; X) \xrightarrow{\text { incl. }} C E^{*}\left(\Sigma_{\#}(h) ; X \# V_{0} X^{\prime}\right)
\end{aligned}
$$

to conclude that the same is true for $C E^{*}\left(\Sigma_{\#}(h) ; X \#_{V_{0}} X^{\prime}\right)$. By surgery we therefore have

$$
C W^{*}\left(C_{\#} ; X \#_{V} X^{\prime}\right) \cong C E^{*}\left(\Sigma_{\#}(h) ; X \# V_{0} X^{\prime}\right) \cong 0
$$

Thank you!

