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FOREWORD 

Some time in the middle of the 17th century, Fermat wrote, somewhere, that for every n >3, 
the equation 

a''-\-b" = c'' (1) 

had no solution in the set of strictly positive integers, and he asserted several times that he 
had proved this result for « = 3 and n = 4 (see Chapter 1). Assuming this it is easy to 
see that to prove Fermat's assertion in general, it suffices to prove it for every odd prime 
number n > 5. If we set 

a b 
x=—, y = — , 

c c 

it is equivalent to showing that the only rational points on the affine curve 

x " + / + l = 0 (2) 

are the points (—1,0) and (0 , -1) . 
As we have known since the 19th century that the natural framework for solving prob­

lems in planar algebraic geometry is the projective plane, we need to show that the projective 
curve Fn given by 

Z" 4- r + Z^ = 0 (3) 

has exactly three rational points, namely (0, 1, —1), (—1, 0, 1) and (1, —1, 0). 
We will say that these points are the "trivial" points of F„, since they satisfy the equation 

XYZ = 0. 

Although the main theorem of this book is Fermat's assertion, we may also introduce a 
secondary theorem, which is very close to the main one. Let us state this secondary result. 

Denes' Conjecture: For every prime number n > 3, the only rational solutions of the 
projective curve G„ given by 

X" + F" -f 2Z" = 0 (4) 

VIII 
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are the points 

(1 , -1 ,0) , (1 ,1 , -1 ) . 

This book was written at the very time when this conjecture had just been proved, by 
H. Darmon and L. Merel. 

In order to understand the meaning of Fermat's assertion, let us first consider a funda­
mental result due to Fallings. 

In 1983, Fallings succeeded in proving the famous Mordell conjecture, which stated 
that every smooth projective algebraic curve defined over a given number field and of genus 
>2 has only a finite number of rational points. 

By this result, we see that for x̂ > 5, the projective curve F„ has only a finite number 
Nn of rational points. 

However, it does not say whether the number Â„ is independent of n, and even less 
that Nn = 3. Furthermore, it can be applied just as well to the curves G„, and thus cannot 
serve to show that the number M„ of their rational points is independent of n and equal to 
2! Moreover, Fallings' result disappears for n = 3, since the curves F„ and G„ are then of 
genus one! 

Although Fallings' theorem is truly marvellous, it is not precise enough to attack 
Fermat's assertion decisively^ 

This is not the case for the approach developed by A. Wiles, which is so precise that 
it cannot even be applied without modification to the curves G„. This approach uses three 
major notions: 

(1) the absolute Galois group GQ and its representations of degree 2, of which we give a 
fundamental example in Chapter 4, 

(2) certain rather special elliptic curves, known as the curves EA,B,C^ which are attached 
to an ABC relation, i.e. a relation of the form 

A^B + C = 0 

where (A, B,C) e Z are relatively prime integers such that ABC ^ 0. 
The simplest of these curves is £'i,i,_2, whose equation is given by 

.,2 
: J C ( X + 1)(X- 1) 

(3) certain functions of one complex variable, which are so extraordinarily rich in sym­
metries that their very existence would never have been suspected if they had not 
actually been discovered. These functions are studied in Chapter 5; one of the simplest 

^ Note, however ([Hel 3]), that if n is a large enough multiple of a prime number/? > 5, then Faltings' theorem 
does imply that Nn = 3 (see Chapter 6, Exercise 17). 
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examples, called the modular invariant, which is defined for Sr > 0 by a series 

q = e 
,2/7rT j{q) = _ + 744 + 196884(7 + 

is invariant under the group of positive hyperbolic isometrics of the tiling shown below: 

Chapter 6 is devoted to describing the way in which these actors collaborate in a game 
which, given the fundamental push by Wiles, ends up by proving the Fermat-Wiles theorem. 

In this book, we can only give a superficial description of this "glass bead game", 
because our intention is not to write a book for specialists. However, even at this level, the 
game displays a strange beauty which covers great depths and hard work. 

Barring an unexpected surprise, this proof marks the conclusion of one of the great 
conceptual cathedrals which the 20th century will leave to its descendants. On this topic, it 
is difficult not to think of what Pascal wrote in the Preface to his Treatise on the Vacuum: 

". . . From this, we see that by a particular prerogative, not only does each man advance 
day by day in the sciences, but all men together make continual progress as the universe 
ages, because the same thing happens in the aging of mankind as a whole as happens during 
the aging of a single man. Thus, the entire body of mankind, over many centuries, must be 
considered as a single man, who lives forever and continues to learn [...]. Those whom we 
call the ancients were truly new in all things, and form the childhood of mankind; as we 
have added to their knowledge the experience of the centuries which followed them, it is in 
ourselves that we should seek the antiquity which we dream of in others.'' 

Three hundred years after Pascal, Fermat's theorem was proved, and we now perceive 
Fermat and Pascal themselves as men who were ''new in all things''. We are, indeed, old and 
forgetful at the end of the 20th century! This book was begun in 1994, as a university course, 
and I slowly became aware of the usefulness of transmitting all of these scattered, precious 
results which are no longer taught (I am thinking particularly of the "analytic geometry" 
of Fermat and Descartes), and I also saw that our students were happy to travel through 
centuries of mathematics, following an idea as single as Ariadne's thread, which served to 
provide them with a synthetic and transversal vision. Alas, in doing so, I forgot that our 
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ministers desire to attach their names to current reforms; the latest of these marked the end 
of this experiment. 

Throughout this text, the reader will perceive many traces of pedagogical choices con­
sciously made during this interrupted teaching experience. As I could always count on my 
colleagues, or on books, to provide proofs of the general theorems, but as I was perfectly 
aware that they never had time to give applications, I made it my principal business to show 
the other side of the coin. This book introduces a host of mathematical objects each more 
fascinating than the other, and . . . references for the proofs of the main structure theorems. 

The book also contains non-classical proofs of certain results, using ad hoc ideas, 
which make it possible to appreciate the depths of the classical proofs by looking at certain 
suitably chosen special cases. This aspect is amplified in the problems contained in the 
volume, problems which were often given in examinations. As for the exercises, their goal 
is either to complete the text on certain minor points, or to attract the reader's attention 
to points of view not mentioned in the text which lead to new directions, or sometimes to 
add to the historical culture of the reader by including original texts, many of which were 
communicated to me by Didier Bessot and Jean-Pierre Le Goff. 

This book is what survived of my interrupted teaching, and I must say that without the 
encouragements of Andre Warusfel, without a particularly opportune sabbatical semester, 
and without the patience and the talent of the secretaries of our mathematics department, it 
would never have seen the light of day. 
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The goal of this book is to give a brief description of the steps leading to the solution of a 
problem which was first raised by Pierre de Fermat in the margin of his copy of Bachet de 
Meziriac's translation of Diophantus' Arithmetica. 

The question Diophantus asked was the following: 

''Divide a given square into two other squares'' (and he gave an example of his method). 
Let 16 be the given square; I will call N^ and 16 — N^ the squares to be determined. It 

remains to find N such that 16 — N^ is a square. 
I set 16-N^ = {IN - 4)2 and I obtain N = 16/5. 

To quote from d'Alembert's article "Diophantus" in the Encyclopedia of 1750, 
"Diophantus' method consists in reducing the situation to an equation in one unknown 
via a sequence of substitutions". In other words, Diophantus did not seek to give an exhaus­
tive solution to his problem. His methods were ad hoc, although they were very clever 
methods nonetheless (see Exercise 1.1). 

When the following famous remark by Fermat burst upon the scene, it represented a 
real break with all that real been done before^. 

''To decompose a cube into two other cubes, a fourth power, and generally an arbitrary 
power into two of the same powers above the second power, is an impossible thing and 
I have certainly found its admirable proof This narrow margin would not contain it". 

This is the assertion which became known as "Fermat's last theorem"; it is the only 
one of his many theorems which remained unproven. In modem language, we state it as 
follows: 

For every n > 2, the equation 

\xyz # 0 

has no solution (x,y,z) G Z^. 

^ Diophantus gave a recipe, whereas Fermat stated a general property of integers, in accordance with the 
Aristotelian concept stating that "there is no science except of that which is general". 

I 
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I . I D IOPHANTUS A N D HIS ARITHMETICA 

Diophantus is one of the great names of the "Silver Age" of Greek mathematics, and it is 
thought that he lived in Alexandria, together with other scholars such as Pappus and Proclus, 
between about 250 and 350 A.D. 

He is known for his Arithmetica which contained 13 books: at Fermat's time only six 
were available, but Arabic translations of four more were discovered quite recently. 

The mathematics of Diophantus' Arithmetica appear quite foreign to the Greek math­
ematics of the "Golden Age" of Euclid; in some aspects, they actually seem more closely 
related to the Babylonian tradition. However, unlike the Babylonians, Diophantus was 
interested by exact rational solutions of determinate or indeterminate equations. As far as 
we know, it was Diophantus who first introduced the indeterminate equations which led to 
the development of "Diophantine analysis", a domain of mathematics which lies within the 
realm of "number theory". 

However, Diophantus also did the work of an algebraist, and he used notations close to 
those of Viete. 

For example, Diophantus would have written the polynomial 

in the form 

2x^ + 3JC^ - 4JC^ + 5JC - 6 

AA2 K?> x5 M A4 U6 

where A denotes x^, K denotes jc ,̂ M denotes the minus sign and U is unity. 
The following important identity, which was well-known in the Middle Ages, can be 

found in the work of Diophantus: 

{a^ + b^){c^ + (f) = (ac + bdf + (ad - bcf 

= (ac - bdf -^ (ad-^ bc)^. 

However, as we noted, Diophantus seems to have been more interested by the compu­
tation of a particular solution than by the exhaustive analysis of a given problem. 

An evaluation of Diophantus as a mathematician 

The first algebraist? lacks generality . . . 
The last Babylonian? too abstract... 
The first number theoretician? doesn't work in N . . . 

1.2 TRANSLATIONS OF D IOPHANTUS 

In the 16th century, Diophantus' Arithmetica was an obscure text which, for all practical 
purposes, had been forgotten. R. Bombelli^ rediscovered the book in 1570 and incorporated 

^ R. Bombelli 1526-1572, introduction to complex numbers. 
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it into his book Algebra, written in Italian in 1572. Then W. Holtzmann (alias Xylander^) 
gave a complete Latin translation of the Arithmetica in 1575. 

F. Viete^ transformed the book and incorporated it into his own works (Isagoge, 1591; 
Zetetique, 1593), emphasizing its algebraic aspects. 

C.G. Bachet de Meziriac^, on the other hand, who was not a real algebraist, but the 
author of a work called Pleasant and delectable problems to be solved by numbers and the 
original discoverer of "Bezout's identity" in Z (1624), prepared a bilingual (Greek/Latin) 
edition of Diophantus' Arithmetica in 1621: it was this excellent version which was studied 
and annotated by Fermat. 

1.3 FERMAT 

Pierre de Fermat^ was a jurist, councillor at the Parliament of Toulouse and known for his 
facility in writing verses in different languages (Latin, Greek, Italian and Spanish). 

But in this book, we are interested in Fermat as an amateur mathematician of such 
extraordinary talent that professionals of the time bowed to his superior knowledge. 

Although we are interested mainly in his number theoretic discoveries, we must mention 
here that Fermat did not only work in number theory. 

In geometry, one of his very first results was to reconstruct the planar loci of ApoUonius 
according to Pappus' analysis: his first book on the subject appeared before 1629, the second 
in 1636. 

Then in 1636, independently of Descartes, Fermat invented analytic geometry and saw 
that if he had known it in 1629 he could have saved a great deal of time. However, he 
remarked that "there is, for science, a certain importance in not depriving posterity of the 
works of the mind even when they are yet not completely formulated; work which is at first 
simple and crude becomes stronger and grows by new inventions. It is even important, for 
study, to be able to fully contemplate the hidden progress of the mind and the spontaneous 
development of the art". 

In analysis, Fermat was a precursor of differential and integral calculus. 
In combinatorics and probability, he was the equal of Pascal. 
In optics he introduced the calculus of variations to justify the laws of Snell-Descartes 

(nature always acts by the shortest paths). 
Let us now turn to a detail of number theory, his favourite domain. 
The work of Fermat concerned: 

- Fermat's small theorem: 
For every prime number p and for every a eZ not divisible by p, we have 

aP~^ = 1 mod p. 

^ Xylander 1532-1576. 
^ Viete 1540-1603. 
^ C.G. Bachet 1581-1638. 
^ Bom in 1601 in Beaumont de Lomagne, died in 1665 in Castres, where he was a councillor in the Chamber 

of the Edict. 
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- Fermafs equation (usually mistakenly called Pell's equation): 

X ^ - A / = 1. 

- The Fermat numbers 

F, = 2 "̂ + l. 

The representation of prime numbers by quadratic forms, in particular by 

X^ + Y^ and Xl+X^^X^+Xl. 

- Fermat's famous assertion or "last theorem", stating that for n > 2 and (jc, j , z) E Z^, 
we have 

- A great number of individual Diophantine equations. 

1.4 INFINITE DESCENT 

Infinite descent was one of Fermat's greatest discoveries. This technique allowed him to 
prove many results on the integers by a device which could not extend to rational or real 
numbers. 

Superficially, the method of infinite descent resembles the induction method, or rather, 
its negation is a descending sort of induction. But the "mystery" of Fermat's method is 
difficult to define. Here is what Fermat himself said of it: 

"Since the ordinary methods which are in books were insufficient to prove such difficult 
propositions, I finally discovered an altogether singular method to succeed. 

I called this method of proof indefinite or infinite descent: at first I used it only to prove 
negative propositions, such as for example: 

That there is no number, less by a unit than a multiple of 3, which is composed of a square 
and the triple of another square; 
That there is no right triangle in numbers whose area is a square number. 

The proof is done by reduction to the absurd in this manner: 
If there were a right triangle with integral sides whose area was equal to a square, there 

would be another triangle smaller than this one which would have the same property. If there 
was a second, smaller than the first, with the same property, then by the same reasoning, 
there would be a third, smaller than the second, which would have the same property, and 
then a fourth, a fifth, and so on descending to infinity. However, given a number, there is no 
way to descend from it infinitely (here I only speak of integers). Hence we conclude that it 
is impossible to have a right triangle whose area is a square. 

We infer from this that neither is it possible to have a triangle whose sides have frac­
tional (rather than integral) lengths and whose area is a square. Because if we had such a 
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triangle with fractional sides, then we could construct one with integral sides, which is in 
contradiction with what we proved above. 

I do not add the reason for which I infer that if there were a right triangle of this nature, 
there would be another of the same nature smaller than the first, because the discourse would 
be too long and therein lies the whole mystery of my method. I would be greatly satisfied 
if Pascal and Roberval and many other scholars sought it upon my indications. 

I remained for a long time unable to apply my method to positive assertions, because 
the proper angle to approach such questions is much more uncomfortable than the one 
which I use for negative assertions. Thus, when I needed to show that every prime number 
which surpasses a multiple of 4 by a unit is composed of two squares, I found myself in 
a quandary. But finally, much-renewed meditation provided the light which I lacked, and 
positive assertions became solvable by my method, with the help of some new principles 
which necessity forced me to add to it. This progress in my reasoning on such positive 
assertions runs as follows: if a prime number chosen at will, which surpasses a multiple 
of 4 by a unit, is not composed of two squares, there will be a prime number of the same 
nature, less than the given one, and then a third still less, etc., descending to infinity until 
one arrives at the number 5, which is the least of all primes of this nature, which shows 
that it cannot be composed of two squares, which yet it is. Hence we infer, by deducing the 
impossible, that all primes of this nature are, consequently, composed of two squares". 

Let us try to illustrate this subtle difference between induction on n and Fermat's method 
of infinite descent, on a simple example of each. 
(a) Induction 

Definition 1.4.1 
first n integers: 

A number is said to be triangular of root n, 

r^ = 1 + 2 + • •. -h«. 

if it is the sum T„ of the 

Formula 1.4.1 Inverting the order of the terms of the sum we have 

r„ = A2 + ( n - i ) + ••• + !, 

and adding term by term, we find 

2r„ = (« + 1 ) + (n +1 ) + • • • + («-h 1) = ^(^ +1) , 

hence 
_ n{n + 1) 

Definition 1.4.2 A number is said to be pyramidal of root n, if it is the sum n„ of the 
first n triangular numbers: 

n„ = Ti + 72 + • •. + r„. 
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Theorem 1.4.1 We have the identity 

n„ = - « ( « + 1 ) ( A Z + 2 ) . 
6 

Proof. Let us proceed by induction on n. 

(1) The property holds for « = 1. 
(2) Assuming it holds for n, we have 

n„+i = - « ( « + \)(n + 2) + r^+i. 
0 

As r„+i = (« + l)(n + 2)/2, we obtain 

n„+i = - « ( « + \)(n + 2) + -(n + 1)(« + 2) 
O 2 

= - ( « + l ) ( n + 2)(n + 3), 
6 

so the property holds for « + 1. 
(3) As the property holds for « = 1, it also holds for n = 2; since it holds for n = 2 it 

also holds for « = 3, "and so on to infinity", as Pascal would say. D 

(b) Infinite descent 

Theorem 1.4.2 V3 ^ Q. 

Proof. We give two different proofs. 
(a) Let us first recall the classical solution due to Euchd. 
If we had 

we would deduce that 

^ = 5-

3d^ = A^^ 

so the exponent of 3 in the decomposition into prime factors of this number should be 
both odd (left-hand expression) and even (right-hand expression). This would contradict 
the uniqueness of the decomposition into primes. 

(b) We will now give a proof of the same result by the method of infinite descent. 
Assume that V3 = ai/bi, with (ai,bi) eN x N+. Using the relation 

1 V3 + 1 

V 3 - 1 2 

we deduce that 

x/3 + l _ bi 

2 ~ ai-bx 
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hence \/3 = {3bi — ai)/{a\ — bi) = a2/^2, with 

b2 =ai -bx. 

From \/3 < 2 we deduce that a\ < 2Z?i, so 

fl2 = 3Z7i — fli > 0 and ^2 < ^ 1 . 

From 3/2 < V3 we deduce that 

1)2 = a\ — b\ > 0 and ^2 < fli-

Thus, we see that 

/ - _ a i _ _ f l 2 _ ^ _ 

^1 ^2 ^3 

and the sequences of the numerators and denominators are strictly decreasing: this is absurd, 
so V3 ^ Q. D 

A modern formulat ion of this descent argument 

Let E denote the set of ^ e N+ such that there exists a G N such that V3 = a/b. If E is not 
empty, then E contains a smallest element b\, so V3 = a\/b\ with a\ e N. 

Then the above argument shows that there exists a2/^2 ^ E with b2 < b\\ this gives a 
contradiction, so E is empty. D 

Remark 1.4.1 Unfortunately, the example of V3 is too simple to clearly reveal the 
"mystery" of infinite descent. Indeed, the property \/3 ^ Q is purely "local"; what the proof 
(a) really shows is that \/3 does not belong to the field of 3-adic numbers (see Chapter 3). 
Fermat's method acquires its full importance when applied to theorems which are "every­
where locally true", but "globally false" (on this subject, see the article by J. Coates in 
[C-N]). 

1.5 FERMAT'S "THEOREM" IN DEGREE 4 

Let a Pythagorean triangle be a triple of natural numbers (a,b,c) such that 

Since Euclid's time^, it has been known that if (a, b) = 1, then there exist relatively prime 
numbers p and q with p > q such that if a is even, we have 

a = 2pq, b=p^-q^, c=p^-\-q^. 

^ Euclid's Elements X29, lemma 1. 
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In a letter to Huygens, Fermat stated the following theorem 

Theorem 1.5.1 The area of a Pythagorean triangle cannot he a square. 

Proof. (Fermat) This area is given by pq(p-\-q){p — q), where the four factors are pairwise 
relatively prime. Thus, we have 

p = x^, q = y^, p-\-q = u^, p — q = v^, 

where u and v are odd and relatively prime. We have 

w2 = v2_^2/ ^^=^ 2 / = (W + V) (M-v ) ; 

as the greatest common divisor of M + v and w — v is 2, we see that 

w -f V = 2r^ 

u-v = As^ 

or the contrary. Hence 

u = r̂  + 25^ ibv = r̂  -2s^ 

and y = 2rs. Consequently, 

x^=p= i(M^-hv^) = r^ + 4 / , 

and (r^, 2s^,x) forms a Pythagorean triangle of area equal to (rs)^ and hypotenuse strictly 
less than ^/x^ + y^: we can apply the descent. • 

A modern formulation of this descent argument 

Let E denote the set of /z G N^ such that there exists a Pythagorean triangle of hypotenuse 
h whose area is a square. If £" is not empty, then E contains a smallest element h=p^ -\-q^ 
with/7 > q. 

Then the above argument shows that ^ e E and ̂  < h, which is a contradiction, so 
E is empty. 

\x^+y^ = z' 

Corollary 1.5.1 The equation 

\xyz ^ 0; X, y, z integral 

is impossible. 
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Proof. Assume that x, y, z form a "primitive" solution of the equation, i.e. a solution such 
that X, y, z are pairwise relatively prime. At least one of them must be even; let it be x. From 
the equation 

we deduce that 

with {a,b) = 1. We then have 

which gives a Pythagorean triangle whose area is a square. D 

Remark 1.5.1 

(1) We can compare corollary 1.5.1 to the equation 

x'+/ = 2z'; 

does it have any primitive solution other than (ibl,ibl,ibl)? 
The answer is no, since otherwise we would have 

z'-xV 
< ^ ) ' 

and the equation X"^ ~ Y"^ = Z^ has only trivial solutions in Z^ (i.e. solutions with 
XyZ = 0) by Exercise 1.6. 

(2) Clearly the same remark applies to the equation 

x'+y' = 2z\ 

1.6 THE THEOREM OF TWO SQUARES 

Like many others before him, Fermat became interested in the representation of an integer 
as the sum of two squares, and he began to construct the rigorous theory of such integers. 
More generally, he was interested in the representation of an integer by quadratic forms of 
the type X^ -h AY^ with A e {1, 2, 3}. As the method is the same in the three cases, we 
consider only the case A = 1. In this case, Fermat's result is as follows. 

Theorem 1.6.1 A positive integer n is the sum of two squares if and only if all the prime 
factors ofn of the form Am — 1 have even exponents in the decomposition ofn into prime 
factors. 
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1.6.1 A Modern Proof 

The modem method for proving this theorem is to work in the ring Z[i] of "Gaussian 
integers" .̂ 

Recall that the main property of this ring is that it is Euclidean. Indeed, if we define the 
norm of an element in this ring by N(x -\- iy) = x^ + y^, we obtain a homomorphism from 
the multiplicative monoid Z[/]\{0} to the multiplicative monoid N* of the integers > 1; this 
follows from the fact that complex conjugation is an automorphism of Z[/], so we have 

N(ZlZ2) = (ZIZ2)(Z^) = (ZlZl)(Z2Z2) = N(zi)N(Z2), 

which is exactly Diophantus' identity. 
The essential fact concerning Z[i] is that equipping it with the norm N, it becomes a 

Euclidean ring, i.e. we can perform Euclidean division in Z[/]. Let x e Z[i] \ {0}; then for 
every y e Z[/] there exist q and r in Z[i] such that 

i y = xq-{-r 

withA^(r) <N(x). 

It follows that Z[/] is principal, and every element of Z[/] can be written in an essentially 
unique way as a product of irreducible elements 

X = WTTj"' . • • < % 

where TTI, . . . , TT̂  are non-associated irreducible elements of Z[/], and w is a unit of Z[/], 
i.e. an element x of Z[/] such that N(x) = 1. 

Apart from the prime number 2 in Z which can be written 

(thus it is a prime number in Z which is "ramified" in Z[/]), the prime numbers in Z fall 
into two categories: 

(i) prime numbers of the form 4n — I, which remain irreducible in Z[i] and which we 
call the "inert" primes. 

(ii) prime numbers p of the form 4« + 1, which split in Z[/], i.e. factor as 

p = n n = N(7t), 

where n denotes the number conjugate to n. 

This is precisely the delicate point of the theory, the one which gave Fermat so much 
trouble. Let U and E denote the kernel and the image of the homomorphism of monoids: 

A :̂ Z[i] —> N. 

The set U is precisely the group of units of Z[/], i.e. the group of the invertible elements 
of this ring. 

8 C.R Gauss 1777-1855. 
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Theorem 1.6.2 (Crucial Theorem) Letp 6 N* be a prime. The following conditions are 
equivalent: 

(i) P e E; 
(ii) p is reducible in Z[/]; 

(iii) p = 2 orp = 1 mod 4. 

Proof. (1) Let us first show that (i) <=^ (ii). 
Indeed, ifp G E, we have/? = {a-\- bi)(a — bi) in Z[/], and this is a non-trivial decom­

position. Conversely, Up = zxZi with z\ and zi ^ U, we see that N{p) = N(z\)N(z2), ie . 

/=7V(zi)^(z2) . 

As A (̂zj) > 1 fory G {1, 2}, we obtain 

P = N(zi)=N(z2), 

sop G E. 
(2) Let us show that (ii) ^^=^ (iii): this is the subtle point! 
We know that/? is reducible if and only if (p) = pZ[i] is not prime. 
Consider the isomorphisms 

Z[/] = Z[X]/(X^ + 1) 

ni]/(p)= Z[X]/(X^ + hp) 

^ (Z[X]/(p))/(Z2 + 1) 

= ¥p[xy(x^ +1 ) . 

Ifp^l, we have 

(p) reducible <;=^ X^ + 1 factors in ¥p[X] 
7*\2 - 1 G (F*)^, the group of squares in F* 

p = I mod(4) (Ruler's criterion)^. ^ 

Proof of the theorem of two squares 

Let w = «in2 be the decomposition of n as a product of 

- its prime factors belonging to E, which gives ni; 
- its prime factors not belonging to E, which gives n2. 

Since E is a monoid, ni e E, so if «2 is a square, then « G E. Conversely, suppose that 
A2 G E and ^2 is not a square; we will show that this leads to a contradiction. 

Let« = a^ + b^. 
If ^ is a prime number congruent to — 1 modulo 4, which divides both a and b, then q^ 

divides n. Applying the same remark to n/q^, we can suppose that none of the common 
prime divisors of a and b is congruent to — 1 modulo 4. 

9 L. Euler 1707-1783. 
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If ^2 is not a square, then it has a prime factor q congruent to — 1 modulo 4 whose 
exponent is odd. 

It follows that q does not disappear in the reduction described above, and we are reduced 
to the case 

a^ -\-b^ = O(mod q) 

with a ^OoT b ^0 (mod q), which implies a ^0 and b ^0. 
Thus, we have ab ^0 mod q, and dividing by b, we find that 

( ^ ) V l ^ O (mod )̂, 

which is impossible since q is not congruent to 1 modulo 4. • 

1.6.2 "Fermat-style" Proof of the Crucial Theorem 

Lemma 1.6.1 Let N = a^ -\- b^ be an element of E, and let I = x^ -{- y^ be a prime 
divisor ofN. Then not only is N/I an element of Z, but furthermore, there exist integers 
w, V such that 

Nr^ = ŵ  + v̂  
a = ux -\-vy, b = \uy — vx\. 

Remark 1.6.1 Naturally, we assume that a, b, x, y are positive. 

Proof The idea of the proof is that the division of Â  by £ can be done with the help of an 
astute use of multiplication. Let us write 

Nl = (ax ± byf + {ay =F bxf, (1) 

and let us show that the sign can be chosen so that each of the terms of the right-hand side 
is divisible by l^ (this is the "astute" multiplication). 

If we start with the the last term, we must show that {ay — bx){ay + bx) is divisible by 
i. Indeed, we have 

{ay — bx) {ay + bx) = a^y^ — b^x^ 

= {a^+b^)y^-b\x^+y^) 

= Ny^ -b^e = Omodl. 

Once the sign is correctly chosen, relation (1) shows that the first term of the right-hand 
side is also divisible by €, so we have 

ax ^by = lu, ay ^ bx = Iv (2) 
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with u and v e Z. Hence 

But we can solve (2) for a (resp. for b) by multiplying the first relation by x (resp. y) 
and the second by y (resp. by x). After simplifying by £, we find 

a = ux -\- vy, b = ±(MJ — vx). D 

Theorem 1.6.3 (Crucial Theorem) If a prime number p > 0 is congruent to 1 modulo 
4, then it is a sum of two squares. 

Proof This proof is a simple reconstitution which follows Fermat's (purely literary) text 
step by step. 

(1) If p = 1 modulo 4, then - 1 is a square modulo/?, so there exists a e^ such that 

<3̂ -h 1 =0(mod/?); 

we can even choose a < p/2. Thus we have 

\a^^P=N'p, 0<N'<p 
\{a,b) = 1 

where we simply take b = 1; it plays no role in what follows. 
(2) We will now adopt Fermat's reasoning by the absurd. 
If p ^ E, we apply the preceding lemma to Â  = N^p, assuming that all the prime 

factors I of N^ lie in E. We deduce that N/l = (N'/i)p belongs to E, and we can keep 
doing this as many times as necessary in order to obtain /? G E, which is absurd. 

Thus Â^ has a prime factor I < p which is not in E. 
In this way, we construct a strictly decreasing sequence of prime numbers which do not 

lie in E. 
Now, we started by assuming that a and b were relatively prime, so all these prime 

numbers must be congruent to 1 modulo 4, and the smallest such prime is 5. But 5 G E, 
contradiction! D 

Remark 1.6.2 The last sentence is not actually necessary, since there cannot be an infinite 
decreasing sequence of prime numbers < p. However, we put it in because it was part of 
Fermat's original argument. 

1.6.3 Representations as Sums of Two Squares 

Let r(n) denote the number of representations of n in the form a^ -\-b^. Even if two rep­
resentations differ only by the order and the signs of a and b, they are considered to be 
distinct. 
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Example 1.6.1 

2 = i±lf + (±lf r(2)=4 

1 = (±lf + 0^ = 0^ + (±1)^ r(l) = 4 

5 = (±2f + (±1)^ = (±lf + (±2f r(5) = 8. 

Using the fact that Z[i] is a principal ideal domain, we can prove the following result, 
which we leave as an exercise. 

Theorem 1.6.4 Let n eW and let 

withp = 1 (mod A) andq = — 1 (mod A) be the decomposition ofn into prime factors. Then 
we have: 

(i) r{n) = 0 if all the Vq(n) are not even. 

(ii) r{n) = 4 HpĈ /̂ C'̂ ) + 1) ̂ f^^^ ^^^ ^q(f^) ^^^ ̂ v^^-

However, our main task is to count the proper representations of the odd numbers 
which admit no prime factors congruent to - 1 modulo 4. By this, we mean decompositions 
of the type 

n = a^ -\-b^ 

{a.b) = l 

up to exchanging a and /?, or changing their signs. 

Example 1.6.2 

Let s(n) denote the number of proper representations of n. We have 

5(1) = 0 5(5) = 1. 

Ifp is prime andp = 1 (mod 4), then s(p) = 1 (see theorem 1.6.5). 

Lemma 1.6.2 Let n eW and let p = x^ -\-y^ be an odd prime divisor ofn. 
Assume that n/p > 2 and n/p admits the proper representation 

Let 

n/p = u^ -\-v^. 

a = MX -\- vy, b = uy — vx 

a' = ux — vy, b' = uy -\- vx. 
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Then the representations n = a^ -\-b^ and n = a''^ -\- b''^ are distinct, and moreover: 

(i) If p does not divide n/p, the two representations n = a^ -\-b^ and n = a'^ -\- b^^ are 
proper. 

(ii) Ifp divides n/p, then one is proper and the other is not. 

Proof. (1) We check that a ^ ±a\ b / ±/?^ a / ±b' and b ^ ±a'. 
(2) Let us show that ifp does not divide n/p , the two representations are proper. 
Indeed, solving for u and v, we have 

iax-\-by = up, I a'x + b'y = up, 

ay — bx = vp, 1 a^ — b'x = —vp, 

so (fl, b) divides p (resp. {a\ b') divides p). But if {a, b) ~ p (resp. {a\ b') = p), we see 
that/7^ divides n, which is absurd. Thus (a, b) = (a\ b') = I. 

(3) Finally ifp divides n/p, we will show that/7 divides bb\ Indeed, we have 

. 9 '^ 9 7 n J o 
bb = u y^ — V X = - y^ — v p. 

P 

Now, ifp divides b (resp. b'), then/? divides a (resp. a'). 
But ifp divides a (resp. a^), we have 

ux = —vy mod p (resp. ux = vy mod p) 

so 

ux ^ vy mod p (resp. ux ^ —vy mod p) 

and/7 does not divide a^ (resp. (2). 
Thus one and only one of the two representations is proper. D 

Theorem 1.6.5 Let n = p[^^ " .. .pm"" ^ be a number in E admitting only prime factors 
congruent to 1 modulo 4. Then 

s{n) = 2^-\ 

Proof. 

(1) We know that s(p) = 1, because 

p = 7X7T, 

where n is unique modulo the units of Z[/]. 
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By lemma 1.6.2, we also have 

s(p')=s{p) = L 

(2) Now, if (p,n) = I with n > 2, then lemma 1.6.2 shows that 

s(p^n) = Isin). 

(3) Thus we obtain the result by induction on m. • 

Corollary 1.6.1 Let n = p\'' "" .. .pm'"̂ "̂  be as in theorem 1.6.5, and let e > I. Ifn^ = 
a^ + b^ is a proper representation ofn^ 6 E, then n has a proper representation u^ -\- v^ 
such that 

a-{- ib = {u-\- ivy. 

Proof. Set 

(U + ivY = Pe(u, V) + iQeiu, v). 

Then we want to show that by the theorem, the map 

(U, V) I > (Peiu, V), Qe(u, v)) 

induces a bijection between the proper representations. 
Decomposing n in Z[/], we have 

= ^^Q(/)/Q(«) 

for every a e Z[i] of the form 

with Ai + /xi = Vp^ (n),...,km + fu.ni = Vp,„ in). 
It is clear that if there exists an index v such that Ay/tiy 7̂  0, the representation of n in 

the form X^ + Y^ obtained using a (i.e. n = aa) is not proper. 
Moreover, 01 and oi give the same representation, so we obtain at most 2^~^ proper 

representations. By the theorem we obtain only proper representations in this way. 
The same criterion applies to n^, hence the result. D 

1.7 EULER-STYLE PROOF OF FERMAT'S LAST THEOREM FOR n = 3 

The proof we give here, which could easily have been Fermat's very own, was actually 
discovered by Euler^^ in 1753; it makes use only of the theory of the quadratic form 

0̂ L. Euler 1707-1783. 
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X^ + 37^, which is close to that of Z^ + Y^. Later, in 1770, Euler gave a similar proof, in 
the language of the arithmetic of Z[^/^]. 

Consider the equation 

x'+y'=z\ (1) 

We may assume that x, y, z are pairwise relatively prime and z is even. Setting 

x=p-\-q, y=p-q 

we obtain 

^(j,2 + 3q^)^Q\ pq^O, (2) 

and since x and y are odd, p^ + 3q^ must be odd, which implies that p/4 e Z. We will 
distinguish two cases according to whether or not z is a multiple of 3. 

(1) If 3 does not divide z 

Then the two factors of the first term of (2) are relatively prime, so they are cubes: 

p = 4p p^-\-3q^=s\ 

By corollary 1.6.1 (adapted to Z[^/^]), there exist u and v € Z such that 

1/7 = P3(u, v) = u{u -\- 3v){u — 3v) 

[q = Q3(u,v) = 3viu^-v^) 

with (w, v) = 1. 
Since q is odd, v is odd and u is even. 
Since/7/4 6 Z, we see that u/4 e Z and since/7/4 = P and 3 does not divide/?, we see 

that w/4, M + 3v and u — 3v are cubes: 

u = 4a^, w + 3v = Z? ,̂ u — 3v = c^. 

Thus we obtain 

(-2a)^ -i-b^ -\-c^ =0 (3) 

which is a second solution of (1), but in smaller integers (exercise). 

(2) Ifz is a multiple of 3 
Then p is divisible by 3, and as p and q are relatively prime, we see that q is not divisible 
by 3. We can write 

so p/4 is a multiple of 9, thus 

and the two factors of the left-hand side are relatively prime cubes. 
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Corollary 1.6.1 implies the existence of relatively prime u and v such that 

o p 

p = 36r, q = P3iu,v), - = G3(w, v), 

hence 

-4r^ =v(vj^u){v-u), (4) 

Furthermore, we find that u must be odd and v even since q is odd and 

q = P^(u, v) = u(u -h 3V)(M - 3v). 

Multiplying the relation (4) by 2, we see that 2v, v -h M, v — w must be cubes, hence we also 
get a non-trivial solution of (3) in smaller integers (exercise). D 

Remark 1.7.1 We will see in Exercise 1.7 that the equation 

x'+y'=2z' (G3) 

can be treated in the same way, and its only non-trivial primitive solutions are =b(l, 1, 1). 

1.8 KUMMER, 1847 

Euler also introduced the ring Z[/], where 7 = Q^^^/^ is a primitive third root of unity, in 
order to study the Fermat equation of degree 3; he accepted the fact that the fundamental 
theorem of arithmetic extends to Z[/] (fortunately for him, this is actually the case, although 
it is not the case for the ring Z [ \ / ^ ] ) . 

After him, other mathematicians (Lagrange, Gauss, Cauchy, Jacobi, Liouville) consid­
ered the possibility of generalising this idea to the rings Z[^], where f denotes a root of 
unity of odd prime order, and extending the fundamental theorem of arithmetic to these 
fields. 

In 1847, the Academy of Sciences in Paris was in a state of ferment over this question 
(see [Ed] p. 76-80), when Liouville announced that Kummer had proved three years earlier 
that the fundamental theorem of arithmetic did not extend to Z[f ], but that the theory of 
prime factorisation could be saved by the introduction of "ideal numbers". 

This fundamental theory, published by Kummer^ ̂  in 1846 ([Kum]), is essentially equiv­
alent to the theory of ideals in the ring Z[^]. 

The following paragraph is devoted to a brief sketch of the latter. 

1.8.1 The Ring of Integers of Q ( 0 

For reasons of simplicity, we will assume that the primitive p-ih root of unity f lies in C; 
we can, if we wish, represent f by the number ^^^'/^, but the other primitive roots of unity 
are just as legitimate. 

11 E.E. Kummer 1810-1893. 
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The minimal polynomial of f over Q divides the cyclotomic polynomial 

XP — I 

so, if we prove that ^p{X) is irreducible in Q[X], then we will have proved that ^p(X) is 
equal to the minimal polynomial of f. But the irreducibility of ^p(X) follows easily from 
Eisenstein's criterion^^ ([VWl] p. 74). Indeed, the irreducibility of ^p(X) is equivalent to 
that of Op(X + 1), but we have 

(x + iy-i _ , , _ ! . ^, ,_2 , . fp\ ^,-._i 
<^p(x +1) = ^-^ = XP-' ^pxp-' + . . . + r^jx'-"' + • • • +p. 

As all of the coefficients of Op(Z + 1) except for the first one are divisible by p, and the 
last one is not divisible by p^, Eisenstein's criterion implies that ^p(X + 1) is irreducible, 
and thus, <^p(X) is irreducible, and it is the minimal polynomial of ^. 

It follows that the map 

\Q[X] ^ Q(f) 

\p{X) K ^ P ( 0 

defines a homomorphism of Q[Z] onto a subfield of C isomorphic to the quotient ring 

Q m / K e r ^ = Q[X]/(cI>^(X)), 

so Q(C) is an extension of Q of degree p — \. We call it the field of p-th roots of unity. 

Remark 1.8.1 Note that Q ( 0 / Q is a Galois extension, as all of the roots of ^p{X) are 
powers of ^, so they belong to Q ( 0 ; thus, every automorphism of C (continuous or not) 
sends Q ( 0 onto itself (see Chapter 3). 

Let K/Q_ be a field extension and let a e K. The map 

\x I—> ax 

is an endomorphism of the Q-vector space K. 

Definition 1.8.1 For every a e K, set 

\NoTmK/Q(a) = 

[Trace/^/Q(a) = 

NK/Q(0i) = 

TrK/Q(a) --

= det(Ac,) 

= trace(Xo,) 

KG. Eisenstein 1823-1852. 
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Example 1.8.1 
Take a = i;, and consider the following basis for Q(^) as a vector space: 

The matrix of X^ in this basis is given by 

/O 0 
1 0 
0 1 

• 1 \ 

-1 
-1 

\ 0 0 1 - 1 / 

since X^iO = ^^"^ = - 1 - ^ ^^~^. If p is odd, we then have 

i^Q(C)/Q ( O = 1 

7>Q(C)/Q(0 = - 1 -

Proposition 1.8.1 IfK/Q(a) is an extension of degree s, then 

I NK/Q(a) = {aia2--'Oiry 

TrK/Q(a) =s(ai + • • • + « , ) , 

where ofi, . . . , a^ denote the conjugates of a over Q. 

Remark 1.8.2 

(1) The conjugates of a are the roots in C of the irreducible polynomial of a over Q. 
(2) For a proof of this proposition, see [Ca 1] appendix B. 
(3) NK/Q is a homomorphism from K* to Q*, and Trjc/q is a homomorphism from (K, +) 

to (Q, +). 

Definition 1.8.2 Letx e C. We say thatx is integral if there exists a monic polynomial 
F(X) 6 Z[X] such that Fix) = 0. 

Remark 1.8.3 A polynomial is called "monic" when the coefficient of the highest degree 
term is equal to 1. 

Example 1.8.2 

(1) Since ^ is a p-ih root of unity, we see that ^ is a root of F{X) = X^ — 1, so ^ is 
integral. 

(2) If X is integral and if a € Aut(C) is a (continuous or discontinuous) automorphism of 
C, then (J (x) is integral. 

(3) If jc G Q is integral, then x e Z. 
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(4) If X e Q ( 0 is integral, then NQ(^)/Q{X) and TrQ(^)/Q(x) are rational integers, so they 
lie in Z. 

In this text, we admit the following well-known theorem (cf [Sa] p. 35). 

Theorem/Definition 1.8.1 Let K/Q be afield extension. The set of integral elements of 
K forms a subring ofK which we call the integral closure ofL in K, or the ring of integers 
ofK, 

Example 1.8.3 
The ring Z[f ] is the smallest subring (of C) containing Z and ^. As ^ is integral, Z[^] is 
contained in the ring of integers of Q(0- Let us now prove that Z[f ] is the integral closure 
ofZinQCO. 

Lemma 1.8.1 Letp be an odd prime. Then the following families form Z-bases ofZl^]: 

(i) l , ^ . . . , C ^ - 2 

(ii) c,c^...,f^-^ 
(iii) 1, TT,..., 7r̂ ~̂  with n = ^ — I. 

Proof. To start with, note that 1, ^ , . . . , ^P~^ forms a system of generators of Z[f ]. 
(i) Since f̂ ~̂  = _ i _ ^ . . . _ ^P-^^ we see that the family given in the statement is a 

system of generators of Z[^]. 
If we have 

we deduce that 0^(X) divides the polynomial ao + aiX + • + flp_2^^~^, which shows 
that all the at are zero. 

(ii) The matrix of the new family in the old basis is given by 

/O 0 - 1 \ 
1 - 1 
0 1 - 1 

\0 0 1 -1/ 

Since this matrix has determinant 1, the new family is also a basis. 
(iii) The same reasoning holds for the family 1, TT, . . . , 7r̂ ~ ,̂ by computing the matrix 

with respect to 1, ^ , . . . , ^^~^. D 

Lemma 1.8.2 Set n = ^ — I. Then 

(i) Nq^^yqiTT) = p. 
(ii) All the conjugates ofn are associated to TT (i.e. products ofn and a unit). 
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(iii) p is associated to 7tP~\ 
(iv) IfneZ, then n divides n if and only ifp divides n. 
(v) The ideal generated by n is maximal in Z[^]. 

Proof. 

(i) As TT is a root of the polynomial Op(X + 1), it suffices to note that the constant term 
of this polynomial is equal to p. 

(ii) The conjugates of n are 

C - 1 ,?^- 1, . . . ,^^"^ - 1, 

and we see that 

^ ^ — 1 = U27T, . . . , ^^~^ — 1 = Up-{7T, 

where U2,..., Up-\ are elements of Z[f ]. Furthermore, it is clear that the norms of 
W2,..., Up-\ are all equal to 1, so these elements are units. 

(iii) Since Op (Z +1) is irreducible, its constant term is the product of the conjugates of it. 
(iv) It suffices to show that if n divides n, then p divides n. To see this, it suffices to take 

the norms of the numbers n and na to see that in fact/7 divides «^~^ so/? divides n. 
(v) By (iii) of lemma 1.8.1, we see that 

Z[^]/(7r) = Z / ( 7 r ) n Z , 

but by (iv) we have (TT) n Z = (p), so Z[f ]/(7r) = F^, which is a field. D 

Remark 1.8.4 Recall that x € C* is a unit if and only if both x and x~^ are integral. It 
follows that the product of the conjugates of a unit x must be an integer in Z which divides 
1; i.e. ifxeK, then 

A^^/Q(^) = ± 1 . 

Conversely, if x G ^ is integral of norm ± 1, then jc is a unit since jc~ Ms a product of integral 
numbers. If x is a unit, all of its conjugates are units. The units of Z[f ] form a group under 
multiplication; it is the largest multiplicative group contained in Z[^]. 

Theorem 1.8.2 The integral closure ofZ in Q ( 0 is Z[f ]. 

Proof Let A be the integral closure of Z in Q(0- We saw that Z[^] c A, so it suffices to 
show that A C Z[f ]. 

(i) Let X G A; we can write 

X = ao ̂ - ai^ -\ h ap^2^P~^ 

with at e Q. It follows that 

(1 - Ox = ao^ (ai - ao)^ + • • • + (^^-2 - ^^-3)?^"^ - «p-2?^"^ 



PATHS 23 

Since A is a ring and x G A, we have (I — ^)x e A, so 

^^Q(0/Q(1 - O-^ == (P - 1)^0 + («o - «i) H \- ((^p-3 - cip-i) + «p-2 e Z, 

which simpHfies io p ao e Z. Replacing x by ^"^JC, f ~^X, etc., all of which lie in A, we 
obtain p fli e Z, p a2 e Z, etc. 

(ii) To show that the at actually lie in Z, we use a trick which goes back at least to 
Kummer, and use the third basis of lemma 1.8.1 to write 

/?X = Z?o + ÎTT + • • • + V2^^~^- (1) 

Since/? ^ 7r^~\ we see (successively) that n divides bo,bi,..., bp-2, so by (iv) of lemma 
1.8.2,/7 divides bo, ̂ i , . . . , bp-2' D 

1.8.2 A Lemma of Kummer on the Units of Z[^] 

The goal of this paragraph is to prove the following lemma, in which p is assumed to be an 
odd prime and ̂  is assumed to lie in the field of complex numbers C. 

Lemma 1.8.3 Let e be a unit contained in Z[f ], and let e be the complex conjugate unit. 
Then we have 

e/e = r 

with^ <r<p-\. 

Proof. Kummer's proof can be separated into two parts. First, one shows that 

e/e = ± r , 

and then that the sign is +. 
(i) Kummer sets 

e/e = ao + ai^-{-•-'+ a^-i^^'^ = E{0 

with E(x) = ao-\- aiX -\ h ap-iX^'^. Naturally, this expression is not unique! 
It follows that we have 

l=e/le/e = E(OE(;'-')=R(0 

where R(X) = AQ + AjZ + • • • + Ap.iXP'^ is the remainder after dividing EiX)EiXP-^) 
byXP - 1. 
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Replacing X by 1 in the identity of the division, we obtain 

Ao-h-"+Ap_i ={ao'\-'"+ap_if = 1. (1) 

Replacing Z by f in the same identity, we obtain 

A o + A i f + . . .+A^_i^^- ' = l, (2) 

which gives 

A o - 1 =Ai = ••• =Ap-i. 

Let k denote this integer. Replacing AQ, . . . , Ap_i by their values as functions of k in (1), 
we have 

(ao-\ h ap-if = 1 -\-pk = 1 mod p, 

so 

flo H \- cip-\ = ±1 mod /7, 

and, as the ai are only unique up to translation, we may assume that 

(3o H Vap-\ = ±1 , (3) 

which implies that for this particular choice of the a,, we have /: = 0, so 

Ao = 1 and Ai = • • • = A^_i = 0. 

But if we actually compute R(X), we find that 

so one of the aj- is equal to 1 and the others are zero. Thus 

e/e = ±^'', 0<r<p-l. 

(ii) To determine the sign, we write u e Z[^] in the basis ^ , . . . , ^^~^ as 

We have 

u-n = c,(^- r') + • • • + cp-i(^p-' - r'^'), 
so we see that ^ — ^~^ divides a — u, son divides u — u. 
Now if e/e = ~^^ = —^^+ ,̂ we can assume that the exponent of f is equal to 2s. 
If we set u = e^~\ we see that u = —u e Z[f ]. 
It follows that u — u = 2u, so p divides the norm of 2M. 
As this is equal to ±2^"^ we obtain a contradiction. D 

Remark 1.8.5 A more modem but less efficient method for proving the same result consists 
in noting that every unit of Z[f ] is of the form pf' with p e Z[^] H M; for more detail see 
[St.T] p. 208. 
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1.8.3 The Ideals of Z[^] 

The ring Z[^] is not always factorial; in particular, it is not factorial when/? = 23. However, 
the theory of factorisation in this ring is not completely lost, since Z[f ] is what is known 
as a Dedekind domain^^. 

Definition 1.8.3 Let A be a commutative integral ring. We say that A is a Dedekind 
domain if: 

(i) A is Noetherian. 
(ii) A is integrally closed. 

(iii) Every non-zero prime ideal of A is maximal. 

Explanations 

(i) We say that A is Noetherian if every ideal of A can be generated by a finite number 
of elements, 

(ii) We say that A is integrally closed if any integral element of the field of fractions of A 
is contained in A (here, we can assume that A contains Z). 

(iii) We say that an ideal / of A is maximal when the only ideal of A which strictly contains 
/ is A itself. 

The set of non-zero ideals of a Dedekind domain A can be equipped with a multiplication 
which makes it into a commutative, simplifiable monoid, whose identity element is A itself. 
Curiously, the only thing we will need here is the definition of the multiplication of principal 
ideals, which is exactly as in the case of a principal ideal domain, i.e. 

(a)(P) := (afi). 

In the general case, the product of two ideals / and J is the ideal generated by the products 
ij of elements / e I 3.ndj e J (see [Sa] p. 57). 

The essential theorem concerning Z[f ] is a special case of the following theorem, the 
proof of which can be found in [Sa] p. 60-61. 

Fundamental Theorem 1.8.3 In a Dedekind domain, every non-zero ideal can be written 
as a product of prime ideals, in a unique way up to reordering the factors. 

Now, we need to show that Z[^] is a Dedekind domain. 

Proposition 1.8.2 Let A be a Dedekind domain with field of fractions K. Let L be a 
separable extension of finite degree ofK, and let B be the integral closure of A in L (i.e. B 
is the set ofx 6 L which are roots of some monic polynomial with coefficients in A). Then 
B is also a Dedekind domain. 

Once we know this criterion, we can take A = Z (which is principal, so a Dedekind 
domain), K = Q and L = Q(0- Then we see that B = Z [^] is a Dedekind domain. 

13 R. Dedekind 1831-1916. 
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Remark 1.8.6 

(1) In fact, one can show that a Dedekind domain is much more than just a Noetherian 
ring; for instance an ideal of a Dedekind domain is generated by at most two elements 
[Heel] p. 86. 

(2) One essential articulation point of the theory is the equivalence of the two following 
assertions: 

(i) the (non-zero) ideal / divides the principal ideal (a) 
(ii) a e I (we say that / "divides" a). 

(3) To Kummer, ideals were "abstract numbers". 
In fact, to each non-zero ideal b of A, we can associate an integral number b e C 

such that b is the set of JC e A which are divisible by b (cf. [Hec 1], p. 107, 108). 
This remark illustrates the banal fact that when speaking of a mathematical object 

defined up to isomorphism, the properties of the object are more fundamental than its 
particular nature. 

1.8.4 Kummer's Proof (1847) 

To begin with, note that if x G Z [ ^ ] , i.e. if 

X = ao + ai^ -] h ap-2^P~^ 

with at e Z, then 

= ao-\-ai-\ h «/7-2 mod/7Z[f ], (1) 

i.e. x^ is congruent modulo p to an element of Z. 
Kummer needed the converse of this proposition when jc is a unit, and he also needed 

to know that if/ is an non-zero ideal such that F is principal, then / is principal. 
Unfortunately, these assertions do not always hold, and Kummer eventually realised 

this. He then gave the following definition. 

Definition 1.8.4 The prime number p is said to be regular if the following condition 
(A) relative to the ring of integers Z[^] of the field ofthep-th roots of unity is satisfied: 

(A) For every non-zero prime ideal I ofZ[^], we have 

(F is principal) ==^ (/ is principal). 

Kummer showed that condition (A) implies the following assertion (B): 
(B) Every unit of Z[{;] congruent modulo p to an integer of Z is a p-th power in Z [f ]. 
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Theorem 1.8.4 (Kummer's Theorem) Ifp is a regular/?nm^ > 3, then Fermafs asser­
tion for the exponent p holds. 

Proof. The proof is divided into two cases. 
(i) First case: assume that 

j c ^ + / + ẑ  = 0 

with x,y,z relatively prime and 

xyz ^ Omod/7. 

In 1847, everyone was considering the possibility of writing 

{X + y)(x + fy ) . . . (X + ^P-'y) = - ^ ^ (2) 

and Kummer was able to establish that the factors of the left-hand side were pairwise 
relatively prime. Indeed, if two of them, say the first two, had a common "ideal" divisor D 
in Z[f ], then we would have 

\^ -l)xeD 

and as x and y are relatively prime, there exist u and v e Z such that ux -\- vy = 1 by the 
theorem of Bachet (usually known as Bezout's theorem). It follows that n e D, sop would 
divide the first term of (2), so it would divide z, which is impossible. 

Since Z[^] is a Dedekind domain, each of the principal ideals 

(x^y),(x + ^y),...Ax + ^'-'y) 

is the p-th power of a ideal. In particular, (x -\- ^y) = F, where / is an ideal of Z[^], and 
by condition (A), the ideal / must be principal, so 

jc + ^y = etP (3) 

where e, t e Z[^] and ^ is a unit. 

Complex conjugation transforms (3) into 

x-\-^y = eF. 

Now, we saw in (1) above that 

tP = ~tPmodpZ[^] 

and furthermore, we know by lemma 1.8.2 that e/e = ^\ Thus, we have 

x + ly = r'e tP = r'(x + ^y) mod p. 
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Multiplying by f'̂  we have 

^'(x + rh) =x-h^y mod p. (4) 

Note that r = 0 is impossible, since it implies that 

(^^ - l)y = Omodp. 

So all the coordinates of the left-hand side in the basis (i) of lemma 1.8.1 must be divisible 
by/?, which implies thaty = 0 mod/?, contradiction! 

If r = 1, we have 

^x -\-y = x + ^y mod/?, 

which implies that p divides x — j . If r = 2, we have 

^(^x-\-y) =x-h ^y mod p. 

This gives x = 0 mod/?, contradiction! 
Similarly, we see that the other values of r up to /? — 2 are impossible. Only r = p — I 

remains; multiplying by f ̂  we have the congruence 

^x + j = f̂  + C^y(modp), 

which again gives x = 0 mod/? by lemma 1.8.1. Thus, we must have x = y modp, and by 
symmetry, 

X = y = z mod p. 

It follows that 

3x^ = 0 mod /?, 

and as/? > 3, we obtain a contradiction. 
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(ii) Second case: assume that z is divisible by p. 

Then all the factors of the left-hand side of (2) are divisible by TZ, since we have 

x + y = x ^ + / = 0 mod/7. 

Hence, for example 

X -^ ^y = {x -\- y) ^ Tcy = 0 mod n. 

Moreover, we see that x-\-^y (for example) is divisible only once by TT . Up to this difference, 
we can apply the reasoning of (i), and we obtain 

X -{- i;y = 71 e\ f^ 

X + f ~V = ^ ^-1 ^-\ 
x-\-y = 71 eo7TP^ t^ 

where ei, e-\, ô are units and t\j-\,t^ are pairwise relatively prime integers of Z[^] not 
divisible by 7t, and where k = n{p —\) — \ with w > 1. Eliminating x and y by using the 
three linear equations, we obtain 

^i/^ - ^o(l + O ^ ^ ' ^ + ^^-1^1 = 0. 

It is easy to see that w = 1 + f is a unit since f̂  — 1 = WTT, so we have 

where e is a unit. But modulo /?, we have 

^ + C(^-i /^i)^i =0mod/7, 

and it follows from the considerations at the beginning of 1.8.3 that t,{e-\le\) is congruent 
to a rational integer modulo p. By condition (B) above, it is then the /7-th power of a unit of 
Z[f ], so we obtain an equation of the type 

x ^ + / = ^7r^V, k^W (5) 

with X,};, z G Z[^] pairwise relatively prime, and such that 

xyz # 0 mod TT. 

Equation (5) is a generalisation of the second case of Fermat's equation, and can be treated 
in the same way, replacing y by t,^y with j €{0, l , . . . , /7— 1}. 



30 INVITATION TO THE MATHEMATICS OF FERMAT-WILES 

Indeed, we have 

\x = ao -\- a\Tt mod TT^ 

\y = bo -\-bi7T mod JT'^ 

with ao, a\, bo, b\ in Z. Hence 

X + f^j = {ao + axTi) + (1 + ny(bo + byn) mod TT̂  

= («o + ^o) + [ci\ + bx +jbo]7T mod TT .̂ 

As Ẑo # 0 mod 7T, there exists an integer^ e {0, 1,...,/? — 1} such that ^i + b\ -\-jbo = 0 
mod/7. As TT divides 

(x + y)(x + CJ) • •. (x + ^P-^y) = {ao + /^of mod n, 

we see that ao-{-bo = 0 mod p. Thus, if we replace y by f̂ y, we have 

x + i;y = 7Texf^ 

x + y = TT̂ ^̂ -î +̂ ô Ẑ , with/7(^ - 1) 4- 1 > 2 

which implies that 

i ^ > l . (6) 

As above, we find a new equation of the type 

xP+f = e7TP^'zP 

with xyz # 0 mod n and /:i = /: — 1. After a certain number of steps, we arrive at 

xP^f = enP^"zP 

with /:„ = !, which is is impossible by (6). D 

Note that only the second part of the proof (second case of Fermat's equation) uses 
infinite descent. 

Remark 1.8.7 It is more difficult to apply Kummer's methods to the equation 

jc^+/ + 2ẑ  = 0. {Gp) 

However, Denes [Den] established a general theorem for a family of odd regular p which 
implies that {Gp) admits only the primitive non-trivial solution ± ( 1 , 1 , - 1 ) when/? < 31 
(see Chapter 6, Section 6.7). 
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1.8.5 Regular Primes 

Beautiful as it is, Kummer's proof would serve no purpose if there were no regular primes. 
Thus, Kummer immediately set to searching for a practical criterion to determine if a given 
odd prime number p is regular. 

Kummer's criterion 
The prime number p > 5 is regular if and only ifp does not divide any of the numerators 
of the Bernoulli numbers 82,84, . . . , ^^-3 . 

A proof of this criterion lies beyond the scope of this book (see [Kum], [Ed] Chapter 6 
or [B-C]); we restrict ourselves to noting that among the primes less than 100, only 37, 59 
and 67 are irregular. 

Kummer thought that there existed an infinite number of regular primes, but no one has 
yet been able to prove this conjecture. However, it is quite easy to prove that there exists an 
infinite number of irregular primes [I-R], p. 241. 

It is now time to recall the definition of the Bernoulli numbers, numbers which first 
appeared in a treatise on probability entitled "Ars Conjectandi", which was published in 
1713, eight years after the death of its author, Jakob Bemoullî " .̂ 

In Jakob Bernoulli's treatise, the Bernoulli numbers are the universal coefficients 
A, 5, C , . . . of a formula which must hold for every c 6 N: 

r + . . . + n̂  = - L « - ' + 1„^ + £ A n - ' + ^±Zm^^B „ - ^ 
c + 1 2 2 2 - 3 - 4 
^ c ( c - l ) ( c - 2 ) ( c - 3 ) ( c - 4 ) ^ ,_5 
+ C n + • • • 

2 - 3 . 4 . 5 . 6 

A simple computation shows that 

1 1 1 
A = -, B = , C = — , . . . . 

6 30 42 

Modem notation leads to the following definition. 

Definition 1.8.5 The sequence 80,81,82, •• ̂  of Bernoulli numbers is defined by 
80 = I and 

1 + 25i = 0 

1 + 35i + 382 = 0 
1 + 4^1 + 682 + 483=0 

1 + 5^1 -f 10^2 + 10^3 + 5^4 = 0 

where the coefficients which appear in the left-hand side are the binomial coefficients. 

14 J. Bernoulli 1654-1705. 
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Proposition 1.8.3 We have 

m=0 

Proof. If we multiply the two terms of the equation by e' — 1, we obtain the induction 
relation of the definition. • 

Theorem 1.8.5 (Bernoulli's Theorem) Form > 1, set 

Sm(n) = r + ... + (« - i r . 

Then we have 

(m+l)S„(n) = ^("''l^^B,n"'+'-

Proof. We start from the identity 

^kt ̂  Yk"^ — , )̂  = 0, 1, 2 , . . . , m - 1, 
m=0 

and add to obtain 

00 fin 

l+e' + e'' + -.- + /''-'^' = Ys^(n)-. 
m=0 

We next remark that the left-hand side is 

e'-l 

and taking the product, we find the result. D 

Remark 1.8.8 (1) We easily show that for odd A: > 1, we have Bk = 0. Also, the number 
(_ 1)^+1 j52^ is positive and \B2m\ > 2(m/ne)^'^', this implies that the numerators of the 
Bernoulli numbers of even index become very large as m tends to infinity. 

(2) Certain identities concerning the Bernoulli numbers are much easier to memorise 
by using the so-called "symbolic" notation. 

If we suppose that/(X) = ao -\- aiX -\ h anX" e C[X], then by definition we write 

f(B) := aoBo + fli^i + • • • + «„^«. 

With this notation, Bernoulli's theorem becomes 

S„,{n) - ^ — [in + Br+' - (Br+'], 
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I.e. 

n-\ 

h=0 
m+ 1 

m+r 

More generally, ifg(X) denotes an integral of the polynomial/(X), we have the summation 
formula 

J2f(h) = [g(X + B)ro. 
h=0 

(3) A famous formula of Euler^^ gives the values of ^(2n) in terms of n^^ and B2n-
Indeed, recall that the Riemann^^ ^ function is defined by 

^ 1 ^ 

when/?^ (5) > 1. 

Furthermore, a classical identity of Euler ([Va] p. 43) gives 

7TCOig7TZ= - -\-y^ ^ r . (7) 

z ;s ^ - ̂  
It follows that 

I.e. 

2inz , , v ^ ^' 
TTzcotg 7tz = mz + -J——- = 1 + 2 7 72 _ ^ 2 ' 

ijiz + Y]{2i7trB„— = 1 - 2 Y ] ;{2n)z 

which gives Euler's famous formula 

2n 

m=0 n=0 

2(2n)! 2{2n)\ 

1.9 THE CURRENT APPROACH 

Let us give a point-by-point summary of the mathematical history covered in this Chapter, 
(a) In 1.5, we explained how Fermat, using infinite descent, was able to prove his 

famous assertion for n = 4, while remaining within the framework of the arithmetic of the 
ring of rational integers. 

1̂  L. Euler 1707-1783. 
^̂  B. Riemann 1826-1866. 
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(b) The case where n = 3 is more difficult (although Fermat did assert several times 
that he had solved it). The proof we gave above in 1.7 (and which could easily have been 
Fermat's own) obliges us to extend the narrow framework of the rational integers to 

- either the representation of the positive integers by the quadratic form X^ + 3Y^ 
- or the arithmetic of the ring Z[y/^], 

and, as Euler understood, these two approaches are actually closely related. 
(c) When nis 3. relatively large prime number /?, the first approach, i.e. the one using 

the representation of the rational integers by quadratic forms, does not give rise to any 
conclusions, but Kummer managed to develop the arithmetic of Z[f ] deeply enough to 
obtain a general proof of Fermat's assertion for a large number of values ofp (as we saw in 
1.8), though not for all values ofp. 

(d) The current approach (which made its first appearance in 1969, at the Joumees 
Arithmetiques in Bordeaux, see the Appendix) consists in extending the framework for 
studying Fermat's assertion once again, by associating to every solution in relatively prime 
integers a, b,c of the Fermat equation 

a certain elliptic curve EA,B,C of equation 

\Y^ = X(X - aP)(X -\' If) or 

[Y^ = XiX-\-aP)(X - bP) 

(one of these curves is always a little better than the other). 
In this way, one passes from the finite extension Z[f ] of Z to the infinite (and transcen­

dental) extension Z[X, y/X(X TaP)(X ±bP)]. 
In 1969, it was not possible to develop a deep theory of the curves EA,B,C^ because 

the theory of elliptic curves was itself not developed enough to conclude (although it was 
already quite possible to perceive that the curve EA,B,C was "very beautiful"). But in 1986, 
K. Ribet showed that if a (relatively) old conjecture concerning certain elliptic curves was 
known to hold, then applying that conjecture to the curve EA,B,C gave a proof of Fermat's 
assertion. 

This last point shows us the direction we will next take: an introduction to elliptic curves. 

COMMENTARY 
This Chapter is essentially historical in nature; it follows the various attempts to approach 
Fermat's last theorem, by methods which can be described by the following list. 

The pedestrian route 
This route was taken by Fermat himself for the exponent 4, then by Lame and Lebesgue for 
the exponent 7. 

The procedure consists in reducing the problem to the impossibility of finding integral 
solutions to the equations/^ = r^ -\- 4 / when « = 4, and/^ = r^ - (3/4) r'^s^ + (1/7) / 
when n = l, using the method of infinite descent. 
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Quadratic forms 
Perhaps, for odd/?, Fermat associated the quadratic formX^+(-l)^~^^^^^pY^to his equation. 
In any case, it is certain that Euler did this for /? = 3, and then Legendre and Dirichlet did 
it for/7 = 5. 

Cyclotomic extensions 
From De Moivre^^ in the 17th century, we know how to factor x^ + y^ into a product of 
first-degree factors in x and y, which makes it natural to consider the set of numbers deduced 
from ^p = e^^^/P by addition, subtraction and multipHcation, i.e. the ring of cyclotomic inte­
gers. Using this, Kummer succeeded in proving Fermat's assertion for all "regular" primes. 
Unfortunately, it is still not known whether there exists an infinity of regular primes. 

The elliptic approach 
This approach is much more recent than the ones described above; it dates back to 1969, 
and the goal of this book is to describe it. 

For details concerning "the pedestrian route" and "quadratic forms", the reader should 
study the book by A. Weil [Wei], the article by Christian Houzel [Hou 1], and the book by 
Catherine Goldstein [Go]. I would also like to indicate the intriguing theories developed by 
Van der Waerden et al. (see [F-G] and [VWl]), for those readers with prehistorical interests. 

"Kummer's monument" is described with talent in the book by Edwards, [Ed]; this 
book provides a real introduction to algebraic number theory. We also refer to the book by 
Samuel [Sa] for theoretical notions about Dedekind domains. 

The elliptic approach is in fact the main object of the present text. A great many different 
historical points of view on elliptic curves can be found in Chapter 4 and in the exercises 
and problems. For a more systematic presentation of the contributions of Fermat and Euler 
to this theory, we refer to Weil's book. We should also draw attention to the Appendix at the 
end of this volume, which reproduces the text of a lecture given in Cambridge, on November 
28,1995, explaining the circumstances which gave rise to the construction of elliptic curves 
linked to hypothetical non-trivial solutions of Fermat's equation. 

Exercises and Problems for Chapter I 

1.1 Give an exhaustive solution in rational numbers to the problem of Diophantus' which Fermat 
commented in the famous margin (see the introduction to Chapter 1). 

1.2 Solve the following problem of Diophantus: 
Find two (rational) numbers such that the square of each of them, augmented by the sum of 

these two numbers, forms a square. 
Comment on the following solution, proposed by Diophantus: 
We assume that the smallest number is x and the largest x -\- \, so that x^ + {2x + 1) = • . 

But we also need {x -h 1)^ + (2JC + 1) = D. 
We set: 

jĉ  + 4JC -h 2 = (jc - 2)2 

and we find (1/4, 5/4). 

1"̂  A. DeMoivre 1667-1754. 
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1.3 (A systematised version of Diophantus) 
Consider the conic 

Y^ = aX^ + M + c. 

Find a rational point on this conic ifa = n , c = nora-i-b + c = D. 
Parametrise the conic. 

1.4 (A systematised version of Diophantus) 
Consider the biquadratic curve 

Y^ =aX^ + bX + c := P{X) 

Z2 = a'X'^ + b'X + c' := Q{X) 

If P and Q have a common root on the projective hne, this curve is of "genus 0" (parametrisable). 
Otherwise it is of "genus 1" (non-parametrisable). 

Show that if (as in Diophantus) P — Qhas two rational solutions on the projective Hne, then 
the quadric 

Y^ -Z^ = P-Q 

has a rational parametrisation over Q. Show that if a and a' (or c and cO are both squares, the 
biquadratic equation has two rational points (even in genus 1) in projective space. 

1.5 We propose to show that the surface of equation 

has no non-trivial integral points. 

(i) Show that we can assume that (x, y) = I. 
(ii) Assuming that (x, y) = 1 and y is even, show that there exists a and b eZ such that 

x^=a^-b^, y^ = 2ab. 

(iii) Deduce that there exists c and J e Z such that 

and that (c, J) = 1, cd = 0 mod 2. 
(iv) Deduce the existence of w, v, w G Z such that 

c = w^ d = v^, c^-^d^ = w^. 

(v) Conclude by using infinite descent. 

1.6 Consider the equation in Z^ 

(i) Show that {E) has no primitive non-trivial solutions for which y is even (this can be 
deduced from Fermat's theorem on the area of Pythagorean triangles). 
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(ii) We propose to show that the equation (E) has no non-trivial solutions. 
Show that if (a, b,c) is a. primitive solution of (E) for which |a| is minimal and b is 

odd, the equation (E) has one other solution of the same type for which 0 < \x\ < \a\. 
Conclude. 

(iii) Using paragraph 1.5, show that all the primitive solutions of 

satisfy x'^ = y^ = z^ = I. 

1.7 We propose to show that the equation 

jC^^y^=2z^ (G3) 

admits only the primitive solutions ±(1, —1,0) and ±(1, 1, 1). 

(i) Proceeding as in 1.7, show that 

x=p-\-q, y=p-q 

with p and q relatively prime of different parity, such that 

p(p^-^3q^)=z\ pq^O 

(ii) Show that if 3 does not divide z, we have 

p z= r^, p^ 4- 3q^ = s^. 

Deduce that there exist relatively prime u and v € Z such that 

r^ = p = u{u + 3V)(M — 3v), q = 3v(u^ — v^). 

Deduce a second solution of (G3) for which 

a^ = u-\-3v, br* = u — 3v, c^ = u 

and show that \c\ < \z\ if the solution (x, y, z) is not ±(1, 1, 1). 
Show that |c| > 1 and conclude. 

(iii) Now assume that 3 divides z. 
Show that 3^ divides p, but not q. Set 

p = 3V, z = 3z'. 

Show that 

p'{21p'^+q') = z" 

and that 

p' = ? 21p'^ + q^=s\ 
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Deduce that there exist relatively prime u and v G Z such that 

q = u{u + 3V)(M - 3v), r^ = p' = v(u^ - v^). 

Deduce a second solution of (G3) for which 

a^ = v -\-u, b^ = V — u, c^ =v 

and show that \c\ < \z\. 
Show that |c| > 1 and conclude. 

1.8 Show that it is impossible to find four squares in an arithmetic progression. 

1.9 Show that every divisor of jĉ  + 2y^ is of this form. 

1.10 Show that every odd divisor of jĉ  + 3y^ is of this form. 

1.11 Show that every divisor of jĉ  — 2y^ is of this form. 

1.12 Show that if N^ = a^ -\- Ab^, with {a, Z?) = 1 and A = 2, then N = u^ -\- Av^ with (w, v) such 
that 

a = u^ — 3Auv^, b = 3M^V — Av .̂ 

Solve the same problem for A = 3 and Â  odd. 

1.13 Mason's Theorem (anticipated by Liouville, Korkine and Stothers). 
For every non-zero P{t) 6 C[r], set 

radF(0= ]\ {t-(x)eC[tl 
aeRoots (P) 

Note that if P G C*, then rad P = 1. 

(i) Consider three non-zero pairwise relatively prime polynomials A,B,CmC{t), such that 

A + B + C = 0. 

Show that we have 

A' B' 
A B 

B' C 
B C 

C A' 
C A 

(ii) Deduce that if AB ^ C, then 

/ ABC \ 

(iii) Show that if deg(A5C) > 0, then 

sup(degA, deg5, degC) < degrad(A5C). 

(iv) Deduce that if « > 3, the curve X" + F" -h Z" = 0 cannot be parametrised by elements 
ofC(0. 
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1.14 Use Mason's theorem to show that the biquadratic curve 

cannot be parametrised by elements of C(r) (giving a non-constant parametrisation). 

1.15 Show that the area of a Pythagorean triangle with integral sides is always divisible by 6. Find a 
Pythagorean triangle with integral sides whose area is equal to 6. 

Let n be a square-free integer. We say that n is "congruent" if it is the area of a Pythagorean 
triangle with rational coefficients. 

What is the value of «if the sides of the right angle are 3/2 and 20/3? Can one find a triangle 
with integral sides having the same area? 

1.16 SetL = Q ( ^ / ^ ) c C . 

(i) Show that the integral closure of Z in L is Z [ A / ^ ] . 
(ii) Show that the units of Z [ x / ^ ] are the numbers ±1 . 

(iii) Show that 2 and 3 remain irreducible in Z [ V ^ ] . 
(iv) Show that 1 + V ^ is irreducible in Z [ \ / ^ ] . What can one say of 1 — V ^ ? 
(v) Using the relation 

2 . 3 = ( H - > / ^ ) ( l - V ^ ) , 

show that Z [ \ / ^ ] is not a factorial ring, 
(vi) Knowing that Z [v^^] is a Dedekind domain, give a decomposition of the principal ideal 

(6) as a product of prime ideals. 

1.17 Let us prove the following theorem of Bachet (1621): Every positive integer is a sum of four 
(possibly zero) squares. 

(i) Prove Euler's identity: 

with 

A = aa -\- bp -{- cy -\- d8 

B = aP — ba -\- c8 — dy 

C = ay -ca-b8-{-dp 

^D = a8 — dot -\-by — c^ 

(ii) Deduce that this suffices to prove the crucial theorem 

Every prime number is a sum of 4 squares. 

(iii) Show that if/? is prime there exists n G N and four integers a, b, c, d such that 

\a^ -\- b^ -\- c^ + d^ = np 0 < n < p 

(a, b,c,d) = \. 

Let S denote the set of integers of N which are sums of two squares. 
Whenp G H, we will show that we can take c = d = 0. 
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When p ^ E, we denote by 

1, r2, r3, ...,r(p_i)/2 

the set of quadratic residues of p (recall that — 1 is not one). We set: 

£ = {l , l + l , l + r 2 , . . . , l + r ( ^ - l ) / 2 } . 

Show that #£ = (/7 + l)/2, and deduce that E contains at least one non-residue. Deduce 
a relation of the desired type with d = 0. 

(iv) Divide a, b, c,dby n so that 

n 
a = xn -\- a, \a\ < -

2 

b = yn + P. m < ^ 

n 
e = zn-\-y, \y\ < -

d = tn-\-8, \8\ < ^. 

Show that 

a^ -j- fi'^ -\-y^ -\-8^ = nr with r < n. (2) 

(v) Show that in the case where r = n,wQ have n = 2, hence a^ -\- b^ -\- c^ -\- d'^ = 2p. 
Deduce that/7 is a sum of 4 squares (compare with (vi)). 

(vi) Assume now that r < n. 
Multiplying (1) by (2), we obtain 

A^ +B^ + C^ +D^ =prn^; 

check that A, B, C and D are divisible by n. Deduce that 

(vii) Show that we can divide A\B',C\ D' by their largest common divisor to obtain 

/2 , , /2 , /2 , ,/2 ^ 
a -{- b -\- c -\- d = ps s < r < n < p 

(a\b\c\d') = 1. 

(viii) Conclude using infinite descent. 

1.18 The goal of this exercise is to study the ring 

A := Z[^^] = [x-h yV^; xeZmdyeZ} C C. 

As in the main text, set 

N{x^yV^)=x^ + 3y^. 
(i) Show that A'' is a multipUcative homomorphism from the monoid (A*, x) to (N*, x). 

(ii) Determine the units of A. 
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(iii) Consider the relation 

2 X 2 = (1 + V ^ ) ( l - v ^ ) . 

Show that 2, 1 + v ^ 3 are irreducible and not associated. Is the ring A a principal ideal 
domain? 

(iv) Is the ring A Noetherian? (recall that every quotient of a Noetherian ring is Noetherian, 
and that if R is Noetherian then so is R[X]). 

(v) Is the ring A integrally closed in its field of fractions? 
(vi) Determine the integral closure O of Z in Q ( V ^ ) (set; = ( -1 + ^/^)/2). 

(vii) How can one interpret the relation in question (iii) in the Dedekind domain Ol 
(viii) Show that the set 2A + (1 + y/^)A is a maximal (so a prime) ideal of A. 

(ix) Let F = (2, 1 + V^) denote the ideal above. For every ideal 2 , let PQ denote the ideal 
generated by the products of elements of P and Q. Show that 

P^ = (2)-P 

where (2) denotes the ideal 2A. 
(x) Deduce that A is not a Dedekind domain. Could we have foreseen this result? 

1.19 We propose to estabUsh the formula 

7T COtg 7TZ = 

for z € C \ Z. 

(i) Show that the infinite product 

00 OO 

n=l n=\ 

converges uniformly on every compact subset of C \ Z. 
(ii) Show that/ is an odd integral function of period 1. 

(iii) Set 

7T 1 

giz) '•= 7-—. 
sm nz f(z) 

Show that g is bounded in 5 := {z G C; 0 < Re{z) < 1, |Imz| > 1} and that g(z) tends 
to zero when |Im(z)| tends to infinity, 

(iv) Using Liouville's theorem, show that g = 0. 
(v) Conclude by taking the logarithmic derivative of (sin Kz)/7r. 

Problem I 

A. In the first part of this problem, we undertake to study the Diophantine equation 

X^-^2Y^=Z^. (E) 

(1) Give a rational parametrisation of the ellipse 

x^-\-2y^ = 1. 
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(2) Deduce that every solution of (E) in Z^ can be written 

X = X(2t^ - 5^), Y = 2Xts, Z = X{lf- + 5^), 

with r € Z, 5 G N and X € Q. 
(3) LetM(A, ,̂ t) denote the solution described in question (2). Compare the solutionsM(A, sj), 

Mi-X,s,t),M{X,s,-t) and M ( - , 2|r| ,-^5 J when st^O. 

(4) Show that every integral solution of (E) is proportional to ZL primitive solution (a, b, c), i.e. 
to a solution such that 

(b,c) = (c,a) = (a,b) = 1. 

(5) Show that every primitive solution of (E) in Z^ is of the type 

X = ±(2T^ -S^), Y = 2TS, \Z\ = 2T^-\-S^ 

with 5 G N, r G Z and (2T, S) = 1. 
(6) What can one say about the converse? 

B. We now consider the Diophantine equation 

2 Z ^ - r 4 = Z ^ (F) 

(1) Show that this equation has a "non-trivial" solution (i.e. a solution such that XYZ ^ 0), and that 
for every solution (x, y, z) G Z^, there exists X G Z and (a, b, c) e 1? such that 

x = \a, y = Xb, z = X^c 

and (a, b) = \. Such a solution is called primitive. 
(2) Show that the curve (F) is not unicursal (i.e. parametrisable in C(r)). This can be done using 

Mason's theorem. 
(3) Let (a, Z?, c) be a primitive solution of (F), show that abc ^ 0 (mod 2). 
(4) Setting b^ -\- c = 2u and b^ — c = 2v, show that there exists (m, n) G Z^, with (m, 2n) = 1, 

such that 

a^ = m^ -\- rp-

b^ =rn^ -n^ + 2mn = (m + n)^ - 2rp-

c = np- — rp- — 2mn = (m — n)^ — 2n^. 

(5) Deduce that there exist (g, h) e I? and (5, 0 ^ Z^ such that 

pgcdig, h) = pgcd{2t, s) = \ gh = 0 mod 2, 

and 

a^=g^^h^^ tn = g^-h^, n = 2gh, 

5 = ±(2r^-5^) , n = 2st, m + n = 2p-^s^. 
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(6) Set {g, s)=D, g = Dau s = Dbi. 

Deduce from question (5) that 

h = Ebi, t = Ea\ with (Z), E) = 1 

and 

E^(2aj + b]) - lEDaibi = D^{a\ - b\). 

(7) Deduce from question (6) that 

2a\ -b\ = c\ 

with 
2a] + b\ 

c\ =E—^ aibi. 

(8) Show that \a\ | < \a\ if and only if (g, h) 7̂  (1, 0), and deduce, that by infinite descent every 
solution leads to the solution (1, 1, 1). 

(9) We now want to "run the computations backwards" to find the solution {a, b, c) from the solution 
(ai,bi,ci). 

Set 

and 

Show that we have either 

Ki = pgcd(2a\ + b\, a\b\ + c\) 

K2 = pgcd(2al + b], a\b\ - c\). 

2a\+b\ 

Kx ' 

j^^H±b\^ 

a\b\+c\ 
E = 

Kx 

axbx -ex 
E — 

K2 K2 

Then, choosing a system (D, E), show that 

\\a\ = {Dax)^+E{bx)^ 

b = ±(2(Eaxf - (Dbif) 

[c = ((Dax)^ - (Ebx)^ - 2DEaxbx)^ - W^E^a\b\. 

(10) Show that the solutions of (F) form a tree (each solution has one or two "children", ignoring the 
signs of a, b and c) whose "root" is (1, 1, 1). 

\f{a\,bx,c\) = (1, 1, 1), then what is the value of (|a|, \b\, |c|)? Does one obtain an infinite 
number of solutions? 



44 INVITATION TO THE MATHEMATICS OF FERMAT-WILES 

Problem 2 

Principal Quadratic Imaginary Fields 

Let N denote the set of natural integers, Z the ring of integers and C the field of complex numbers. If 
/? is a prime number, let F^ denote the finite field Z//?Z. 

Let 5 be a subring of C, and denote by Mn(S) the ring of n x n matrices with coefficients in S, 
and by GL{n, S) the group of invertible elements of Mn{S). For every M in Mn{S), let M* (resp. ^M) 
denote the adjoint matrix (resp. the transpose) of M. 

We say that a Hermitian (resp. a real symmetric) matrix A is positive definite if the Hermitian form 
(resp. the symmetric bilinear form) associated to A is positive definite. We say that 5 is a principal 
ideal domain if every ideal of S can be generated by a single element, and Euclidean if there exists 
a map Â  from S — {0} to N such that if a and b are two non-zero elements of 5, there exists q and r 
belonging to S satisfying a = bq -\- r and r = 0 or N(r) < N(b). 

I. Background 

A. In this part, p denotes an odd prime. 

(1) (a) Show that if u, v, w are three non-zero elements of F^, the equation 

ux^ + vy'^ = w 

has a solution in ¥p. (Consider the cardinal of the set of elements of the form ux^ (respectively 
of the form w — vy^).) 

(b) Let Az > 1 be an integer such thatp does not divide 4n - \. Show that there exist relative 
integers a, b and an integer m > 1 such that 

a^ -]-ab-\- nb^ -h 1 = mp. 

(2) Assume that p is of the form 8A: -f 1 or 8A; + 3, and let K be an extension of F^ obtained by 
adding a root of the polynomial t^ -\- \. Let ^ be a root of this polynomial in K, and set 

x = b-b-\ 

(a) Show the following relations: x^ = —2 and x^ = x. Deduce that x belongs to F^. 
(b) Show that there exist integers a and m such that 

2^2 + 1 = {2m- 1)/?, 

and prove that the matrix 

is a symmetric positive definite matrix of determinant equal to 1. 
Determine all the pairs {a, m) when/? = 17. 

B. Let D > 1 be a square-free integer. Set 

_ UyfD if D = 1 or 2 (mod 4) 

^ ^ ~ I (1 -h /VD) /2 if Z) = 3 (mod 4). 

Let IJ[(JL>D\ denote the subring of C which is the set of elements of the form a -\- ^COD with a, ft e Z. 
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(1) Let /? be a prime number not dividing D. Show that there exist integers a, b, m such that the 
matrix 

/ /? a + ba)D\ 
\a-^ bcbo m J 

is a positive definite Hermitian matrix with determinant equal to 1. 
(2) In the EucUdean plane with respect to an orthonormal basis, let A, B, C denote the images of the 

numbers 0, I, COD respectively, and T the triangle which is the convex hull of the points A,B,C. 
Let R denote the radius of the circumscribed circle of T. 

(a) Show that for every point M of T, we have 

inf(MA, MB, MC) < R. 

(b) We set 

k = supl inf |z — w| ) 
^^£\ueZ[coD] 

Prove the equality 

(c) Deduce that we have 

k = sup (inf (MA^ MB^, MC^)). 
MGT 

Z ) + l 
if D = 1 or 2 (mod 4) 

4 , 
(D-\- 1)2 

k=- ifD = 3(mod4). 
16D 

(d) Let a, ^ be two elements of ZICOD], with ^ non-zero. Show that there exists an element y 
ofZ[a)o] such that 

\a-y^\^ < k\p\\ 

Deduce that Z[COD] is a Euclidean ring when D is equal to one of the following values: 1, 2, 
3,7,11. 

Application: determine y when D = 2,a = 5 -\- 3CJL>2, P = —I -\- 3co2. 

II. Hermitian matrices of the form B*B 

In this part, S denotes the ring Z or one of the rings Z[coo] forD= 1, 2, 3, 7 or 11. If 5 = Z, set 
k = ^ , and if S = ZICOD], then let k be the constant defined in I.B.2.b). 

Two Hermitian matrices A and B of M„(S) are said to be congruent if there exists U e GL(n, S) 
such that A = UBU*. The equivalence classes for this relation are called congruence classes. 
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To an element x = (jci,..., jc„) of 5", we associate a one-line matrix whose coefficients are the 
components of x; we use the same symbol x for this matrix. Let ^x the transpose matrix, and x* the 
matrix ^x . 

(1) Show that if A and B are two congruent Hermitian matrices, then det A = deiB. 
(2) (a) Let A be a positive definite Hermitian matrix belonging to Mn{S). Show that there exists 

an integer m{A) > 0 and an element z belonging to S^ whose components are pairwise 
relatively prime, such that we have 

m{A) = inf xAx* = zAz*. 
X€S"\{0} 

(b) Do we have m{A) = m{B) whenever A and B are congruent? 
(c) Determine m{A) when 5 = Z and 

(7 25 j 

A. The case n = 2 
Let A be a positive definite Hermitian matrix in M2(5), and let z be an element of S^ such that 

m{A) = zAz*. 

(1) (a) Show that ^z is a column vector of an invertible matrix UQ of GL{2, 5), and deduce the 
existence of a Hermitian matrix B = (bij) ,1 < ij <2 , where bu = m(A), such that A and 
B are congruent. 

(b) Show that there exists s e S such that 

\bMS + bi2\ < k^^^bu 

and deduce the existence of a matrix C 

C ill) 
congruent to A which satisfies the following two conditions 

(i) a = miA) = m(C) 
(ii) k-^/^\b\ < a<c. 

(c) Show that if A e M2 (S) is a positive definite Hermitian matrix of determinant equal to d, then 

m{A) < (1 -k)-^/^d^^^. 

(d) Deduce that the set of congruence classes of positive definite Hermitian matrices of order 2 
with coefficients in S and given determinant is a finite set. 

(2) (a) Assume that d is equal to 1 and S is one of the following rings: 

S = Z, S = ZICOD] for D = 1, 3, 7. 

Show that m{A) = 1 and that there exists B e GL{2, S) such that A = B*B. 
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(b) Deduce the following properties: 

(i) Every prime number is a sum of four squares. 
(ii) For every prime number/?, there exist relative integers a, b, c, d such that 

p = a^ ^ab-^b^ + c^ + cd + d^. 

(iii) For every prime number/?, there exist relative integers a, b, c, d such that 

p = a^ -\-ab-h2b^ -\-c^ -^cd-\- 2d^. 

B. Symmetric matrices with integral coefficients 
(1) (a) Let / : Z" -> Z be a surjective homomorphism of Abelian groups, and let x G Z" be such 

that/(jc) = 1. Show that Z" is the direct sum of the subgroup generated by x and the kernel 
of/. 

(b) Let X = (x i , . . . , jc„) be an element of Z^. Show that the following conditions are equivalent: 

(i) X belongs to a basis of Z". 
(ii) There exists M e GL(n,Z) admitting ^x as a column vector. 

(iii) There exist relative integers a^, \ < i < n such that 

^GiXi = 1. 

(iv) There exists a surjective homomorphism of Abelian groups / : Z" -> Z such that 
fix) = 1. 

(2) Let A be a symmetric positive definite matrix of order n > \ with coefficients in Z. Show that 
there exists a matrix B = (btj), 1 < ij < n, congruent to A and such that bn = m(A). 

(3) Let A = (a/y), 1 < iJ < «, be a positive definite symmetric matrix with coefficients in Z such 
that m(A) = aw . If x = (jci,..., jc„) is an element of Z" , we define the element}^ = (yi, • - - ,yn) 
by the following relations: 

n 
yi =xi + ^ « i / a j " / x / , 

i=2 

yi = Xi for 2 < i < n. 

We set 

(a) Show that we have 

z = (x2, ••.,Xn), ^y = U^x. 

xA ^x = fliiJi +^11 ^^z 
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where fi is a symmetric positive definite matrix belonging to M„_i (Z) and satisfying the two 
relations 

(b) Show that we have 

dQiB = {a\if~^ del A. 

m(A) < (-\ (detA)^/". 

Let us choose x so that we have 

\y\\ <j; zB'z = m(B). 

(4) (a) Assume n < 5 and let A e Mn (Z) be a symmetric positive definite matrix whose determinant 
is equal to 1. Show that m(A) = 1 and deduce that there exist B e Mn(Z) such that A = ^BB. 

(b) Show that every prime number of the form 8/t + 1 or 8n + 3 is a sum of three squares. 

III. Ideal classes and principal rings 

Recall that two elements A and B of M„(Z) are similar if there exists an element Q of GL(n, Z) such 
that A = QBQ~^; the equivalence classes for this relation are called similarity classes. 

A. Let P(X) be a monic polynomial of degree n > 1 with coefficients in Z, and irreducible over Q[X]. 
If ^ is a complex root of P{X), let Z[0] denote the subring of C which is the set of elements of the 
form 

n-\ 
/ GiO^ where a/ G Z for i = 0,... ,n — \. 
i=0 

We say that two ideals / and J of Z[0] belong to the same class if there exist two non-zero elements 
a and bofZ[6] such that al = bJ. 

Let A denote an element of M„(Z) such that P(A) — 0. 

(1) Show that every non-zero ideal of 1\0] is a free Abelian group of rank n. 
(2) (a) Show that there exists an element x = (jci,..., jc„) of Z[OT \ {0} such that A x̂ = Oh. 

(b) Show that Z^i -f • • • + ZJC„ is an ideal of Z[0] whose class is independent of the chosen 
eigenvector ^x. 

(c) Let Q be an element of GL{n, Z). Show that 

(3) Let J = Zji H + Zy„ be an ideal of Z[^], and set 

y = {y\, ...,>'«). 

Show that there exists a matrix B with integral coefficients such that 

B^y = o^y, p(B) = 0. 
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(4) Show that there exists a bijection between the set of similarity classes of matrices A in Mn(Z) 
such that P{A) = 0 and the set of ideal classes of Z[0]. 

(5) Show that the following conditions are equivalent: 

(i) Z[^] is a principal ring 
(ii) There exists a single similarity class in M„(Z) of matrices A of order n with integral coeffi­

cients such that P(A) = 0. 

B. Let D > 1 denote a square-free integer; let Z[(JOO] be the ring introduced in LB. 

(1) Assume that D = 1 or 2 (mod 4), and let 

*./>...=(-; f) 
denote a matrix with coefficients in Z whose characteristic polynomial is 

P(X) =X^-\-D. 

Considering the values a = 0 and a = \ , show that Z[coo] is principal if and only if D = 1 or 2. 
(2) Assume that D = 3 (mod 4), and set 

Let A be an element of M2(Z) whose characteristic polynomial is 

P(X) =X^ -X-\-K. 

(a) Let 

\c a-\-\J 

be a matrix similar to A such that \a\is minimal. 
Computing PAP~^ when P is one of the following matrices: 

(i") (;:) (? i) c -̂ ) 
show that we can assume that the coefficients of B satisfy 

a > 0 , c>2a-\-\, b>2a-\-l, 3(a^ -\-a)-\-\ < K. 

(b) Let a, P,y bQ three integers such that 

0<a<K-\, l<P<y, fir =K^a^-\-a. 
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Show that for any element (jc, y) of Z^ \ {0}, we have 

6x^ + y / + (2^ + l)xy > / . 

Deduce that the matrices 

- ( r « 0 -(-;»T,) 
are not similar. 

(c) Assume that Z[(JOD] is a principal ideal domain. Show that either K = 1 or A' + a^ + a is a 
prime number for every integer a such that 0 < a < ^ — 1. 

(d) Assume that K = \ ov that K-\-a^ -\-a is prime for every a >0 such that 3(a^ + a) -\-1 < K. 
Prove that Z[CDD] is a principal ideal domain. 

(e) Assume that D < 200. Prove that Z[O)D] is principal if and only if D = 3, 7, 11, 19, 43, 67, 
163. 

(f) Assume that D < 10^. Write a program checking that the values you find are the only ones 
for which the ring ZICOD] is principal. 

C. Let S denote one of the rings Z[a)D] fovD = 19, 43, 67, 163, and assume that S is Euclidean 
for a map Â  from S \ [0] to N. Let « be a non-invertible element of 5 \ {0} such that Nia) is 
minimal. 

(1) Show that S/aS is isomorphic to one of the fields F2 or F3. 
(2) Deduce that for D = 19, 43, 67, 163, I^lcoo] is a non-Euclidean principal ideal domain. 

Problem 3 

I. Let us give a translation into English of the passage in Jakob Bernoulli's text Ar5 Conjectandi 
(1713) where the "Bernoulli numbers" first appear. 

We give ourselves the sequence 1, 2 , . . . , « and ask to compute the sum of these numbers, of 
their squares, their cubes, etc. 
As, in the table of combinations, the general term of the second column isn—\ and we know 
that the sum of these n — \ terms, or f n — 1, is 

n{n — 1) nn — n 

the sum f n — \ or 

Thus we have 

I'-l'^ 

/

nn- n f ^ 

But f I = n, so the sum of all the n is 

I- nn — n 1 1 
—r \-n= -n-n-\- -n. 

2 2 2 
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The general term of the third column is 

(n- l)(n-2) _n'n-3n-\-2 

i~2 ~ 2 

and the sum of all the terms (i.e. of all the (n - n — 3n -\- 2)/2) is 

n(n — \)(n — 2) n^ — 3nn + 2n 
1-2-3 

Thus 

and 

But 

and 

n^ -3n^2 C \ f 3 f n^ -3nn-\-2n f n^-3n-\-2 f I f 3 r 

f \ n^ -3nn-\-2n f 3 f 

1-2""= 6 + l 2 " - J 

[3 3 f 3 3 
I 7:^= - I n= -nn-\- -n 

J 2 2] 4 4 

Substituting, we have 

f\ 1 n^ — 3nn + 2n 3nn + 3n 
nn = 1 n 

1 . 1 1 

so the double f nn (sum of all the squares) = {l/3)n^ + {\/2)nn + (l/6)n. 
The general term of the fourth column is: 

(n - \)(n - 2)(n - 3) _ n^ - 6nn-\-Un - 6 

L23 ~ 6 

and the sum of all the terms is 

n{n - \){n - 2){n - 3) _ n^ - 6n^ -^Wnn- 6n 

1.2.3.4 "" 24 ' 

Thus we have 

n^ — 6nn + 1 In — 6 /* 1 

I 6' 
n^ — 6n^ + 1 Inn — 6n 

r-^^^T^-^Fr'-h'^f^-f' 
24 
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hence 

11'-"-— 6n^ + Wnn — 6n 

24 
fnn-f'-in + fl. 

Earlier, we obtained f nn = (l/3)n^ + {\/2)nn + {\/6)n , f(\\/6)n = (11/6) Jn = 
{n/l2)nn-{-(\\/\2)n,andfl = n. 

After the substitutions, we find 

f 1 . n"^ - 6n^-\-Wnn - 6n 1 ^ 1 1 11 11 
J 6" = 24 + -,n'+-^nn^-n--nn--n^n 

1 4 1 3 1 
= —n H n H nn 

24 12 24 
or, multiplying by 6, 

1 . 1 jn^ = \nU\n^^ 

Thus we successively obtain sums of higher and higher powers, and with little effort we obtain 
the following table: 

Sums of Powers 

1 1 
-nn -\—n 
2 2 

4- -nn + -n 
2 6 

I nn = -n 
J 3 
f 3 1 4 1 3 1 I n =z -n H—n' -\—nn 

J 4 2 2 
/" 4 1 5 1 4 1 3 1 
/ n^ = -n^ -h -n^ + -n^ * n 

J 5 2 3 30 
/* 5 1 6 1 5 5 4 1 
/ n = -n" + -«-" + -—n^ * -—inn 

J 6 2 12 12 
/* 6 1 7 1 6 1 5 1 3 1 
/ n = -n H- -n" + -n * — « * H n 

J 7 2 2 6 42 
i '^ = = 8 ^ 2 ^ ^ T 2 " * - 2 4 ^ 

1/"'°= 

12 
1 Q I R - ^ 7 ' ' S - ^ 3 

+ 2" +3" *-T5" * V *-30" 

Anyone who carefully observes the symmetry properties of this table will easily be able to 
continue and complete it (the symbol * means there is a term of coefficient zero). 
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If we let c denote an arbitrary exponent, we have 

!• 
-"̂ ^̂  + -n'^ + -An'' ^ + — —- Bn'^ ^ 

c + 1 2 2 2 . 3 - 4 
_ c ( c - l ) ( c - 2 ) ( c - 3 ) ( c - 4 ) ^ ^ _ 5 

2 - 3 . 4 5 - 6 
c(c - l)(c - 2)(c - 3)(c - 4)(c - 5)(c - 6) ^ ^ , . 7 

2 - 3 . 4 . 5 - 6 - 7 - 8 

^/c, f/ie exponents ofn decreasing by multiples of 2 until n or nn is reached. The capitals 
A,B,C... denote, in order, the last terms in the expressions of f nn, f n"^, f n^, f n^, etc., 
namely A = (1/6), B = -(1/30), C = (1/42), D = (-1/30), etc. 

These coefficients are such that each of them completes the other within an expression of 
unity. Thus D = —1/30, since 

1 1 2 7 2 

9 + 5 + 3 - 1 5 + 9 + ^ = ' 

Using this table, it took me less than a quarter of an hour to compute the sum of the tenth 
powers of the 1000 first integers; the result is 

91, 409, 924, 241, 424, 243, 424, 241, 924, 242, 500 

This example shows the uselessness of the book "Arithmetica infinitorum" by Ismael Bullial-
dus, which is entirely devoted to a tremendously large computation of the sums of the six first 
powers - less than what I accomplished here in a single page. 

In this problem, we ask you to: 

- translate this text into the language of modern mathematics, 
- name the points which need proofs, 

- prove them completely. 

To do this, you may make use of the following problem. 

II. The Bernoulli numbers B^ (m > 1) are defined by the series expansion 

t ^ R 

1 ^ m\ 
m=\ 

and we also set BQ = \. 

(a) Multiplying the two terms of (1) by ê  — 1, prove the the relation 

m-l 

k=\ 

for m > 2. 
(b) We use the following symbolic notation. Whenever 

fix) = flo + aix + a2X^ + • •. G C[[x]], 
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we (symbolically!) set 

f(B) = ao-\-aiBi +a2^2 + ---

Naturally, when/(jc) e C[x], we have/(^) e C. 
Show that 

(l-^Br-B"^ =0. 

(c) Show that if 2m + 1 > 1, we have ^2m+i = 0-

(d) Set 

5^(A^)=:l^ + 2^ + •.. + ( « - l ) ^ (3) 

Show that the sums Sk (n) satisfy the formula 

(k + \)Sk(n) = (n-^ B)^^^ - B^^\ k>\, (4) 

and show that this formula is equivalent to 
k 

(e) Consider the set 

^(P) = \r= - G Q ; « € Z , Z7GN, p\b\. 

Show that Z(p) is a subring of Q, called the ring of p-integers. 
What are the units of Z(p)? 
What are the irreducible elements of Z(^) ? 
Show that Z(p) is factorial and principal. 

(f) Letp be a prime number and m > 1. 
Show ikvdXpBm is p-integral. 
One can use induction on m, using relation (4) with n=p and also the relation 

(a) If A: > 1, then/7^/(^ + 1) is p-integral. 

(g) Show that if m > 2 is even, we have the congruence 

pBm =Smip)'^o^P' 

For this, use the relation 

{P) If ^ > 2, t h e n / / ( / : + 1) = Omod/7. 

What can one say of this congruence when m and p are odd? 
(h) Prove the relations {a) and (^). 
(i) Let p be a prime number. Show that: 

* lip — 1 does not divide k. Skip) = 0 mod p. 
* if/7 — 1 divides k, Skip) ^ —I mod p. 

To do this, consider F* and note that it is a cyclic group. 
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(j) Let m > 1, and show that there exists A2m ̂  ̂  such that B2m = Mm — I]/>-i|2m ^/P-
(k) Define the BemouUi polynomials Bnix) by the formula 

e^- 1 n=0 

Show that Bn{x) = (x-\- BY in symbolic notation. 
(1) Show that the Bernoulli polynomials are given by the induction relations 

Bi{x)=x-{ 

(m) Show that 

Deduce that we have 

— Bn{x) = n Bn-l(x), Bn(0) = Bn. 
ax 

Bn(x-\-\) = Bnix)-\-nx''-\ ifn> 1. 

Skin) 
Bk+iin) - Bk+i 

k-\-l 

(n) Let Bnix) denote the function (of period 1) defined by Bnix) = Bnix — [x]). Show (by 
induction onk < n) that 

d' -
•jjBnix) = nin-\)'-'in-k-\- \)Bn-kix) 

and 

d^ 

dx 
'"-Bn(x} = n\(l-J2^(x-k)) 

where 8 is the "Dirac measure". 
(o) Assume that a and b are in Z, and prove, by induction on n, the Euler-MacLaurin formula 

g / ( r ) = ("rndx + f^ ? 7 [ / ' ' - " W - / ' ' - " ( « ) l 
r=a 'fa ^ ^ j ^- >-

+ , / Bnix)f^''Hx)dx, 

in which/ is assumed to be sufficiently continuously differentiable on [a,b]. 
(p) Deduce that if fix) G C[x] and if g is an integral of/, we have 

b-\ 

J^fir) = gib^B)-gia + B) 

in symbolic notation. 
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(q) Assume that g G N is such that g is a generator of F* Set 

m=l 

Fit) 

Fit) est -I ^t _i 2^ e — 1 - ^ m 

u = e^ — \ and G{u) = 
t 

Show that 

oo 

G(M) = 2_. ^k^ 
k=0 

where the Ck arep-integers. 
(r) Deduce that 

oo 4 

Giu) = Gie'-\)=J2^t^' 

where the Am are p-integers such that 

Afn+h(p-\) = ^m mod p for /i > 1 and m > 1. 

(s) Show that we have 

^ ( ^ " ' - l ) = A „ _ , . 
m 

(t) Deduce the following statements, known as the Kummer congruences, from the preceding 
questions . 

Let m and m' be two even positive integers such that 

m = m modp — \. 

Show that if m and m' are not divisible by /? — 1, then 

— = —- mod/7. 
m m 

Problem 4 

Extracts from some letters to Holmboe [Ab] 

Read the following extract from letters written by Abel to Holmboe (dated August 3, 1823). 

Copenhague, in the year ^6064321219 
(counting the decimal part). 

You recall the little memoir which speaks of inverse functions of elliptic transcendentals, 
and in which I proved an impossible thing; I begged M. Degen to look over it, but he could not 
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find any defect in the conclusion nor understand where there could be an error. The devil if I 
know how to solve this. 

I tried to prove that it was impossible to solve the equation 

in integers, when n is greater than 2, but I only succeeded in proving the following rather curious 
theorems. 

Theorem I 

The equation a" = Z?" + c", where M is a prime number, is impossible, whenever one or more of 
the quantities a,b,c,a-\-b,a + c,b — c, 1^, \/b, *^ are prime numbers. 

Theorem II 

If we have 

then each of the quantities a,b,c will always be factorisable into two relatively prime factors, 
in such a way that setting a = a • a\ b = p - b\ c = y - c\ one of the following 5 cases will 
hold: 

1. 

2. 

3. 

4. 

5. 

â " + Z?̂" + ĉ " 

2 

„«-lfl^«_^^/« + ĉ « 

2 

fl^^ + n -̂î '̂̂  + ĉ " 

2 

«"-l(a'«+Z?'«)H-c'" 

2 

fl^"+n"-k^'" + c'") 
a = , 

b = 

b = 

b = 

b = 

b = 

^m ^ yn _ ^m 

2 

rf-^a"'^b"' -c"" 

2 

^nj^^n-\yn_^in 

2 

„n-l(^^«+^^«)_C^n 

2 

^'«+„«-l(/,^Ai_^/n) 

, 

^n ^ /̂n _ yn 
c = 

2 

«"-l^^"+C^"-Z7'" 

2 

^/n_^^m_^n-l^n 

2 

^n-l(^/«_/,/«)_^^/n 

2 

a'n_^n-l^yn_^fn^^ 

c = 

Theorem III 

For the equation a^ = b^ -\- c" to be possible, it is necessary for a to have one of the following 
three forms: 

1. a= ^ , 

2. a= , 
2 

x^ + Ai^-iCy^+z'^) 
3. a= , 

2 
where x, y and z have no common factors. 
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Theorem IV 

The quantity a cannot be less than (9" + 5" + 4")/2, and the smallest of the quantities a,b,c 
cannot be less than (9" - 5" + 4")/2. 

Answer the following questions concerning Abel's letter. 

(1) Prove the first assertion of theorem II under the assumptions that n is prime, {a,b,c) = 1 
and abc ^ 0 mod n. 

(2) Can you prove the same assertion when {a, b,c) ^ 1? What can you conclude? 
(3) From now on, assume that /i is a prime > 2, (a, b,c) = \ and abc # 0 mod n. Furthermore, 

set X = —a, y = b, z = c, so that we have 

Jc'^+Z + z^^O. 

Show that 

with new numbers a\a,b\ p,c\y, which are pairwise relatively prime and such that 

X = —a a, y = —b'^, z = —cy. 

(4) Assume the existence of a prime number p ^ n such that 

(i) x" + >'" + z" = 0 mod p implies xyz = 0 mod p. 

Show that we have a'b'c' = 0 mod p. 

(5) Show that if x = 0 mod/?, then 

a =0 mod p. 

To do this, use the relations of question (3). 

(6) Deduce from (3) and (5) that a^ = ny"~^ mod p. 
(7) Deduce from (3) and (6) that n is an n-th power modulo p. 
(8) From now on, assume that 

(ii) n is not an n-th power modulo p. 

Show that conditions (i) and (ii) imply that abc = 0 mod n. 
(9) Assume that n = 3, and give a value of p satisfying (i) and (ii). 

(10) Show that if 2« + 1 is prime andp > 3, then conditions (i) and (ii) are satisfied. Conclusion? 

Remark: This result is due to Sophie Germain^^. 

^̂  Sophie Germain 1776-1831. 
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Problem 5 

Recall that if a(t) = (t - nY^ ...(t- r̂ )̂ ^ e C[r], we set 

rada(t) = (t-ri)'--{t-rs). 

Consider a matrix 

r = 

/yi,i Ki,2\ 
K2,i Via 

e M,,2(C), 

\ YnA Yn,!/ 

and assume that the 2 x 2 minors of the matrix 

/ I 0 \ 
0 1 

M= Y\,\ Y\,2 

\ Yn,\ Yn,ll 

are all non-zero. 

(1) Show that if a\ and ^2 are two relatively prime elements of C[r], then any two elements of 
the column of w + 2 polynomials 

M 
( : ) 

are relatively prime. 
(2) Set 

M 
& -

(""' \ 
«2 

<P\ (v) 

yPniv)/ 

= 

/ Wi \ 

W2 

W3 

\^n+2/ 

where v denotes the vector CO-
Show that if ai/a2 is not a constant (i.e. is not in C), then none of the determinants 

1 < / < J < n + 2 

is equal to zero. 
(3) Show that these determinants are all asssociated in C[t] (i.e. all equal up to a non-zero 

multiplicative constant). Let A(0 denote the monic element which represents them all. 
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(4) Set 

P(Xi,X2)=XiX2(^l(Xi,Z2)...(/?n(Xi,X2), 

and show that the polynomial P(x, 1) = x(pi(x, I).. .(pn(x, 1) is a polynomial of degree 
n-\- I with no multiple roots. 

(5) Set m(t) = P(ai (t), a2{t)). Show that if r € C is a root of m{t) of order p > 1, then r is a 
root A(0 of order p — 1. 

(6) Show that deg A{t) < deg(aia2) - I. 
(7) Deduce that 

deg m(t) — (deg (a\a2) — 1) < deg rad m{t). 

(8) Prove that if deg a\ ^ deg aj, then 

n sup (deg «i, dega2) < deg rad m(t) — 1. 

(9) Prove the same inequality in the general case. 
If deg (piiy) < sup (deg ai, deg a2) for a certain / € {1, . . . ,«} , we can replace a2 by 

(Pi(v) as a basis element, and reduce to (8). 
(10) Show that this result generalises Mason's theorem, whose statement is as follows: 

If (ai, fl2) = 1 and a^ = a\-\- «2 (with 02/a\ ^ C), then 

deg rad (ai«2^3) > sup (deg a\, deg ^2). 

(11) Let n be an integer > 1 and letx\,y\,X2,y2.X3^ y3> be elements of C[r] such thatx\y\,X2J2 
and X3y3 are relatively prime and not all in C. 

Show that the relations 

xiy'{+x2yl+x2,y'l=0 

4>'l+-^2>^2+-^3B=0 

are impossible whenever « > 5. 
(12) Take a\ and ^2 as above and assume that t does not divide a\ and \ — t does not divide 

a\ +fl2-
Applying Mason's theorem from Exercise 1.13 above to suitable relations linking 

at, Gj, aic for all the possible choices of the indices, show that 
4 

deg rad (a\a2a'ia^) > - sup (deg ai, deg ^2) + C^^ 

when a3 = ai -h ^2, a^ = a\ -\- ta2. 
Give a value of the constant. 

Problem 6 

Notation and Goals of the Problem 

Equip the Euclidean affine oriented plane V with an orthonormal basis 71 with origin O. To 
every point M of coordinates (x, y) in 7Z, we associate the complex number z = x -\- iy\ in this 
way we identify the plane with the set C of complex numbers. 

An integral point of the plane is a point whose coordinates are integers. The set of all integral 
points forms a lattice. The lattice can be identified with the subset Z[i] = a -\- ib; (a, b) G Z x Z 
ofC. 
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The general goal of this problem is to find and study planar configurations subject to con­
ditions involving integers: 

Theme A: find regular polygons whose vertices belong to the lattice. 
Theme B: find and study subsets of the plane such that the distances between any two points 
are integers. 
Theme C: find and study configurations containing a fixed number of points of the lattice. 

The notation and goals specific to each theme are given in their headings. The themes B 
and C are independent and can be attacked in either order. Both, however, depend on the first 
question of theme A. 

Theme A: Regular Polygons with Integral Vertices 

We propose to show that the only convex regular polygons with integral vertices are squares. 
For this, we first establish a preliminary result which will be used again in themes B and C. 
Throughout theme A, the coordinates of the points are defined in 71. 

A.I. Preliminary question 

A.I.I. Let ^ be a real number, and n an integer greater than or equal to 1. Show that 

cos(n + 1)^ = 2cos^ • cos nO — cos(n — 1)6. 

A.I.2. Deduce that there exists a sequence {Pn)n>i of polynomials such that for every n e 
N*, Pn satisfies the following properties: 

• P„ is a polynomial of degree n with integral coefficients, and Pn is a monic polynomial 
(i.e. the coefficient of X" is equal to 1). 

• for every real number 0, P„(2 cos 6) = 2 cos nO. 

A.I.3. Let ^ be a real number such that O/n is rational. Show that 2 cos ̂  is a solution of an 
equation of the form 

X" + a „ _ l X " - i + - - - + a o = 0, (1) 

where « G N* and at eZforO < i < n - \. 

A.I.4. Let ^ be a real number, and assume that O/n and cos 0 are rational numbers. 
Show that cos^ e { -1 , -1 /2 ,0 ,1 /2 ,1} . 
(Begin by showing that every rational solution of equation (1) is a relative integer.) 

A.II. Application to regular polygons with integral vertices 
In this part, n denotes an integer greater than or equal to 3. Recall that a sequence (Ai , . . . , A„) 
of n distinct points of the plane defines a convex regular polygon P whose vertices are exactly 
the n points, if there exists a rotation r of angle In/n or —(iTr/n) such that r{Ai) = A/+i for 
1 < / < n — 1, and r(An) = Ai. We know that such a rotation must be unique. Let us write 
P = (Ai , . . . , An). The centre ^ of the rotation r is called the centre of P. 
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A.II.l. Let P = (Ai , . . . , A„) be a convex regular polygon whose n vertices are integral 
points. Let Q be its centre. 

(a) Show that Q, is the isobarycentre of the set of vertices of P, and deduce that Q has rational 
coordinates. 

(b) Let CO denote the complex number associated to Q\ recall the analytic representation of the 
rotation r of centre Q. and angle In/n or —{In/n), using associated complexes. 

(c) Write r{A\) = A2, and show that cos(2;r/«) and sin(27r/«) are rationals. Deduce using 
A.L4 that n = 4, i.e. that P is a square. 

A.II.2. Let Ai and A2 be two distinct integral points. Show that the two squares C = 
(Ai, A2, A3, A4) and C = (Ai, A2, A3, A^) admitting Ai and A2 as consecutive vertices have 
only integral vertices. Give the coordinates in 7^ of A3, A4, A3, A^ in terms of the coordinates 
(xi,yi) of Ai and (x2,y2) of A2. 

Theme B: Sets with Integral Distances 

A non-empty subset E of points of the plane is said to be a set with integral distances, if 
for any points A and B belonging to E, the distance AB is an integer. Part B.I studies some 
examples. Part B.II establishes that an infinite set with integral distances must be contained in 
a line. However, part B.III shows that for every integer (« > 3), there exists a set with integral 
distances, consisting of n points such that any three of them cannot lie on a line. 

B.I. Some examples 
B.I.I. Can the vertices of a square, a rectangle, or a diamond form a set with integral distances? 

B.I.2. Let ABC be an equilateral triangle of side 112. 

(a) Justify the existence and uniqueness of the point D defined by the following conditions: 
AD = 73, BD = 51, D and C are on the same side of the line (AB). 

(b) Compute the coordinates x and y of D in the basis 1Z^ = (0^ i , j ) where O' is the 
midpoint of [AB], and we have 

O'A -> O'C 
J = 

II O'A II II O'C II 

Observe that x is rational and write it as an irreducible fraction. Observe also that y = yi A/3 
where '̂i is a rational number which we also express as an irreducible fraction. 

(c) Show that E = [A, B, C, D} is a set with integral distances. 

B.II. Infinite sets with integral distances 
B.II.l. Let /f be a hyperbola and 71^^ a Cartesian basis of the plane in which H has equation 

xy = 1. 
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Let r be a curve in the plane, whose equation in IZ" is given by 

ax^ + /?xy + cy^ -^dx-^ey^-f = 0, 

where a, b, c, d, e are not all zero. 

Show that if r n / / is infinite, then V = H, and give an upper bound for the number of 
points in r n / / when F ^H. 

B.II.2. Let £ be a set with integral distances containing three non-collinear points A, B, C. 
Set/? = AB, q = AC, and for; 6 {0 , . . . , p} and k e [0, ...,q}, set 

Uj = {M e V; \MA-MB \=j} and Vk = {M eV\\MA- MC \= k}. 

(a) Describe the geometric nature of the set Uj and Vk for7 e {0, . . . ,p} and k 6 {0 , . . . , ^}. 
Distinguish the case) = 0 and; = p (resp. /: = 0 and k = q) from the case 0 <j < p (resp. 
0<k<q). 

(b) Deduce from B.ILl that for every j e {0, ...,p] and k e {0, ...,q}, Uj nVk is a. finite 
(possibly empty) subset of the plane. 

(c) Prove that E c \Jo<j<p ^j ^^^ ^ ^ Uo<it<9 ^^' ^"^ deduce that E is finite. 

B.II.3. Given a point A and a vector ~v , let Ej^ -^ denote the set of all the points M of the 

plane such that AM = jclt with x eZ. 
Let E be an infinite subset of the plane. Show that the following properties are equivalent: 

(*) £ is a set with integral distances; 
(**) There exists a point A and a vector ~v of norm 1 such that E c E^^-^. 

B.III. Finite sets with integral distances 
Let 0 be the real number defined by cos 0 = 4/5, 0 < 0 < TT. For every natural integer p, let 
Mp be the point whose associated complex number is e^^^^. 

B.III. 1. Show that the points Mp with /? in N are pairwise distinct. 

B.III.2. Let p and q be two natural integers. Prove that the distance MpMq is equal to the 
quantity 2 | sin(p — ^)0 |. Deduce that MpMq is a rational number. 

B.III.3. Let n be an integer greater than or equal to 3. Show that there exists a set with integral 
distances, consisting of n points, contained in a circle of centre O. 

Theme C: Configurations Containing a Fixed Number of Points of the Lattice 

After studying some examples (part C.I), we propose to establish that for every integer « G N*, 
there exists 

• a circle containing exactly n points of the lattice in its interior (part C.II); 
• a square containing exactly n points of the lattice in its interior (part C.III); 
• a circle passing through exactly n points of the lattice (part CIV). 

Throughout theme C we assume that coordinates are defined in the basis 1Z, unless we 
explicitly assume otherwise. 
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C.I. Some examples 
C.I.I. Without justification, construct four circles Ci, C2, C3 and C4 such that for each 
j e {1, 2, 3, 4}, exactly j points of the lattice lie in the interior of Cj\ give their radii and 
the coordinates of their centres. 

C.I.2. Let n belong to N*. Without justification, give the coordinates of the vertices of a square 
containing rfi points of the lattice in its interior. 

C.II. A circle containing n points of the lattice in its interior 
C.II.l. Classification of the points of the lattice 

(a) Let 5 be a bounded subset of the plane. Show that B contains only a finite number of points 
of the lattice. 

(b) Let A be the point of coordinates (v^, 1/3). Show that there cannot exist two points of the 
lattice at the same distance from A. 

Deduce that we can classify the points of the lattice as a sequence {Mn)n>\ such that 
AMn < AMn+x for every n eN*. 

C.II.2. Application 
Given an integer n eW, deduce from C.ILl b that there exists a circle which contains exactly 
n points of the lattice in its interior. 

C.III. A square containing n points of lattice in its interior 
C.III.l. Definition of a function on the lattice 
LetZ)i be the line of equation x+j>/3 — ^ = OandD2thelineofequationjcV3—j—(l/\/3) = 0. 

(a) Show that Di and D2 are perpendicular, and give the coordinates of their intersection point 
Q. Draw these two lines. 

(b) Set 

X = (1/2) (xV3 - y - I /V3) , Y = (1/2) (x-\-yV3- I /3) . 

Show that this defines a change of basis of the orthonormal basis, such that the new axes lie 
respectively along Di and D2. 

Let M be a point in the plane, and let (x, y) denote its coordinates in 71 and (X, Y) its 
coordinates in the new basis. Set 

f(M) =1 X I + I F 1= (1/2) |JCN/3 - y - 1/V3| + 1/2 |jc + ^^3 - 1/3|. 

C.III.2. Injectivity of the function/ 
Consider two points Mi and M2 of the lattice, of coordinates respectively (xi, >'i) and (x2, yi) 
inn, suchthat/(Mi) =f(M2). 

(a) Show that there exist four real numbers a, p, y, 8 satisfying a'^ = p^ = -/•^ = 8^ = I and 
suchthataxi+)6ji —yx2 — 8y2 + {y — a)/3 = 0, Px\-]-ayi —8x2 — yy2-^i8 — i^)/3 = 0. 
(Observe that for every real number jc, we have | jc \= kx with X^ = 1.) 

(b) Deduce that Mi = M2. (Begin by showing that y-a = 8-p = 0.) 
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C.III.3. A new classification of the points of the lattice 
Using the same method as in C.II.l, show that we can classify the points of the lattice as a 
sequence {Nn)n>i such that/(A^„) <f(Nn+i) for every w in N*. 

C.III.4. Let fl be a strictly positive real number. Show that the set of points of the plane whose 
coordinates (X, Y) satisfy |X| + |F| < a is the interior of a square Q ; give the vertices of the 
square. 

Deduce that for every integer w in N*, there exists a square Ca whose interior contains 
exactly n points of the lattice. 

CIV. A circle passing through n points of the lattice 
C.IV.l. Number of integral solutions of the equation x^ -\-y^ = 5" 
Let n be an integer in N; and associate to it the following two sets: 

Sn = l(x, y) E Z X Z; jĉ  + / = 5̂ }̂ 

En = {ze Z[/]; \z\^ = 5"}. 

(a) Show that Sn and En are finite sets of the same cardinal. 
(b) Determine £"0. 

For every element co in EQ and every integer/? such that 0 < /? < n, set 

(c) Prove that Z(o,p belongs to En and the map ((o,p) -> Ẑ ^ p, from EQ X {0 , . . . , n} to En, is 
injective. (One can show that if Z(o,p = Z^f ^ with co and co^ elements of EQ and p and q 
integers less than or equal to n, then ((2 + /)/(2 - Z))"^^"^^ = 1, and use (A.L4.). 

(d) Let z = x-\-iybe an element of £"„, with n > 1. Show that (jc, y) satisfies one of the following 
systems of relations: 

(1) 
2x-y = 0 mod 5 ^\2x-\-y = 0mod 5 

or (2) { 
x-\-2y = 0 mod 5 \-x + 2y = 0 mod 5. 

Deduce that one of the two numbers z/(2 + /) or z/(2 — /) belongs to £'„_i. 
(e) Prove that the map ((jo,p) -> Z^^ from EQ X {0 , . . . , «} to En, is bijective. Deduce the 

number of elements of En-

C.IV.2. A circle passing through an even number of points of the lattice 

(a) For every integer n eN*, set 

An = {(x,y) £ £n',x even and y odd} 

and 

Bn = {{x,y) e Sn',x odd and y even}. 

Show that An and Bn have the same cardinal and that £̂ „ = A„ U Bn and A„ fi 5„ = 0. 

(b) Let k e W. Determine the number of points of the lattice belonging to the circle whose 
centre is the point of coordinates (1/2, 0) and whose radius is (l/2)(5^^~^^/'^). 
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C.IV.3. A circle passing through an odd number of points of the lattice 
Let k e N* and F^ be the circle whose centre is the point of coordinates (1/3,0) and whose 
radius is (1/3)5^. 

(a) Show that the number of points of the lattice belonging to F^ is equal to the cardinal of the 
set Fjc defined by 

Fk = {z = X -\- iy; z e E2k, x = —I mod 3, y = 0 mod 3}. 

The goal of questions (b), (c) and (d) is to compute the cardinal of F^. 
(b) Show that for any co e EQ and z e Ejk, coz and coz belong to E2k- Prove that the relation (/?), 

defined over E2k by 
"For z and z' in E2k, we have z(R)z' if and only if there exists co e EQ such that z' = (oz 

or such that z^ = coz'\ is an equivalence relation on E2k-
Denote by (R)(z) the equivalence class of an element z of £"2̂ . 

(c) Let z = jc + /_y be an element of E2k • 

- Assume xy 7̂^ 0. Give the elements of (R) (z) in terms of jc and y and show that (R) (z) 0 F^ 
contains two elements. 

- Assume xy = 0. Give the elements of (R)(z) and show that (R){z) H Fk contains one 
element. 

(d) Deduce that F^ contains 2/: + 1 elements. 

Problem 7 

Legendre's Theorem 

Let a, b and c be three non-zero integers in Z, and consider the Diophantine equation in x, y, z given 
by 

ax^ + by^ + cz^ = 0. {Ea,b,c) 

We will establish necessary and sufficient conditions for this equation to admit a solution in 
Z^ \ {(0,0,0)}. Obviously we may assume that the greatest common divisor of a, b and c is 1 
and that they are square-free. 

Show that we may also assume that a, b and c are pairwise relatively prime. We make this 
hypothesis from now on. 

I Necessary conditions 
(1) Show that a, b, c cannot be all three positive or all three negative. 
(2) Show that —be must be a square modulo a, that —ca must be a square modulo b and that —ab 
must be a square modulo c. 
II We want to show that conditions (1) and (2) of/ are sufficient. Assume that 

\a\ < \b\ < |c|. 

Then we have 
\ab\ < \ac\ < \bc\, 

and we say that \ac is the index / of the equation La,b,c- Let us reason by induction on /, assuming 
that conditions (1) and (2) hold. 

(1) Show that if / = 1, the equation La^h,c admits an infinite number of primitive solutions (i.e. 
solutions such that JC, y and z are relatively prime) in Z^. 
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(2) Assume that / > 2, and that the theorem holds for all equations of index < /. Show that there 
exists integers Q and r, with \r\ < (l/2)|c|, such that: 

ar^ -\-b = cQ 

and \Q\ < 1. 
(3) Show that if g = 0, the theorem holds for La,b,c-
(4) If 2 ^ 0, let A denote the greatest common divisor of ar^, b and cQ. Show that A divides r^ and 
2 , and that A is square-free. Deduce that A divides r. 
(5) Set 

A A A 
where C is the square-free part of Q, and set B = ap. 

Show that the equation La^b,c satisfies all the necessary conditions of the statement. 
(6) Show that 

' \AB\ = \ab\ < I 

\AC\ < \AC\y^ = \Q\ < I. 

(7) Let (X, Y, Z) be a primitive solution of La,b,c' Set 

'x=AaX-pY 

y = X-\-aaY 

z = CyZ. 

Show that: 
ax^ + by^ + cz^ = cCy^{AX^ + BY^ -h CZ^), 

and deduce that (x, y, z) is a non-zero solution of the equation La^b,c 



2 
ELLIPTIC FUNCTIONS 

Like many other mathematical objects, elhptic functions were bom twice: the first time 
in the 18th century and then a second time during the romantic period of the early 19th 
century. We will try to give an idea of the circumstances of this birth and rebirth, and then 
in Sections 2.4-2.8 we will use the theory of functions of one complex variable, a theory 
developed around the time of the second birth of elliptic functions, to develop the standard 
construction due to Weierstrass, which is very fashionable today. 

From this point of view the essential results are the Liouville theorems (Section 2.4), 
the theorem given in Section 2.5, those of Section 2.7 and Abel's theorem (Section 2.8). 
Finally, in Sections 2.9-2.11, we backtrack and give a second construction, which becomes 
equivalent to the standard construction over the field of complex numbers. This construction 
was developed in particular by Rausenberger, and has the advantage of passing meaningfully 
to the ultrametric framework (see the exercises of Chapter 5). It leads to the construction of 
a "universal elliptic curve" known as the Tate curve Eq. 

The Tate curve is a powerful tool in the modem theory of elliptic curves and we will 
use it in a very typical manner in Chapter 5. From this point of view the essential results 
are the theorem given in Section 2.10 and the formulae (27) and (28). 

2.1 ELLIPTICINTEGRALS 

Around the time when Kepler's laws^^ became known, and integral calculus was in the air, 
the natural desire arose to compute the path of the orbit of a planet or a comet. 

The computation of an arc of an ellipse was attempted by Wallis^^ in 1655, and series 
expansions were given by Newton^ ̂  and Euler. 

We will give this computation for the most general (non-decomposable) conic, given 
by the equation 

y' = 2px + {e'-\)x\ p^O, 

J. Kepler 1571-1630. 
J. Wallis 1616-1703. 
I. Newton 1642-1727. 

68 



ELLIPTIC FUNCTIONS 69 

where e is the eccentricity {e = c/a) of this conic and/7 = b^/a is its parameter (following 
the tradition that a is the large semi-axis and b the small semi-axis of the conic when it has 
a centre). 

We know that this conic can be parametrised by taking t = y/x. We find 

2p 

y = 

r2 + (1 - e^) 
Ipt 

From now on, we set 

D := D(t) = t^ + (l- e^). 

The arc element of the conic is given by 

ds^ = dx^ + dy^ 

= (2/7) — dt\ 

Thus, we have 

OP =2p r 

D4 

7(^2 + ( l+^)2)(r2 + (1-^)2) 

JtiP) D^ 

It is an Abelian integral attached to the curve of equation 

dt. 

ŵ  = [r̂  + ( l + e ) l r + ( l - ^ ) " ] . 

(1) 

(2) 

We assume that ^ > 0, so we see that the second term of the equation of this curve has 
double roots only if ^ G {0, 1}. 

Special case: (1) If the eccentricity e = 0, the conic is a circle of radius a — r, and 
we have 

6 p = 2 . r ^ = 2 r f ^ - A r c t g ^ Y 
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The curve (2) decomposes into two parabolas 

u = ±(t^ H- 1). 

(2) If the eccentricity e = 1, the conic is a parabola, and we have 

r^ Jt^ + 4 

ItiP) '' Jt(P) t 

This integral can be computed using "elementary transcendentals", since the curve (2) 
is unicursal; it is given by 

u^ = f'{p--^A). 

Remark 2.1.1 (1) One can check that if ^ ^ {0, 1}, the arc of the conic is not computable 
using elementary transcendentals. Check that the curve (2) is not unicursal, for example by 
using Mason's theorem (see Exercise 1.13 of Chapter 1). 

(2) The change of variables 

makes it possible to express the arclength in a more classical form in the case of the ellipse. 
A simple computation gives 

a 
d9 

. ( l -6») V1-6I2J 

If we are dealing with an ellipse, then 

a'-

and we have 

Ib^ 1 

a^ \-e 

It remains to compute the numerator. 
We set 

N{i) = V[f2 + (1 + e)2][;2 + (1 _ e)2]. 
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b^ /l-^i 

Note that 

whose numerator is equal to 

1 b^{l -^ 0) -\- a^jl -\- 6^(1 - 0) 

As we have 

we see that 

0(b' - a\\ + eY) -\-b'+ a\l + eY. 

b^ - a^{\ + eY = a^(l ~ e^) - a^{\ + eY = -2a^e(l + e) 

b^ + a^{\ + eY = a^(l - e^) + a^{\ + eY = 2a^(l + e), 

(1 - 0)N(t) = 2^(1 -\- e)(l - eO){l - e)(l -\- eO). 

It follows that 

OP 
JeiP 

1 - e'-e 2n2 
•dO. 

le(P) ^(l-O^)il-eW) 

In the case of the hyperbola, we would obtain an analogous result. 
(3) Because hyperbolic functions were introduced by J.-H. Lambert^^, these integrals 

could not be called "hyperbolic", so they were called elliptic! 

2.2 THE DISCOVERY OF ELLIPTIC FUNCTIONS IN 1718 

Elliptic functions made their very first appearance in a remarkable work by Fagnano^^, dating 
from 1718, on the rectification of the BemouUi lemniscate (introduced by Jakob Bernoulli 
in 1694). 

Given two points Fi and F2 of the plane, at a distance of 2c from each other, the Bernoulli 
lemniscate is defined to be the locus of the points M in the plane such that MFi • MF2 = c^. 

If we set 

ri = MFi, r2 = MF2, r = MO, 

22 J.H. Lambert 1728-1777. 

23 G.C. Fagnano 1682-1766. 
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the point M lies on the lemniscate if and only if rjr2 = c^. Now, we have 

hence 

To simplify, set 

r\ = r^ — lex -f c^ 

r\ = r̂  + lex + ĉ , 

/ + Ic^? - 4 c V = 0. 

le' = 1. 

Then the equation of the lemniscate becomes 

r'^-hr^ - Ix^ = 0. (3) 

Remark 2.2.1 In homogeneous Cartesian coordinates, equation (3) becomes 

so we see that the lemniscate is a circular quartic; it passes through the cyclic points. 
We can also note that it is the inverse of an equilateral hyperbola with respect to its 

centre. 
Here is its shape: 

From now on we parametrise this curve using r, via 

{lx^ = r^ + r^ 

\ly^ = r^-r\ 

We wish to express arclengths in terms of r. We have 

Ix — =r-\-lP 
dr 

ly — = r — Ir^, 
dr 
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therefore 

2 (ds\^ _ 1 

and 

^(r) = / ^ = = . (4) 
Jo Vl - r 4 

Let us compare formula (4) with the classical integral 

and recall that the circle 

can be parametrised by 

Thus, for this circle, we have 

Arcsin r — 1 
Jo y r ^ 

l-r'^a' 

2t \-f 
^ - l + , 2 ' ^ - l + , 2 

dr 2(1 -1^) la 

dt (1+^2)2 1+^2 

and 

[ dr _ C Idt 

I v~J r+7 
Apparently Fagnano was inspired by this method, when he set 

2r' / 7 1 - 1 ^ 
r^ = - 7, a = y i - r^ = ^2 

1+^4 ' 1_̂ 4̂ 

This gives 

dr _2t{\- r^) 

dt ~ (1 + rV 

and 

a 

<y Vi+f*' 
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which gives the formula 

Jo y n ^ Jo 
dt 

yrr 4 

If we now consider this last integral, we are led to set 

2u^ , 1 + u" 
t^ = = yrH 

It follows that 

and 

\-u^ \-u 

dt _ 2u{\+u^) 

,.4* 

du (1 - u^Y 

dt r- du 

yr=^' 
hence 

'^'^ dt r^'^ du 

Jo V l - r 4 Jo V T T 7 Jo ^J\-u^ 
Noting that r can be computed from u by the formula 

2 _ 4w2(l - M4) 

' {\+u^)^ ' 

we obtain the marvellous formula which enabled Fagnano to duplicate the arc of a lemniscate 
using a ruler and compass construction. 

Remark 2.2.2 To the above curve 

1 - / = cj\ (5) 

we can associate the Diophantine equation 

x'-y'^z^ (5') 

which has no non-trivial relatively prime solutions (see Exercise 1.6 of Chapter 1). 
To see this, we show that if (50 admits a non-trivial solution, then it admits a non-trivial 

solution for which y is even (same exercise). 
We will show that the Fermat descent which we are led to apply to (50 is analogous to 

the procedure used to duplicate the arc of a lemniscate. 
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Since x^ = z^ + y"^, we can set 

x^ =a^ -\- b^, / = lab, z = a^ - b^ 

which gives (choosing b even) 

I a = u^, b = 2v^ 

We deduce the equation 

x^ =a^ + b^ = u^-\- 4v^ 

which recalls the differential element dt/VYT~t^ = (l/\/2)(dr/a) since y/x = 
(2/V'WVV^ + 4)(M/V). 

We now set 

b' is necessarily even, so 

a'=x'^ and b'=y'^ 

and we recover the form 

u =x —y\ ( j ) 

which recalls the differential element du/\/\ — u"^ = (l/V2){dt/s) since v/u = 

(i//r^(7V^).y/y. 

2.3 EULER'S C O N T R I B U T I O N (1753) 

Euler delved deeply into Fagnano's work in 1751, and he realised that Fagnano's formula 
was the analogue of the relation 

r2uy/l-u^ du ^ C" du 

Jo \ / l — u^ Jo 

This formula conceals a trigonometric identity which generalises to 

^r dr ^u du v̂ d^ 

when r = u^/]~^^^ + vVl — M .̂ 

What could the analogous identity for elliptic integrals be? More precisely, how should we 
choose r so that 

Jo Vl - r 4 Jo V T ^ ^ Jo V l - v ^ 
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We could try 

r = u \ / l - v^ + V y/l - M ,̂ 

but we find that for M = v, we have r = 2u V l — u^, whereas we saw above that 

r = 2u 
V l - w ^ 

l + ŵ  * 
Thus we are led to correct the choice of r and try 

W V 1 - V 4 + V V 1 - M 4 
^ = 1 _L 2 2 • (^^ 

1 + W"̂V"̂  
In particular, we would like to show that the relation du/^/l - u!^ = -dv/^/l - v"^ implies 
that r is constant. 

Set 

U = x/l - u\ V = Vl - v4; 

we want to show that if du/U + dv/V = 0, then dr = 0, i.e. 

(Vdu-{-udV-\-Udv -\-vdU) (1 + u^v^) - (uV + vU) (luv^du + Ivu^dv) = 0. 

To obtain this result, we substitute 
2v^ 2u^ 

dV = dv, dU = du 
V U 

and order the terms in du and dv. We find 

2uh 
(1 + w^v^) - (uV + vU)2uv^ du 

\ 

U - —r^ 1 ( 1 + u^v^) - (uV + vU)2vu^ dv 

(UV - 2u'v) (1 + M^v )̂ - 2uv\ulJW + 

+ (UW - 2v'u) (1 + M^vO - 2vu\vUW + 

1' 
V d - M ' * ) ) ! -

«(l-v^)]^, 
and the two terms in square brackets are equal. 

To conclude, we note that, at least for u and v near zero, J r = 0 is equivalent to 
(du/U) + (dv/V) = 0. Thus, if r is constant, we have 

Jo U Jr V 

i.e. s(u) + s(v) = s(r) when (2) is satisfied. 
The equivalence 

(2) s(u) -\- s(v) = s(r), 

which holds for u and v sufficiently small, is known as the theorem of addition of lemniscatic 
integrals. 
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2.4 ELLIPTIC FUNCTIONS: STRUCTURE THEOREMS 

The idea of inverting elliptic integrals can be found in the notebooks of Gausŝ "̂  dating back 
to 1796 (and 1797 for lemniscatic integrals), which were published only after his death. 

Abel̂ ^ rediscovered this idea around 1823 and published it in 1827 in his Recherches 
[Ab] t.I, pp. 266-278. Then Jacobi^^, probably inspired by an article by Abel, used the idea 
in 1828 (complete works t.I, p. 43). 

Since these functions are meromorphic and doubly periodic, only Cauchy's theory^^ was 
lacking in order to complete their study; this was done by Liouville^^ (1844) and Eisenstein 
(1847). 

From the whole of Cauchy's theory, we only use two tools - but what powerful tools 
they are! 

Liouville's Theorem 2.4.1 Letf be a holomorphic function C ^^ C which is bounded in 
module in a neighbourhood of infinity (i.e. bounded in module in all ofC). 

Thenf is a constant function. 

Remark 2.4.1 This theorem is in fact due to Cauchy^^, who pubHshed it in 1844 
(Comptes Rendus, XIX, pp. 1377-1378). 

Proof Assume that [f(z)\ < K for every z e C, and let us show that if z and z^ lie in C, 
then/(z) =/(zO. 

Let C be a circle of centre z and radius r > 2|z — z'|. By Cauchy's formula, we have 

f(z')-f(z) = :^ I [—^--^l / (0^^ 
^ITT Jc L? - ^ ? - ^ J 

Setting ^ = z-\- re^^, we obtain 

\f(z)-f(z)\ = \:r 7 ; / (^ )^^ 
\27t Jo ^ -Z' 

Since |f -z'\ > | |? - z\ - \z-z'\ \ > r/2, wehave 

r27T \j 

\f(7l)-f{z)\ < — / ^-^-:^KdO 
In Jo r/2 

= 2W-z\Kr-K 

It follows that [/*(zO —fiz)\ is smaller than any given positive real number. D 

24 C.F. Gauss 1777-1855. 

25 N.H. Abel 1802-1829. 

26 C.Jacobi 1804-1851. 

27 A.L. Cauchy 1789-1857. 

28 J. Liouville 1809-1882. 
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Theorem 2.4.2 If a sequence of holomorphic functions converges uniformly on an open 
set, then the limit is holomorphic on this open set. Moreover, the order of differentiating 
and taking limits can be exchanged. 
Proof See [W-W] p. 91. D 

Let o)\ and C02 be two R-linearly independent complex numbers, and let A be a lattice 

A = 'L(D\ -\- 2,(1)2= 2J(JL>\^ 7L(D2. 

Definition 2.4.1 A function f : C —> C U {00} w called elliptic iff is meromorphic 
in C and if there exists a lattice A such that 

f{z + a))=f{z) 

for every z G C and every co e A. 

Example 2.4.1 Every constant function is an elliptic function. 

Remark 2.4.2 It suffices in fact for/ to be meromorphic and such that/(z -\-coi) =f(z) = 
f(z + C02) for every z G C. 

Notation 2.4.1 Given coi and C02, the fundamental parallelogram n^j^2 ^̂  ^̂ ^ P^^~ 
allelogram (0, coi, (JO\ -\- 0)2, 002) from which we remove co\, C02 and the sides adjacent to 
CJO\ + (1)2. 

A translation ofU := 11^0^,0)2 is a parallelogram of type a -\-Tl. 

Note that the elliptic functions with a given period lattice A form a field which contains 
the constant functions (the constant functions, of course, form a subfield isomorphic to C). 

Liouville's Theorem 2.4.3 Every entire elliptic function is constant. 

Proof Le t / be such a function. The function/ must be bounded on fl since this set is 
compact, so it is bounded on all of C. Thus it is constant by Liouville's theorem. D 

Corollary 2.4.1 If two elliptic functions of the same lattice A have the same poles with 
the same principal parts in n, then their difference is a constant. 

Now, note that since an elliptic function of lattice A has only a finite number of poles in 
a bounded domain of C, we can choose a G C so that it admits no poles on the boundary 
ofa-h n . 

Liouville's Theorem 2.4.4 Letf be an elliptic function of lattice A which has no poles 
on the boundary of a H- Fl; then the sum of the residues off ina -\-Y\ is zero. 
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Proof. This sum is equal to 

:^ I f(z)dz 
lin Jdc 

where C = of + FT. 
The integrals along the opposite sides of a + n cancel out since dz changes sign on two 

opposite sides and/(z) takes the same values, so the integral is zero. D 

Corollary 2.4.2 Letf be non-constant and elliptic of lattice A. Then for a -\- Tl chosen 
as above, we can say thatf admits either a multiple pole inoi -\-I\ or at least two simple 
poles of opposite residues. 

Liouville's Theorem 2.4.5 Let f and a -\-Y\ be as in theorem 2.4.4. Let ma (resp. n^} 
denote the orders of the zeros (resp. poles) off m of + IT. Then we have 

T^ma — Tint, 

and this number does not depend on ot. 

Proof Note that 

Em« — En/, = - ^ / '^-^ dz 
2/:^ Jdc f(z) ' 

mdgiz) =f'{z)/f{z) is still elliptic, of lattice T. 
We now apply theorem 2.4.4 to g. D 

Definition 2.4.2 The number n of poles (or zeros) of an elliptic function f of lattice A 
which lie in a parallelogram a + U is called the order off. 

Example 2.4.2 If/ is not constant, its order is greater than or equal to 2. 

Liouville's Theorem 2.4.6 Letf and a + Ubeas in theorem 2.4.4, and let n be the order 
off. 

lfa\,... ,an (resp. bi,... ,bn) denote the suitably repeated zeros (resp. poles) off lying 
in C = a -\- n, then 

ai -j- h «n = ^1 H + bfi mod A. 

Proof We have 

n I f 

f^i 2i7r Ja, 
1 f f(z) . 

dc f(z) 
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But on two opposite sides of dC, the values of z(f'iz)/f(z)) at corresponding points differ 
by ± coj (f'(z)/f{z)), 7 e {1, 2}, so we have 

1 f fiz). 1 If f'{a + twi) /•' f'ia+tco2) J 
— I z -— ciz = / —0)2 o)\ at -\- I coi 0)2 at 
i^ Jdc f(z) 2in LJO f{oi + to)x) Jo f(a + to)2) J 

^2[log/(z)]r"' +c^i[log/(z)]«+-^}. 

2i7T ,, 

1 

lin 

As/(a) =f{a + o)j) forj e {1, 2}, we see that the variation of log/(z) corresponds to an 
integer multiple of lin, which gives the result. D 

Corollary 2.4.3 Letf and a -\-Y\beas in theorem 2.4.6 and letceCU {co}. Then 

(i) f(z) = c has n solutions z\,..., Zn in a -^ Y\ or in a neighbouring parallelogram. 
(ii) The sum z\-\- V Zn, considered modulo A, does not depend on c or on a. 

Proof. Apply theorems 2.4.5 and 2.4.6 to g{z) =f(z) — c, and note that the poles of g are 
the same as those of/. D 

Naturally, Liouville knew of the existence of non-constant elliptic functions, but we still 
need to prove it here; we give a constructive proof following the approach of Weierstrass^^. 

Remark 2.4.3 The existence of non-constant elliptic functions was known to Abel in 1823 
(letter to Holmboe). 

2.5 WEIERSTRASS-STYLE ELLIPTIC FUNCTIONS 

If we want to construct a meromorphic function of period lattice A, we may first think of 

/(̂ ) - E 7^ ^K Z — 0) 
(1) 

but this does not turn out to be a very good idea; / would be of order 1 and Liouville's 
theorem 2.4.5 shows that there exists no elliptic function of order 1. This shows that (1) 
does not make sense. 

A better idea would be to consider the function 

for which the above objection is no longer valid. Unfortunately, we see (taking z = o)i/2 
for example) that the right-hand series does not converge! 

29 K.Weierstrass 1825-1897. 
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An excellent idea is to take 

because now the series is uniformly convergent (starting from a certain rank) on every 
compact subset of C . To see this, we need a lemma. 

L e m m a 2.5.1 If the real number s is > 2 , the series 

"hi W 

where Yl'o^eA ^^^^^^^ J2coGA\{oy is convergent. 

Proof. Identify C with Rcoi 0 RtD2, and recall that the norm on C and || ||oo are two 
equivalent norms. 

Thus we have 

1 

where C denotes a certain constant. 
Now, if II II denotes the norm || ||oo» we have 

y ^ 1 87V 8 

SO E A L I {12\\CO\\=N 1 / I I<^II ' ) converges if 5 > 2. D 

Theorem 2.5.1 The series which appears in the right-hand side of (3) is absolutely uni­
formly convergent on every compact subset of C, and the function h is an odd elliptic 
function of lattice A and of order 3. 

Proof. 
(i) The general term of the series is equivalent in module to l/|(Wp, and by the lemma, 

the series is absolutely convergent. It is even absolutely uniformly convergent if |z| is 
bounded above. 

(ii) Since the functions l/(z — co)^ are meromorphic for every co € A, it follows 
from theorem 2.4.4 above that h is meromorphic on every compact subset, so in 
all of C. 

(iii) Since the series is absolutely convergent, it is also commutatively convergent ([Di,l], 
ch V, §3), so h is periodic of lattice A and is also odd. 

(iv) The only pole of h in —((coi -h <W2)/2) + n is the origin, and it is a triple pole, so h is 
of order three. 

D 
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Corollary 2.5.1 The roots ofh in O are the three points (JL>\/2, (O2/2, {(0\ + (i>2)/2. 

Proof. 
If z = o)/2, with 6t> G A, we have —z = —co/l so —z = z mod A. 
If z ^ A, then/(z) ^ 00, and by periodicity, we have 

fi-z) = / ( z ) . 

But since/ is odd, we also have 

f(-z) = -fiz), 

hence 2f(z) = 0. 
We thus find three roots: (0\/2, CO2/2, {coi + a)2)/2 in FI. As there cannot be more than 

three, we have obtained them all. D 

If we integrate —2h(z) + 2/z^ term by term in the neighbourhood of zero, we obtain 
a function H(z), holomorphic in this neighbourhood, which is the sum of the series of the 
integrals 

^^^^ 2 ^ (7 _ ^)2 ^2 • 2 ^ (7 _ ^)2 ^2 
a)eA L^^ ^^ "^ -I w€A\{0}L^^ ^^ ^ 

(4) 

By lemma 2.5.1, we know that this series is uniformly convergent on every compact subset. 
It follows that if we set 

PAiz) = \+H(z), (5) 
z^ 

then p^ is a meromorphic function on C and p' (z) = —2h{z). 

Definition 2.5.1 The function PA is called the Weierstrass function of the lattice A. 

Remark 2.5.1 When A is evident from the context, we simply write p instead of PA-

Theorem 2.5.2 
(i) The function p^ is an elliptic function of lattice A. 

(ii) IfXe C*, we have the homogeneity relation 

PA(Z) = 'k^PxA {'kz). 

(iii) Moreover, p^ is an even function of order 2. 

Proof To simplify the notation, let us write p := PA. 
(1) We already know that p is meromorphic on C. 
(2) The homogeneity relation is clear. Taking A. = — 1 and noting that —A = A, we 

see that p is even. 
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(3) Since p\z) = —2h(z), we have 

p\z-^co) = p\z) 

for every ft; e A. 
Choose a pair of generators of A co e [0)1,0)2}, and integrate the preceding relation; we 

obtain 

piz-\- o)j) = p{z)-\- Cj 

forje{h2}. 
Since the series on the right-hand side of (4) is uniformly convergent on every compact 

subset, we see that the only poles of p are the points of A. 
It follows that 0 is the only pole of p in Fl; as it is a double pole, p is of order 2 if it is 

elliptic. 
It also follows that —o)i/2 and —o)2ll are not poles of p. If we set z = —o)j/2, we 

obtain 

. ( f ) = . ( - f )--'•• 
and since p is even, Cj = 0. 

We have shown that p is periodic of lattice A. D 

Corollary 2.5.2 
(1) For every w G C, the equation 

p{z) = u 

has either two simple roots or one double root in 11. 
(2) A necessary and sufficient condition for the second case is that 

Proof. 
(1) The first point follows from Liouville's theorem 2.4.5 and from the fact that p is of 

order 2. 
(2) Saying that zo is a multiple root of p{z) = u is the same as saying that 

p(zo) = w, P\ZQ) = 0, 

and corollary 2.5.1 then gives the result. 
Let G be the involution of C/A which associates to every element z its opposite —z. In 

n , the involution o can be represented by the map which associates to a point a of n the 
representative of —a modulo A which lies in FI. 

It is clear that the group {id, cr} acts on C/A and that if fl ^ [0,o)\/2,a)2/2,{cDi -\-(JL>2)/2}, 

the orbit of a contains two elements a and a'. 
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Lemma 2.5.2 Letf he an even elliptic function of the lattice A, and let a* = {a, a'} (resp. 
a* = {a}) be the orbit of a under the action of [id, a). 

(1) Then f {a) =f{a') andf has the same order at a and a'. 
(2) Ifa = a'y the order off at a is even. 

Proof 
(1) The first assertion follows from the parity and the periodicity of/. 
(2) The second assertion necessitates a local study. 

\if{a + z) = amf^ H , then/(-fl - z) = amf^ H since/ is even. 
B u t / ( - a - z) =f{a' - z) = a'^^-z)"^' H , s o / has the same order at a and at a\ 
i.e. m = m'. 

(3) \fa = a', we have 

«mz" + • • • =f{a + z) =f{a -z)= ami-zT + • • • , 

D 
so m is even smce we assume that am 7̂  0. 

Corollary 2.5.3 Every even elliptic function of lattice A is a rational function of p. 

Proof Let/ be such an elliptic function and let a^ (resp. b^) be representatives of the zeros 
(resp. poles) of/ in a + n\{0} modulo {id, a], where |a| is assumed to be very small and 
such that/ has neither zeros nor poles on the boundary of a + n . We denote by r^ (resp. 
Sy) the order of multiplicity of a^ (resp. b^) divided by the order of its isotropy group (i.e. 
by 1 or 2) in {id, a). 

More precisely, the divisor is equal to 1 if and only if a^ (resp. Z?y) is not in 
{0)1/2,0)2/2, (a;i -\-o)2)/2], otherwise it is equal to 2. The lemma shows that r^ (resp. 
^v) is an integer. 

We then set 

^ n[p(z)-p(a^)Y^ 
^^^^' n[p{z)-p(b,)V^' 

which comes down to constructing an elliptic function of order n which imitates the 
behaviour of/ at its zeros and its non-zero poles in of + Fl. 

Since g is of order n, it follows from Liouville's theorem 2.4.5 that/ and g have the 
same order at the origin. 

Thus/ /g is an elliptic function of lattice A, holomorphic in a H- n . By Liouville's 
theorem 2.4.3, it is constant. 

Thus if we seif/g = C and 

<P(X) = C 
n[x-p{a^)Y^ 
n[x-p(b,)V^' 

we have/ = (p(p)- • 
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Example 2.5.1 Consider p''^. 
Since p'^ has no poles other than 0 in U, (pis a. polynomial 
Since p^^ admits the double zeros coi/2, 0)212, {(D\ + a)2)/2, we have 

Finally, p\zf = 4/z^ + • • • so C = 4 and 

COl + Ci>2 

a)\ + 0)2 

Note that the polynomial (p{X) has only simple roots, since otherwise a;i/2, 6t>2/2 or 
(o)i -\- 0)2)12 would be a zero of p'^ of order at least equal to four. 

Theorem 2.5.3 

(1) Every elliptic function f of lattice A can be written 

f = (p{p) + p'\lr{p), 

where cp and xj/ are two rational functions. 
(2) The field of elliptic functions of lattice A isCip, p'). 

Proof 
(1) The assertion follows from corollary 2.5.3 iff is even. 
(2) Set 

fiz) +fi-z) 
h:= 

fiz) -f{-z) 

it is clear that g and h are two elliptic functions of lattice A and that g (resp. h) is even 
(resp. odd). p. 

Thus g = (p(p) and h/p' = xjrip). 

2.6 EISENSTEIN SERIES 

Given a lattice A of C, for each integer m > 3, we set 

, o)'" '-rr'.r., oy" 
coeA a;€A\{0} 

Note that Gm{A) = 0 if m is odd. 

Notation 2.6.1 G2k is called the Eisenstein series of index 2k (or k, according to the 
author) of the lattice A. 
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The Eisenstein series can be used to express the Laurent^^ expansion of p at the origin. 
Indeed, we have 

P(z) 7--1: 
1 1 

(z — (o)^ 0)^ 

But 

Thus 

= ^ + 2 —+3 — + 
{z — (i))^ (i)^ oy' (i>^ 

p (z) = -^ + 3G4z' + 5G6z' + IG^z^ + • • • (6) 
z^ 

We saw in the preceding section that 

p^2 ^ 4p3 _̂  ^^2 _̂  ^ p _̂  ^ ^j^ 

with a,b,c e C. By Liouville's theorem 2.4.6, we have a = 0. 
We now propose to compute a, b, c in terms of the Eisenstein series by formally identi­

fying the Laurent expansions at the origin of the two sides of (7), using the expression (6) 
as well as the derived expression 

p^(z) = - - + 6G4Z + lOGez^ + 42G8Z^ + • • • (8) 
z^ 

Remark 2.6.1 
(1) We can show (exercise) that Gim # 0 when m > 2, i.e. that there exists a lattice A 

suchthatG2m(A) 7^0. 
(2) The coefficients a, b, c of the right-hand side of (7) are unique. This can be seen on 

the Laurent expansion of p^^ — 4p^ . 

Theorem 2.6.1 Let G4 and G^ be the Eisenstein series of indices 4 and 6 associated to 
A, and let p be the Weierstrass function of A. 

Then p is a solution of the differential equation 

Y'2 ^ 4y3 _ 50G4r - 140G6. 

Remark 2.6.2 6OG4 and 140G6 are traditionally denoted g2 and ^3. 

Proof (1) If we replace A by a A (a e C*) and z by az, then p , G4 and G6 become 
a~^p, a'^G^, and a~^Ge\ we will say that p is of weight 2, G4 of weight 4 and Ge of 
weight 6, etc. 

30 RA. Laurent 1813-1854. 
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For relation (7) to be homogeneous, we need b to be of weight 4 and c of weight 6. 
We see that in fact we have 

b = XG4 and c = fiGe. 

(2) We can compute A and /x by formal computation using (6) and (8). 
Computing X: since G^ has to disappear from the result, we identify the z~^ terms in 

the expressions 

( -4+6G4ZJ and 4(\-\-3G4zA + 6G4Z) and 4 ( - + 3 G 4 z M 4 - ; ^ % + 

which gives —24 = 36 + A. 
Computing /x: since G4 must disappear from the result, we identify the constant terms 

in the expressions 

( - 4 + 2 0 G 6 z M and 4(\-\-5GezA +/xGg, 

which gives — 80 = 60 + /x. • 

Remark 2.6.3 The theorem implies the following relations 

(i) p{a)i/2) + p{a)2/2) + p{a)i + a;2)/2 = 0. 
(ii) p'' = 6p2 _ 3OG4. 

Relation (ii) makes it possible to express G2m as a polynomial in G4 and Ge (see 
Exercise 2.3 and also [Se 1] p. 151). 

2.7 THE WEIERSTRASS CUBIC 

Keeping the definitions of Section 2.6, we say that the cubic 

Y^ = 4X' - g2X - g3 (E) 

is the Weierstrass cubic associated to the lattice A. 
This cubic is a special case of cubics of the type 

Y^ = D(X) = aX^ + bX^ + cX-^d, 

where D(X) is a polynomial of degree three without multiple roots; the homogeneous 
equation of this cubic is 

Y^Z - {aX^ + bX^Z -h cXZ^ + dZ^) = 0. (F) 

Theorem 2.7.1 When the polynomial D{X) has no multiple roots, the cubic (F) is a non-
singular (or smooth) curve in the projective plane P2(C). 
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Proof. Let F{X, Y, Z) denote the left-hand side of the equation (F). It suffices to 
prove that 

impUes (Z, F, Z) = (0, 0, 0), which is an impossible choice for a system of homogeneous 
coordinates! 

To simpUfy the notation, we again set 

D(X, Z) = aX^ + bX^Z + cXZ^ + dZ^\ 

then the system becomes 

-D^(X, Z) = 2YZ = F^ - D'^iX, Z) = 0. 

IfZy^O, it follows that F = 0, so 

D^(Z,Z) =D2(X,Z) = 0, 

which is impossible since D(X, 1) has no multiple roots. 
Thus Z = 0 and since a 7̂  0, it follows that X = 0, and finally F = 0! D 
Since (E) has no multiple points, we do not know how to construct a Diophantus-type 

parametrisation for this cubic. 
However, for z e C/A, set 

\(p(z),p\z)A) ifz^A 
z^^J^z) j ^ Q j Q ^ i f z e A ; 

we then have the following result. 

Theorem 2.7.2 The map f : C/A -^ P2(C) is a bijective map from C/A to the set 
E(C) of the points of the projective completion ofE in the plane P2(C). 

Moreover, this map is holomorphic. 

Proof (1) Let us show that/ maps n\{0} injectively to E(C). 
We already saw that/(z) G £"( C ) if z e n \ {0}. Assume that/(zi) = / f e ) and 

p\z\) / 0. Then we have 

Pizi) = p f o ) , p\z\) = p\z2)-

The first relation implies zi G {zi,z[}, and with the second, we obtain zi = Zi- (Recall that 
Z[=CT(Z,)). 

If now p\zi) = 0, we have 

C0\ CO2 (JO\ + (JO2 

z\ e • 2 2 2 

and as the numbers p (coi /2), p ((^2/2), p(a)\ + co2)/2 are distinct, we again have Z2 = Zi. 
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(2) Let us show that/ maps n\{0} onto ^(C). 
Let (a,b) e C^ be such that 

b^ = 4a^-g2a-g3. (9) 

Since p is of order 2, the equation 

P(z)=a 

has two solutions zi and z[ in n\{0}. Relation (9) implies that 

p\zif = p\z\f = b\ 

Now, we know that p\z[) = -p\zi), so we have/(zi) = (a, b, 1) orf(z[) = (a, b, 1). 
(3) Clearly z i-̂  f(z) is holomorphic on C\ A. 
Suppose now that zo € A; i s / still holomorphic in the neighbourhood of zo? 
Since/(zo) = (0, 1, 0), we need to represent/(z) in another affine chart of P2(C). 
The equation of E is given by 

Y^Z = 4X'-g2XZ^-g,Z\ 

and since we want to study it in the neighbourhood of (0, 1, 0), we set 7 = 1, which gives 
the cubic 

Z = 4X'-g2XZ^-g,Z\ 

In this system of coordinates, we have 

Piz) 1 
f(z) = (X,Z) 

and these are indeed holomorphic functions in the neighbourhood of z = 0. D 

2.8 ABEUS THEOREM 

We saw in Section 2.7 that the map/ is a bijection from C/A onto E(C). 
Since C/A is a group, we can transport the group structure and define a group law 

on E(C). Precisely, if P =f(u) and Q = / (v ) , we set 

P^Q -fiu + V) =f(f-\P) + / - ^ (2 ) ) . 

Now our problem is to characterise P 0 2 without making use of the bijection/! 
Before considering the general case, we note that the identity element O of £"(€) is the 

point (0, 1, 0), and the opposite of the point (X, F, Z) is the point (Z, -Y, Z). 

Abel's Theorem 2.8.1 A necessary and sufficient condition for three points P, Q, R of 
E(C) to be colinear is that P ®Q®R = O. 
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Proof. (Modem style) 
(1) Assume that P, Q, R all lie on the line aX ^- bY + cZ — 0; then their elliptic 

parameters u =f~'^(P), v =f~^(Q) and w =f~^(R) are the zeros of the elliptic function 
g(z) =ap-\- bp' + c. 

If 6 / 0, this function admits a unique pole of order 3 at z = 0 G C/A, so by Liouville's 
theorem 2.4.6, w-hv + w = OG C/A. _ 

If Z? = 0 but (3 7̂  0, the line isaX -\- c and it passes through the point (0, 1, 0) G E{C). 
Thus we can assume that /? = O, of elliptic parameter w = 0 e C/A. As g admits a 

unique pole of order 2 in C/A, we again have w + v = 0 by Liouville's theorem 2.4.6, so 
u-\-v -\-w = 0. 

Only the case a = b = 0 and c ^0 remains. 
But the intersection of the Weierstrass cubic 

Y^Z = 4X' - g2XZ - g3Z' 

with the line Z = 0 gives the point (0, 1, 0) = 0 counted three times (Z = 0 is an inflection 
tangent at O). Thus the result still holds. 

(2) Conversely, if we have w + v + w = 0, we see that the line defined by f(u) and/(v) 
intersects ^'(C) at a point/(wO such that (by the first part) 

w + V -|- w' = 0. 

It follows that w' = w, and the theorem is proved. D 

Proof. (Abel's style) We will not attempt to give a complete and rigorous proof; the 
argument here should be taken as essentially "heuristic". 
Let us change the notation and write (x\,y\), (X2,y2). (^3,^3) for the points P, 2 and/?; for 
j G {1, 2, 3} we write 

(xj.yj)=f(zj), zje C/A. 

Assume that P, Q and R lie on a line of equation y = mx -]- n; then we want to show 
that when m and n vary, the sum zi + Z2 + 3̂ remains constant. To see this, it suffices to 
prove that 

dzi + dz2 -h dz3 = 0. 

Now, we have 

so it suffices to show that 

dx 

y 

dx\ 

y\ 

= 

+ 

p'{z) 
P'iz) 

dX2 

— + 

dz--

dxT. 

yi 

dz, 

= 0. 
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The elements xi, X2, X3 are the roots of the polynomial 

P(X) = 4X' - g2X - g3 - (mX + n)\ 

so since Pixj) = 0, we have 

, dP dP 
P (Xj) dxj -\ dm-\ dn = 0, 

dm dn 

i.e. 

P\xj) dxj = 2(mxj 4- n) (Xj dm + dn). 

If the roots xi, ^2, x^ are simple, this gives the relation 

3 ^ ^ 3 j ^ ^ . ^ 2 A xjdm-\-dn 

Abel's trick was to consider the rational function X{X dm -\- dn)/P(X), with the 
assumption that jci, X2 and X3 are distinct, and to decompose it into elementary fractions. 
We have 

X(Xdm-{- dn) ^ ^ Xj(xj dm + dn) 

P(X) " ^ F(Xj)(X-xj)' 

Plugging X = 0 into this relation, we obtain the desired result, i.e. dz\ -h dz2 + dz3 = 0, 
hence: 

Zi+Z2+Z3 = C^^ (100 

If we now let z\, Z2 and Z3 tend simultaneously to zero while respecting the conditions listed 
above, we see that the constant in (10') is zero. D 

Special case 

(1) If P = g, then the line aX-]-bY -\-cZ = 0 is the tangent at P to the curve E(C), The 
parameter w of/? is —2w. 

If 2u = 0, the tangent at/(M) passes through the origin O, i.e. it is parallel to the 
axis of the ordinates. 

(2) lfP = Q = R (which is possible, as we have already seen) then the line aX-\-bY+cZ = 
0 will be an inflection tangent at P of the curve E{C). 

Thus the inflection points of E(C) are the points whose parameters satisfy the 
equation 3u = 0 e C/A. 

We easily see that there are exactly nine of these inflection points and that they 
form collinear triples. 
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Geometric Construction 
We represent the group law in the following diagram: 

Remark 2.8.1 
(1) Let K denote a subfield of C. If (^2. ^3) ^ K^^ then the preceding construction puts 

an Abelian group structure on E{K), making it into a subgroup of £"(€). 
(2) In Chapter 5, Section 5.4, theorem 5.4.2, we will prove that every curve of equation 

Y^Z 

having no double points, i.e. such that a^ 
functions. 

21 b^ 7̂  0, can be parametrised by elliptic 

2.9 LOXODROMIC FUNCTIONS 

We now give a second construction of the elliptic functions, which is much simpler than the 
one given in Sections 2.4 and 2.5, and which furthermore has the advantage of generalising 
from C to the case of an arbitrary complete valuation field ("Tate functions"). 

The main idea is to note that every function g{z) of the iormf{e^^^^^^^) admits the group 
of periods 2,(JO\ . If moreover we have 

f(qO=f(0 (11) 

for every f G C* and for a certain q = ^̂ /Trâ s/wi ^ ĵ̂ î  S(a;2/<^>i) > 0, we see that g admits 
the period lattice A = Zo î + Za)2. Finally iff is meromorphic in C*, then g is an elliptic 
function of lattice A. 

Definition 2.9.1 Let q e C* be a complex number of module < 1. We say that a map 
f : C* -^ CU {00} is a loxodromic function of multiplicator q iff is meromorphic 
and satisfies equation (11). 
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It is clear that the loxodromic functions of multiplicator q form a field, which we call Cq. 
It is also clear that the loxodromic functions satisfy structure theorems analogous to the 

theorems concerning elliptic functions. 

Theorem 2.9.1 Every entire loxodromic function is constant. 

Proof. Indeed, let / € Cq. 
Equation (11) shows that / is defined by its restriction to the annulus 

Cq{R) = {z e C; \q\R < \z\ < R]. As CqiR) is compact,/ is bounded in Cq(R) so 
in C*. A theorem from the theory of functions of one complex variable ([Va] p. 389) states 
that/ is holomorphic at the origin since/ is holomorphic and bounded in the neighbourhood 
of the origin. 

Thus, we can apply the Liouville theorems of Section 2.4. D 

Theorem 2.9.2 Assume thatf e Cq has neither zeros nor poles on the boundary of the 
annulus Cq(R) = [z e C; \q\R < \z\ < R}. Then the sum of the residues of the poles of 
f(z)/z lying in Cq(R) is zero. 

Proof. Let F and F' denote the circumferences bounding Cq(R); we know that the sum is 
equal to 

i(//f^-//f4 2in 

Setting z = q^ in the second integral, we recover the first one. D 

Corollary 2.9.1 Every non-constant loxodromic function of multiplicator q has at least 
two poles (and two zeros) in every annulus Cq{R). 

Theorem 2.9.3 Letf E Cq and let Cq(K) be an annulus chosen as in theorem 2.9.2. Let 
ma (resp. nt) denote the orders of the zeros (resp. poles) off in Cq(R). Then we have 

Uma = Ttn^. 

Proof Indeed, Em^ — En ,̂ is equal to 

lin Vi r - / ( O Jr^ f(z) V 2/71 

and we see as in theorem 2.9.2 that the two integrals are equal. D 

Before proving theorem 2.9.4, we take a moment to give some examples of non-trivial 
loxodromic functions. 
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Example 2.9.1 For z G C*, set 

oo oo 

S(z) = Y[(^ - q'z)Y\(l - q'z-'). 
0 1 

We easily see that each infinite product is convergent, and that the map 5 : C* -> C is 
holomorphic. A simple computation (absolute convergence) shows that 

S(qz) = -z-'S(z), s(-^ = -z-'S(z). (12) 

Now consider ^ 1 , . . . , «m e C*, b\,... ,bm € C* (not necessarily distinct) such that 6?/ / bj 
and 

ax"'am=b\'-b,n-

If for z G C* not equal iobi,... ,bm modulo {q), we set 

S{z/ax)...S{z/am) 
M{z) := 

S{z/bO.--S(z/bm)' 

then we see that M defines a meromorphic function on C* whose poles are congruent to 
bi,... ,bfn mod (q). Furthermore, the relations (12) imply that 

\Z/ S{bxZ) " ' S(bynZ) 

so that in particular we see that M e Cq. 

Theorem 2.9.4 For every R such that the boundary ofCg(R) contains neither zeros nor 
poles off € Cq, let X denote the quotient (ai • - 'am)/{b\ - - -b^) of the product of the zeros 
of f in Cq(R) by the product of its poles in Cq{R). Then X e {q). 

Proof Keep the notation of the preceding example without assuming that ai • • -am = 
b\- "bm. Then the first of the relations (13) must be replaced by 

M{qz) = XM{z). 

Now consider the function 

fiz) 
8(z) = 

M(z)' 

By the construction of M, g has no poles or zeros in Cq(R), and since/ e >Ĉ , it follows that 
g is entire, as well as its inverse 1/g. 

Let Yl'^oo ^nz"^ be the Laurent expansion of g in C*. As Xg{qz) = g(z) and at least one 
of the Cn is different from zero, we see that (Xq^ — l)c„ = 0, hence X = q~^ ^ iq)- • 
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Remark 2.9.1 The preceding proof also shows that Cy = 0 if y / AI, so we have the 
following result. 

Theorem 2.9.5 Ifk = q^,the loxodwmic function f of theorem 2.9.4 is of the form 

S{z/ai)'"S{z/am) 
S(q-z/b,)S(z/b2)"'S{z/bm)' 

Let us now study a particular loxodromic function p. 

2.10 THE F U N C T I O N yO 

The function we will consider now is neither more nor less than a somewhat disguised 
version of the Weierstrass p function (or perhaps p is a disguised version of yo!) 

Let M be the complex vector space of meromorphic functions on C*, and let A, be 
the map 

M-^ M 

fiz) H-> Z——. 
f(z) 

The image of Cq under X is contained in £^, which enables us to construct new loxodromic 
functions. 

However, we will be particularly interested in the image of the set of functions h 
such that 

h{qz) = -z-^hiz). (14) 

This image is contained in the set Sq of solutions of Abel's equation: 

v(qz) = v{z)-l. (15) 

Lemma 2.10.1 Set x (z) := zS\z)/S(z). Then 
(1) Sq is the affine C-space x + ^q-
(2) The map D : v(z) H> ZV(Z) maps Sq to Cq. 

Proof. Indeed, S satisfies the relations (12). D 

Remark 2.10.1 
(1) A simple computation gives 

^ q'z-' ^ q^Z 
(16) ^(^^ 22i_qn^-l 1 ^ 1 - ^ " z 

(2) The second relation of (12) implies that 

X{z) + x(J]^l- (17) 
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As it is particularly interesting to consider the function D{x), we are led to the 
following definition. 

Definition 2.10.1 Denote by p the function —D{x), i.e. 

on n 

q z Piz) - Y. 
(1 -^"Z)2' 

Remark 2.10.2 Relation (17) implies that 

p{z)^p{^-\ (18) 

Expansion of p in the annulus T=[z €C; |?|<|z|<|^~*|} 
If we subtract from p{z) the term corresponding to n — 0, we obtain a sum of rational 
functions whose poles lie outside of F, so for z e F, we can write 

l f n > 0 : ^. ^ ^ ^ g"z + . •. + mq""'z"' + • • • 
(1 - q"z)^ 

|""<»^ ?r3v;?='""0) + -^"•'"""O)"-'-
As these series are absolutely convergent in T, they form a summable family and we have 

m=l 

Note that the function p(z) - z/(l - z)^ is invariant under the symmetry z -> 1/z (this 
follows from (18) or (19)), one of whose fixed points is 1 e P. Thus it is natural to consider 
the Taylor expansion of p(z) - z/(l - z)^ in the neighbourhood of the identity element of 
the group (q), i.e. of the point z= 1. Set z = 1 + C. Then by (19) we have 

withy2 = E ^ = i ( ^ V ) / ( l - ^ " ) . 
We now wish to follow a procedure analogous to the one in Section 2.6 which we used 

to find the differential equation of the Weierstrass p function. Set pi(z) = p(z) -f c, where 
c is a constant which we will determine later in order to state a simple result. By (20), 
we have 

p,(i + 0 = r ' + r ' + (c+yo) + J2 y"^"' ^̂ D 

with yo = 2 E~=i( '«^'")/(l-?"")• 
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If we apply the operator D to the two sides of (21), we find 

oo 

(Dpi)(i + 0 = - 2 r ' - 3 r ' - r' + E x̂nCc + i)r"^ (22) 

If we compute [Dpif — 4p^ as in Section 2.6, we find 

[Dpif - Api = Ar^ + Br^ + cr^ + or' + • • • 
with 

A = 1 - 12(c + yo), B = 2A, C = 1 - 20/2 - 12(c + yo) - 12(c + yo)^ 

If we determine c by the condition A = 0, we find ^ = 0 and C = —(1/12) — 20y2. Since 
the loxodromic function [Dpi]^ — Ap\ — Cp\ has at most one simple pole in F, it must be 
constant by the corollary to theorem 2.9.2 of Section 2.9. We have obtained the following 
result. 

Theorem 2.10.1 The loxodromic function of multiplicator q: 

1 ^ mq"^ 

m=\ ^ 

satisfies the differential equation: 

[zp[(z)f = 4p', - g,pi - ge (23) 

where 
i , ^ n V ^ ^ < 7 , i f ^sr^ rn q 

2.11 COMPUTATION OF THE DISCRIMINANT 

We easily obtain the arguments z for which p[{z) is zero, from the relation (18). Indeed, 
differentiating this relation, we have 

zp{z) = 

hence we deduce that p\—l) = 0 . 
But since p(qz) = p(z), we also have 

qzp'iqz) 

-Hi)-

and taking z = q /̂̂ , we also obtain p'{q^''^) = 0. As y/q~^ has two determinations, we 
also have p\—q^^^) = 0. This shows that p' admits at least three zeros in the annulus 
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{z e C; 1̂ 1(1 -{- s) < \z\ < I + e] with ^ > 0 sufficiently small. As it admits a single pole 
of order three (at the point z = 1) in the same annulus, theorem 2.9.3 of Section 2.9 shows 
that these are the only zeros of p^ in this annulus. Thus we see that the discriminant of the 
right-hand side of equation (23) is, up to a factor, equal to 

A=gl- llgl = I6[p(-l) - p{^)f[p(-l) - p(-V^)f[piV^) - P(-V^)f-

Our goal is to simplify this expression of A. 
Consider z and z^ in C*. Since the function z i-̂  p(z) - p(zO is a loxodromic function 

in Cq, Theorem 2.9.5 implies that 

,^S{z/z')Sizz') 
p(z) - p(z) = niz ) —-5 

with Ai(z') 6 C*, constant with respect to z. For more symmetry we will write 

,J{z/z')Sizz') 
S{z)^S{z')^ 

piz)-p(z') = Xiz') I ' ' : ' (24) 

with kiz!) G C*, constant with respect to z. Setting the principal parts of the two sides 
of (24) at the pole z=l equal, we find 

l=,(,')̂ (lMHmfî V = - ^ n ( l - , V , 
S{z') z=x \ S(z) J z' V 

hence 

00 

Hz) = -zY[^l-q"f- (25) 
1 

Substituting these values of ±(p(z) — p{z')) into the expression of A given by the lemma, 
we have 

5(V^)25(-1)2 5(-V^)25(- l)2 S{^)^S(-^)^ 

We easily deduce from (12) that 

so 
A = 16 

5(-l)25(V^)25(-V^)2 
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Now, we have 

S{-l) = 2UT(^+^"f 

This gives 

oo oo 

1 0 

oo 

as we see by multiplying the right-hand term by JJCI — ^"). 
1 

Finally, we obtain 

Lemma 2.11.1 The discriminant A is given by the formula 

oo 

A = qY\(l-q^f\ (26) 
' D 

2.12 RELATION TO ELLIPTIC FUNCTIONS 

We saw at the beginning of Section 2.9 that if/ is a loxodromic function of multiplicator 

^ ^ ^2i7TC02/cOy ^ Jj^^^^M) >0, 

then/(^~^'^"/^0 is an elliptic function of lattice A = Zcoi + Za)2. 
Conversely, if g is an elliptic function of lattice A = Zcoi + ZC02, with Im 0)2!(^\ > 0 

and if z G C*, the function 

/ ( z ) : = ^ ( ^ l o g z ) 
ylin 

is well-defined because log z e C/liirZ and g admits the period coi. And if we set 

wehave/(^z) = g((coi/2i7t)logiqz)) =f{z). 
Moreover, it is clear that this correspondence preserves the analyticity of the functions. 
Thus, we write 

li^uh. linu 2n^u^ 
z = ^̂ '̂"/"̂^ = 1 + r- + • • • • 

0)1 coi 



100 INVITATION TO THE MATHEMATICS OF FERMAT-WILES 

With the notation of Section 2.9, we have 

2in zin / 
^ = z - 1 = u( 

in In^ ^ \ 

^ —ATT^ ^{ lin In^ ^ \ 

^ - — ^ i r ( 1 + u ^u^ + • • . 
(JO\ \ o)\ 3cof / 

The function which corresponds to p\ is an even eUiptic function (since pi(l/z) = Pi(z)), 
of lattice A, which admits a double pole at the origin with principal part given by 

1 (^)i 

12 4^2^ 

Thus, we have the following result. 

Theorem 2.12.1 The loxodwmic function p\ of multiplicator q corresponds to 
>\, 

It follows that 

r + f-i + — = -T-^M'^ + o{u). 

-a)\/An^p, where p denotes the Weierstrass function associated to A. 

so 

2i7t , d ^] , 
zPi(z) = —P\{z) = -T~^P («). 

.p;(z) = (^)V(«). 
Finally if we plug the following expressions into equation (23): 

/ (JL)\ \^ / z'/)! \ 3 

Pi ( S ) - -i« = (̂ )V<».. 
we pass from the differential equation (23) to the equation of the theorem of Section 2.6. 
Thus we have 

I 60G. = ( - ) , . = ( - ) ( - +20 E ^ ) 

We will study these functions in more detail in Chapter 5. 

COMMENTARY 

(27) 

Certain (young) readers may be surprised by the general form of the equation of a non-
decomposable conic given in Section 2.1; it was taught in the last year of high school 
forty years ago [M-M]! 



EXERCISES AND PROBLEMS FOR CHAPTER 2 [Oj 

The double theory of elliptic functions which we gave in this chapter is contained in 
the book by Valiron [Va]. But any other book on functions of one complex variable can 
be used; cf. for instance the books by Siegel [Sie], by Whittaker and Watson [W-W], and 
by Jones and Singerman [J-S]. 

Let us also indicate certain books on the subject of elliptic curves, such as for instance 
those by Knapp [Kn] and by Silverman [Sil], which contain all of the essential material 
concerning the classical theory of elliptic functions. 

For the history of this magnificent subject, consult the article by C. Houzel in 
[Hou 2] - and plunge into the complete works of Abel [ Ab]! 

Exercises and Problems for Chapter 2 

2.1 Let e denote a primitive eighth root of unity {e = (1 + /)/>/2 for example), and make the 
variable change 

r — — 
1 + {evr 1 - v4 

in Fagnano's integral / drjyjx — r^. 
(a) Prove that 

r dr r 
h J\ - r^ Jo 

dv 

y i - r 4 Jo y 1 - v4 ' 

(b) Using Fagnano's duplication, deduce from paragraph 2.2 that 

du r dv r 
/ -7=1 = ^-^ \ 
Jo VI - v"̂  Jo 

y/l - V 4 Jo y/\ - M 4 

2.2 Take a "module" k e [0, 1]. Define the complete elliptic integral of the first kind by 

r^/2 do f^ dt 
Kik) r ^^ - f 

Jo JI -Fs in2(9 Jo 
Vl-k^sin^O Jo ^(l-fi){\-k^fi) 

and the complete elliptic integral of the second kind by 

/̂̂  I 7TV~ f^ y 1 - kh^ 
E(k):= Jl - k^sin^ 0 dO = dt. 

Jo ^ Jo y r ^ 
To the module k, we associate the complementary module k^ = y/\ — k^ and the comple­
mentary integrals: 

K\k) :=K(k'), E'{k) :=E{k'). 

(a) Show that/i:(0) = n/l, E(0) = 7r/2, E(\) = 1. 
(b) Show that the length of an ellipse with semi-axes a and b is given by AaE\b/a). 
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(c) Show that if A: < 1, then 

where F{a, b\ c; z) is Gauss' hypergeometric function defined by 

a.b a{a + \)b(b+\) ^ , 
l.c 1.2.c(c+l) 

(d) Show that 

dE 
'dk ~ 
dK 

.~dk ' 

(e) For a and Z? such that 0 < ^ < «, set 

pn/2 
Ka, b) := 1 

E-K 

k 
E - k'^K 

kk' 

do 
V«2 cos2 e + b'^ sin^ e a \a)' 

Taking t := bigO, show that 

1 /"^ dt 
I(a, b) = - = 

then setting u := \(t - aZ /̂O, justify that 

I(a, b)=I {^'^} 
(f) Keep the notation of (e) and set 

UQ := a, a\ := 
a + b 

• ••,cin+i := 
an^bn 

2 """̂  2 
Z?o := b, b\ := Vab,..., Z7„+i := V««^n, • • • 

Show that bn < an, that the sequence («„) is monotone decreasing, that the sequence (bn) 
is monotone increasing and that (a„ - bn)—> 0. Let M{a, b) denote the common limit of 
these sequences (the arithmetico-geometric mean oia and b.). 

(g) Deduce from (e) and (f) that /(a, Z?) = (7r/2)/M(a, Z?), and obtain the following result due 
to Gauss (1799): 

J _2 r^ dt 
l,V2) ~ TT io v/l - r4 " M(i,v2) TT Jo y r 

(h) Setc := ^a^ _^2^ k:=c/a, A:':= Z?/a. Deduce from (e) that 

2 v ^ \ 1 (2y/k\ 2 / l - ^ ' \ 
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Differentiating the first equality with respect to k and using the second differential equation 
of (d), show that 

«̂='-¥î )+T*̂ *=<• - 'H^) -"'"̂  t{k) = 

(i) Set 

J{a,b):= f y/a^ cos^ 0-\-b^ sin^ OdO = aE'(-\ 

and deduce from (h) the relation 

2J(aubi) - J (a, b) = abl(a, b). 

Cj) Show that 

/(«, b) = (a^ -Y^2"-^cl\l(a, b) 

with cl:=al-bl 

2.3 Using the results of Section 2.6, prove the identity 

6 

= (1 + 3G4Z^ + 5Gez^ + • • • + (2m - l)G2m^ '̂" + • • • )^ - 5 G4Z^ 

Deduce the following expressions of Gg, Gio in terms of G4 and G^: 

G% = -G4, Gio = --G4G6. 

2.4 Prove the result of Section 2.10: 

1 
^6 = 

-1 00 

- E-216 3 ^ \-s^ 

2.5 Using the expressions of g^, g6 and A given in Sections 2.10 and 2.11, deduce from the relation 
A = g | - 21 g^ the relation 

/ 00 \ 3 / 00 \ 2 00 

h+2405;]<T3(n)9"j - h - 5 0 4 ^ a 5 ( n ) 9 " j = 1728i J~[(l - ^" ?'• 
1 

From this deduce that 

(73 («) = a5 (n) mod 4 

a3(/2) = as(n) mod 3. 

Check these congruences by a simple direct computation. 
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2.6 Using exercise (3), show that for every integer n > 1, we have 

G2neQ[G4,G6l 

Giving weight 4 to G4 and 6 to G6, what can we say about the weight of G2n^ Could this result 
be foreseen? 

2.7 Let S(z) = E^oo «n^" ^^ the Laurent expansion of S{z) for zeC*. 
(a) Show that 

We now propose to determine ao-
(b) Show that if q and jc G R+, then 

00 

(xo= hm — . 

1 

(c) Setting P(x) = l\^(l-\- ^"jc), show that 

(d) Deduce from (c) that the Taylor expansion of P{x) at the origin is 

00 00 1 

P(X) = J2 PnX' With Pn = q""^""^'^'^ n 7 3 ^ • 

(e) Deduce that the quotient of the coefficients of the same rank of Y^OQ ^"^"~^^/^X" and 

ES")Snx" tends to njSi 1 / ( 1 - ^ ) . 
a) Deduce that a^ = flj^i 1/(1 - cf). 
(g) Extend this result to every complex number q such that \q\ < 1. 

2.8 Let p be the Weierstrass function associated to a lattice A, and let x and y G C \ A be such that 
x-\-y ^ A. 

(i) Show that 

p(x) p\x) ll 
P(y) p'iy) 1 = 0 . 

p(x-{-y) -p\x-\-y) l | 

(ii) Suppose moreover tha tx±y ^ A. Show that 

p(x + y) = - l — — - - ) -p(x)-p(y). 
4\ p{x) -p(y) / 

(iii) With the hypotheses of (ii), show that 

p\x)p'(y) 
p{x + y) -p{x-y) = 

(P(x)-p(y))^' 
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2.9 Assume that g4 and g^ are real and ^4 — 27g^ > 0. Write 

4X3 _ ^^^ _ ^̂  ^ 4(^ _ ^^)(^ _ ^^^^x _ ^ )̂̂  

with ei > 62 > e^. 

(a) Let X > ^1 and set 

/

+00 
i4P-g4t-g6r^^^dt. 

Show that if p is the Weierstrass function of invariants g4 and g^,, then 

where of is a certain real constant. 
(b) Letting x tend to +00, show that a is a pole of the function and deduce that 

x = piz). 

(c) Set&>i/2 := f^'^i^t^ - g^t - ge)~^/'^ dt. Show that (i;i/2 is a half-period of p such that 
p(ft>i/2) = ex. 

(d) Set ct)3/2 := - / fll^ige + 84t - 4^^)"^/^ ̂ r. Show that (^3/2 is a half-period of p such 
that P(CL>3/2) = ^3. 

(e) Show that 

) ( z + ^ ) - . i = 
P(Z) - ^ 1 

(f) Show that 

(g) Show that if et = p (cot/2), then 

P'iz)p'{z + ^ y { z + f ) p ' ( z + f ) = 16[gi - ngll 

2.10 Let p be the Weierstrass function of the lattice A = Za;i -f- Zcoj with 

-©-
(a) Let ^ denote the function defined by 

d^iz) , , 
—7— = -piz) 

dz 
\im[^(z)-z-^]=0. 
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Show that 

z ^ . \_Z-0) CO CO"^ \ 

where YI'OJGA •= Ea;GA\{0} • 
(b) Show that ^ is a meromorphic odd function of z. 
(c) Show that we have 

'az-^coi) = ^iz)-^m 
az + (02) = Uz)^rj2 

where r]i and T]2 are constants. 
(d) Integrating ^{z)dz along the boundary of a period parallelogram, prove Legendre's 

relation: 

rj 10)2 — ri2CO\ = 2i7T. 

(e) Show that if jc + >' + z = 0, then 

[C W + ^Cy) + ^(z)f + ^\x) + ^'(y) + ^\z) = 0 

(the pseudo-addition theorem!). 

2.11 Let ^ denote the function associated to the lattice A by the construction of Exercise 2.10, and 
define the Weierstrass sigma function by the conditions 

^ — \ogaiz) = az) 
dz 

hm = 1. 
Iz—>0 Z 

(a) Show that if z € C \ A, then 

<'b)-n[(>-i)«p(^|i) 
where flL := Y\c^eA\{0} • 

The analogy of this expansion with that of the sine function makes it natural to consider 
a as a sort of pseudo-elliptic sine. 

Show that this infinite product converges normally on every compact subset of C \ A. 
(b) Show that a is an odd entire function admitting simple zeros at every point of A. 
(c) Show that for y e {1, 2}, we have 

a(z H- co^) = Cye'^'^aiz), c^ e C*, 

where rj^ := ^(z + cov) — ((z) (see Exercise 2.10). Taking z = -cov/2, show that 

Deduce that 

Cj{z-^(Dy) = -e'^^^^^''''^^G{z). 
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(d) Set q = ^^'^2/^1 (so that \q\ < 1). Show that the entire function g defined by 

g(z) = ,(^i^')/2-i sin i"^) n [1 - 2q'" cos ^ + q'-] 

admits the same zeros as cr, and that the function g/a is elhptic for the lattice A. 
(e) Using (d) and the Liouville theorem (theorem 2.4.1), show that 

^ ( , ) = ^ , ( . l z 2 ) / 2 - l sin ( ^ ) n [1 - 2^2n , 0 , ^ ^ qAn 

(f) Let/ be a non-constant elliptic function for the lattice A. 
Let a\,... ,an (resp. b\,... ,bm) denote the (suitably repeated) zeros (resp. poles) of/ in 
a period parallelogram. We recall that we have n = m and that, up to adding a period to 
bfi, we have 

ai-\ \-an=bi -\ \-bn. 

Show that the function h defined by 

M criz-br) 

is an elliptic function of lattice A. 
Deduce that/ = ch, with c € C*. 

(g) Show that for y and z G C \ A, we have 

P(z)- p(y) = 
a{z-\-y)cr(z-y) 

crHz)cr^(y) 

(h) Show that for z € C \ A, we have 

2a(z + a;i/2)a(z + ft;2/2)a(z - (cDi + 0)2)/2) 
p\z) = 

cTHz)(j(a)i/2)a((V2/2)cj((coi+a)2)/2) 

(i) Show that p^(z) = - a (2z ) / a^z ) . 
(j) For m e N, show that 

1 Pizo) p'(zo)-"P^'^-^\zo) 
1 Pizi) P^zO'-'P^'^-'Hzi) 

1 Pfem) P^(Zm)---p^^-^Hzm)l 

aizo-\-z\ H +Zm)n^kA - ^ M ) ^ ( _ l ) ^ ( m - i ) / 2 i j 2 ! . . . ^ ! -
or^+HZ0)---or^+HZm) 
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Problem I 

The text at the end of this problem consists of pages 7-11 of a text by Abel. Please read these pages 
and answer the following questions. 
(1) Briefly analyse the usage of functional notation in the text. 
(2) Consider the lemniscate 

(A:^+r) + r 

whose representation as a curve is given by 

For r e [0, 1], denote by s{r) the length of the arc of the lemniscate running from (0, 0) to 
(y(r2 + r4)/2, y(r2 - r^)/2). 

How can we choose c, e and x in formula (2) so that a = 5(r)? 
(3) Show that co and co are finite. 
(4) Using the formulae (10), show that if a and ^ are 'Indeterminates", then 

(a) cpia + y6) + cp(a - ^) = 2<p(a)f(P)F{P)/R 
(b) (p(a + ^) - (p(a -P) = 2cp(P)fia)F{a)/R 
(c) f(a + P) +/(Qf -P) = 2f{a)f(P)/R 
(d) f{a + ^) -/(Of -P) = -2c^<p(a)(piP)F(a)F(P)/R 
(e) F{a + )S) + F{a - P) = 2Fia)FiP)/R 
(f) F(a + P)- F(a - P) = 2e^^{oc)^{^)f{a)f{P)IR. 

(5) Using the results of paragraph 1.1 of Abel's text, show how one can deduce, without any com­
putation, formulae (b), (e) and (f) from formulae (a), (c) and (d). 

(6) Taking ^ = ±CL>/2, deduce the following relations from the formulae (10): 

f\a±— I = T 

( w\ F{co/l) 

F(a) 



EXERCISES AND PROBLEMS FOR CHAPTER 2 109 

(7) Deduce that 

(8) Show that 

(p{a -\-(JO) = -(p(a) 

f(a + co) = -f{a) 

F{a + o)) =F{a). 

(9) What does Abel mean when he says that a and p are two "indeterminates"? Within what 
framework does he prove the relations (10)? 
Do you have any idea of the origin of this proof? 

(10) Show that the choice of ^ = ±(co/2)i leads to the relations 

(p(a + coi) = —(p(a) 

f(a-^m)=f{a) 

F(a-\-coi) = -F(a). 

(11) With the help of the results of (8) and (10) and the relations (10) of Abel's text, show that we 
can extend (p,f and F to the whole complex plane. 

(12) Show that A = 2coZ + licoZ is a period lattice for (p, that Â  = IcoZ + icoZ is one for/ and that 
Â ^ = coZ + 2i(oZ is one for F. 

Research on elliptic functions (Abel) 

Journal fiir die reine und angewandte Mathematik, herausgegeben von Crelle, Bd.2,3. Berlin 1827, 1828. 

For a long time, logarithmic functions, and the exponential and circular functions were the only 
transcendantal functions which attracted the attention of geometers. Only lately have we begun 
to consider some others. Among these, we distinguish the functions called elliptic, both for their 
beautiful analytic properties and for their applications in diverse branches of mathematics. The first 
idea of these functions was given by the immortal Euler, who proved that the separated equation 

dx dy 
+ ^ = 0 

y/a-\- Px-\- yx^ + 8x^ + sx"^ y/a-\- Py-\- yy^ + Sy^ + e / 

is algebraically integrable. After Euler, Lagrange added something, by giving his elegant theory of 
the transformation of the integral / (R dx)/y/{\ — p^x^)(\ — q^x'^), where Risa. rational function 
of X. But the first, and if I am not mistaken, the only person who profoundly investigated the 
nature of these functions, is Mr. Legendre, who, first in a text on elliptic functions, and later in his 
excellent Exercises in mathematics, developed a number of elegant properties of these functions, 
and showed their applications. Since the publication of this work, nothing has been added to the 
theory of Mr. Legendre. I believe that the further research on these functions presented here will 
be welcomed with pleasure. 
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In general, by the denomination of elliptic functions, we understand every function contained 
in the integral 

/ 
Rdx 

^a-\- Px-\- yx^ + 8x^ + sx"^' 

where R is 3. rational function and a,p,y,8,s are constant real quantities. Mr. Legendre proved 
that by suitable substitutions, we can always bring this integral to the form 

/ 
Pdy 

y/a + by^ + c / 

where P is a rational function of y'^. By means of suitable reductions, this integral can then be 
brought to the form 

/ 
A + By^ dy 

C + Dy^ ^a + by^-^cy^^ 

and this to the form 

/ 
A + B sin^ e dO 

C + Dsin^O V l - c ^ s i n ^ ^ ' 

where c is real and less than one. 
It follows from this that every elliptic function can be brought to one of the three forms 

dO 
I , = , f doJ\ -c^sin^O, f 

sin^ 0)y/\ -c^sin^O 

which Mr. Legendre has called elliptic functions of the first, second and third kind. These are the 
three functions considered by Mr. Legendre, particularly the first, which has the simplest and most 
remarkable properties. 

In this text, I propose to consider the inverse function, i.e. the function (pa, determined by the 
equations 

-f dO 
sinO = (pa = X. 

y/\ -c^sin^O^ 

The last equation gives 

/ de J\ - sin^0 = d((pa) = dx, 

JO 

dx 

V(l-x2)(l -cV) 

Mr. Legendre assumes c^ positive, but I noted that if we assume c^ negative, equal to —e^, the 
formulae become simpler. Similarly, I write 1 — c^x^ instead of 1 — jĉ  for greater symmetry, so 
that the function (pa = x will be given by the equation 

^0 

dx 

V(l -c2jc2)(l +^2^2)' 
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For brevity's sake, I introduce two other functions of a, namely 

fa = Jl — C'^cp^a; Fa = J\ -\- e^^P-a. 

Several properties of these functions follow immediately from known properties of elliptic func­
tions of the first kind, but others are more hidden. For example, one can show that the equations 
ipa = 0,fa = 0, Fa = 0 have an infinite number of roots all of which can be found. One of the 
most remarkable properties is that (p(ma),f(ma) and F(ma) (for an integer m) can be expressed 
rationally in (pa, fa. Fa. Also, nothing is easier than finding (p(ma),f(ma), F{ma) when we know 
(pa, fa. Fa, but the inverse problem, namely determining (pa, fa. Fa in terms of (p(ma),f{ma), 
F(ma), is more difficult, because it depends on an equation of high degree (namely of degree m^). 

The resolution of this equation is the main object of this text. First, we will see how to 
find all the roots, using the functions (p,f,F. Then we will consider the algebraic resolution 
of the equation in question, and we will succeed in obtaining the remarkable result that 
(p(a/m),f — (a/m), F{a/m) can be expressed in (pa ,fa ,Fa ,hy 2i formula which, with respect 
to a, contains no other irrationalities than radicals. This gives a very general class of equations 
which can be solved algebraically. It is notable that the expressions of the roots contain constant 
quantities, which in general cannot be expressed by algebraic quantities. These constant quantities 
depend on an equation of degree m^ — 1. We will show, using algebraic functions, how we can 
reduce the resolution to that of an equation of degree m + 1. We will give several expressions of 
the functions (p{2n + \)a,f{2n + \)a, F(2n -f l )^ in terms of (pa, fa, Fa. We will then deduce 
the values of (pa, fa, Fa in terms of of. We will show that these functions can be decomposed into 
an infinite number of factors, and even an infinity of partial fractions. 

Section I 

Fundamental properties of the functions (pa, fa. Fa (by N.H. Abel). 

1 

Assuming that 

(pa = X, (1) 

by virtue of what precedes, we find that 
dx 

/ ' y/(l - c V ) ( l -\-eV)' 
From this we see that a, considered as function of jc, is positive from x = 0 to .x = 1/c. Thus, 
setting 

'1/^ dx 

2~ Jo y( l-cV)(l+^V)' / 
(3) 

it is obvious that (pa is positive and increasing from a = 0 to a = co/2, and we have 

(p(0) = 0, (pf'^^^^-. (4) 

As a changes sign, when we write —x instead of JC, the same holds for the function (pa with respect 
to a, and consequently we have the equation 

(p{-a) = -(pa. (5) 
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Substituting xi for ;c in (1) (where /, for simplicity, represents the imaginary quantity V ^ ) and pi 
denotes the value of a, we obtain 

dx 

y ( l + c 2 j c 2 ) ( l - ^ V ) 

p is real and positive from jc = 0 to x = 1 /e, so setting 

S /-i/^ dx 

xi = (p(pi) and p= f ^ r . . • (6) 
Jo " 

Jo 
(7) 

2 Jo y ( l - ^ V ) ( l + c 2 j c 2 ) ' 

X will be positive from ^ = 0 to ^ = S/2, i.e. the function (\/i)(p(pi) will be positive between 
the same hmits. Setting p = a and y = (p(ai)/i, we find 

ry dy 

Jo 

so we see that if we suppose c instead of e and e instead of c, 

(p(ai) 
becomes cpa. 

i 
And as 

/c^ = / l • C^(p^(X, 

Fa = w 1 + ê (̂ 2Q 

we see that by changing c to ^ and e to c, f{ai) and F(Q:/) become respectively Fa and/a. Finally, 
equations (3) and (7) show that under the same transformation, co and co become respectively co 
and a;. 

By formula (7) we have x = \/e for ^ = co/l, so by virtue of the equation xi = (pi^i), we 
obtain 

By the above, we will have the values of (pa for every real value of a lying between —(co/I) and 
-\-((ji>/2), and for every imaginary value of the form ^i of this quantity, if ^ is a quantity contained 
between the limits — (S/2) and +(S/2). We now need to find the value of this function for an 
arbitrary real or imaginary value of the variable. To do this, we will first establish the fundamental 
properties of the functions (p,f and F. 

Having 

f^a = 1 - c^(p^a, 

F^a = 1 + e'^cp'^a, 

we find, by differentiating. 

Now, by (2), we have 

fa -fa = —c (pa • (p'a, 

Fa • F^a = e (pa - (p'a. 

(p'a = J{\ — c^(p^a)(\ + e^(p^a) =fa • Fa, 
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so substituting this value of (p'oi into the two preceding equations, we find that the functions (pa, 
fa. Fa are related by the equations 

I (p'a =fa • Fa, 

If a = —c^cpa • Fa, 

yF^a = e^(pa -fa. 

This said, I claim that letting a and p denote two indeterminates, we have 

(pa 'fP •Fp-\-(pP -fa Fa 

(9) 

(p{a + P) 

f(ct + P) = 

F(a + P): 

1 + e^c^(p^a • (p^P 
fa'fP-c^(pa'(pP-Fa-Fp 

1 + e^c^(p^a ' (p^fi 
Fa'Fp + e^(pa'(pP-fa'fP 

(10) 

1 + e^c^(p^a • (p^P 

These formulae can be deduced immediately from known properties of elliptic functions {Legendre, 
Exercises in Integral Calculus), but we can also check them easily as follows. 

Let r denote the right-hand side of first of equations (10). Then differentiating with respect to 
a, we have 

dr _ (p'a -fp -Fp-\-(pP-Fa -fa + (p^ -fa • F'a 

da 1 + e^c^(p^ • a - (p^^ 

((pa 'fP •Fp-j-(pP -fa • Fa)2e^c^(pa • (p^P • (p'a 
(1 + ^2^2^2Q, . ^2^)2 • 

Substituting for (p'a, fa, F'a their values given by equations (9), we find 

dr fa • Fa -f^ - F^ 2e^c^(p^a • (p^^ -fa -f^ -Fa-Fp 

da 1 + e^c^(p^a ' (p^p (1 + e^c^(p^a • (p^P)^ 

(pa ' (PP - (I-\- e^c^(p^a • (p^P)(-e^F^a + e^f^a) - 2e^c^(pa • (pP • (p^P -f^a • F^a 
+ (1 -^e^c^(p^a •(p^P)'^ 

hence, substituting foif^a and F^a their values 1 — e^(p^a, 1 + e^(p^a, and reducing, we find that 

drjda = 

(1 - e^c^(p^a • (p'^P)[(e^ - c^)(pa • (pP +fa -fp • Fa • Fp] - 2e^c^(pa • (pP{(p^a + (p^P) 

(\-\-e^c^(p^a-(p^P)^ * 

Now, a and p play symmetric roles in the expression of r, so we have the value of dr/dp, by 
permuting a and p in the value of dr/da. This shows that the expression of dr/da does not 
change value, so we have 

dr dr 

da ~ 'dp' 

This partial differential equation shows that r is a function of a + ^, so we have 

r = \l/ia-{-P). 
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The forni of the function x// can 
and noting that (p{0) = 0,/(0) 

so 

hence 

be found by giving a value to p. Supposing for example that ^ 
= 1, F(0) = 1, the two values of r become 

r = (pa and r = xj/a, 

\lra = (pa, 

r = xlf{a-j-P) = (p{a-\-P). 

The first of the formulae (10) thus holds. The other two formulae can be verified in the 
manner. 

A number of new relations can 
ones. To simplify, set 

= 0, 

same 

3 

be deduced from (10). Let me give some of the most remarkable 

1 + e^c^(p^a • (p^P = R. 

First, changing the sign of ^, we obtain . . . 

(11) 

Problem 2 

Begin this problem by reading the following excerpt from another text by Abel, published in 1823. [Ab] 

Value of the expression (p(x -\- y^/^\) -\- (p{x — y^/^l) 

Solutions of some problems using definite integrals 
When (p is an algebraic, logarithmic, exponential or circular function, we can always, as we know, 
express the real value of (p(x + j v ^ l ) + (p(x — y-y/^l) in real and finite form. If on the contrary 
(p preserves its generality, we have not, as far as I know, yet been able to express it in a real, finite 
form. We can do this using definite integrals, in the following way. 

If we expand (p(x + y^/^\) and (p{x — y-s/^l) by Taylor's theorem, we obtain 

(p{x + >;V-1) = (px^ (p'x . y4^\ - | - ^ / - Y V ^ ^ 

1 - 2 . 3 - 4 
I I ^ -̂  2 (p X o I 

(p{x-y^~\) = (px-(pX'y^-\--^y + ^ ̂  ^y V-1 
^""x 4 

1-2-3-4-^ 

(/?"JC^2 , "P""^ 4 (pix^y^i^X) + (p{x-yj^\) = 2((px - ^ / + 1 . 2 . 3 . 4 

To find the sum of this series, consider the series 

t^ P 
(p{x -\-t) = (px-{- t(p'x + -7-^^"^ "̂  ^^'"^ "̂  ' 
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Multiplying the two sides of this equation by ^ ^ ' dt, and then taking the integral from t = —oo 
iot = +00, we find 

2 2 r+00 2 2 / * + ^ 2 2 /*^ 
/ (̂ (jc -{-t)e "" ^ dt = (px e'" ^ dt + (p'x / 

J—00 ./—00 «/—( 

1 /•+00 ^ ̂  

+ -V"xi e-''t^dt + ---. 
2 J-OO 

Now, / + ~ e-'''%2«+i rff = 0, so 

r ~ ^(x + Oe-^'''rfr = <px r'^ e-^'' dt+^ r ~ e-''''t^ dt 
J—00 J—00 1 • ̂  ./—00 

™ ^ .+00 

Consider the integral 
r+00 

e-''''%2''rff. 
/ 

Let t = a/v, we have e~^ ^ = e~^ , r^" = a^^/v^", dt = da/v, so 

J - 0 0 î  . / -oo ^ 

i.e. 

y_oo 2«v2"+l v2' '+l 

Substituting this value above, we obtain 

_ 2 2 

Multiplying by e ^ ̂  vdv and taking the integral from v = —00 to v = +CXD, we obtain 
1 / * + ^ 2 2 / " ^ ^ 2 2 

-yzz / e-^y vdv (p(x-^t)e-'' dt 
v ^ J—00 J—00 

= (px e "^ y dv-\ — / e "^ y ^ -\ 
J-oo 2 J_oo v̂  

Let v}? = /S. Then 

/

+00 ^ , /•+00 -

e-^V^-2«j^ = / « - ' / e-^ r^"dfS. 
-00 J—00 

Now, 

J-00 ^ ^ \ 2 ) 1 . 3 - 5 . . . ( 2 « - l ) A„ 

Vv^..-2n ... (-l)"v^y^"- ' 
J—c An 
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and consequently 

An / 
J—oo 

Substituting this value and dividing 

'-1 r e-'y\d. r , 
^ J—oo J—oo 

The right-hand side of this equation 

(p(x 

so 

(fix + y^f^) -^(p(x-y y/ 

Setting X = 0, we have 

(p(yV^) + (p(-y^/^ 

e-'^y\-^^dv = i-ir 

by ^/2y, we obtain 

[x-^t)e-'^'^dt^ 

is equal to 

+ yy/^)-{-(p{x 

-1) = - / 
^ J-oo 

- 2y r+^ 
-1) = - / e 

^ J-oo 

2 [(px 

-y^ 

2 2 

e-'y 

2 2 

/"-'V^. 

- ^ ^ / . 

^ ) , 

r'x 4 -, 1 
2-3-4-*' '• 

vJv / (p(x-\-t)e "" ^ dt. 
J—oo 

r+oo 
dv j (ft 

J—oo 
e'^'''dt. 

Now, answer the following questions concerning Abel's text. 
(1) In this text by Abel, published in 1823, the author says on line 4 that he considers a function (p 

which "preserves its generality". 
Can you interpret the subsequent lines, to explain Abel's conception of a general function? 

(2) Show that if v > 0, then 

f 2n . y2n+l 

(3) Abel takes e{t) = e^^\ Do we have the right to take (p(t) = e^l Using the last formula of the 
text, show that 

cos >̂  = ^ r e-'^"" i r e'-'^'^dt\vdv 

deduce that >' > 0 when \y\ < 7T/2. 
(4) Show that we have 

f ^ r -vV^^^ V^^l/4v2 

-00 ^ 

when V > 0. 
(5) Show that the right-hand side of the equation in (3) does not make sense. Find an error in Abel's 

reasoning (this error was pointed out by Eric Brier). 

cosy=^ r e-^'^y'/'^'dt. 

(6) Recall that the Bernoulli numbers Bn are defined by the relation 

z 

n=0 
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Show that 

' c o t g ^ - l = ^ ( - i r 5 2 « 
oo In 

- c o t g - - , = x : ( - i ) « « . ^ 
n=\ 

(recall that cotg u = cos u/ sin u). 
(7) Show that 

Z 2 yr-^ 4Z 

(8) Using the preceding question, show that 

zn _ \~^^ 

(9) Using the expansion 

1 
^- ' + e-2^ + e-^' + •.. , if r > 0, 

show that ifn> 1, then 
roo f2n-l oo /.oo 

r^'^-i^r. 

(10) Prove that 

/•oo *zn—1 ou /.oo 

Jo k^" 
(11) Deduce that 

foo ,2n—1 9„ /-oo , z n - i 

(12) Let us admit the fact that the successive derivatives of the analytic function cp satisfy the condition 

for every n > 0 and for every x e[a,b]. Show that we have 

b-\ rb 

r=a Ja ^ ^ j ^• 

1 that a and b he in Z). Show that 

^ (̂ (jc + (r/2)v^)-(^(jc-(r/2)v^) Jr 

(where it is understood that a and b lie in Z). Show that 

[L i J ^ e^^ - 1 

^ ^ ^ ( r ) - / ip{x)dx^-[ip{x)t-
2 

(13) Taking (p(x) = e^, deduce from (12) the relation 

r^ sinit/ 
Jo e^t_ 

' ' " \ t ' ' 
1 ^ - 1 2 

(This result is due to Abel). 
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NUMBERS AND GROUPS 

The aim of this chapter is to provide the reader with at least rudimentary notions of two 
important mathematical objects: the field of algebraic numbers, and its automorphism group. 

The goal to the chapter is a structure theorem which is algebraic in nature, namely 
Steinitz' theorem stated in Section 3.4. But as we go, we will use analytic methods to 
construct an infinity of interesting fields (the p-adic fields discovered by Kurt HenseP^ 
in 1902) which will enable us to construct as many distinct but isomorphic images of 
"the" field of algebraic numbers. Like every mathematical object, this one is defined up to 
isomorphism, and it should not be surprising that it keeps turning up in different disguises. 

Finally, we will study the group of automorphisms of a field, and we will conclude the 
chapter with an introduction to the representations of such a group, and to Galois theory^^. 

3.1 ABSOLUTE VALUES ON Q 

Our goal here is to describe all the absolute values defined over Q. However, in order to be 
able to use the concept of absolute value in other cases, we first need an abstract definition. 

Definition 3.1.1 Let A be an arbitrary ring with unit. An absolute value on A is a map 
A -> R, written x \-^ \x\, satisfying the conditions 

(i) \A ^ ^for every x e A and |x| = 0 if and only ifx = 0. 
(11) |xy| = \x\ \y\. 

(iii) There exists a constant C (depending on the absolute value) such that for every 
(x,y) e A ,̂ we have 

\x-\-y\<Csup{\xl\y\}. 

3' K.Hensel 1861-1941. 
2̂ E.Galois 1811-1832. 

118 
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Remark 3.1.1 

(1) When C = 1, we say that the absolute value is ultrametric, and the inequality (iii) is 
then called the ultrametric inequality. 

(2) Certain absolute values satisfy the triangle inequality 

(iv)|x+};| < \x\-\-\y\. 

We will see in the exercises that this happens if and only if C < 2. We call these 
absolute values "triangular". 

(3) Let I I denote an absolute value, and let a > 0. Then the map x i-> 1̂ :1" is also 
an absolute value. This absolute value is said to be equivalent to the first one (see 
Problem 1, page 164). 

Thus, we see that every absolute value is equivalent to a triangular absolute value. 
In particular, the "norms" introduced in Chapter 1 are equivalent to triangular absolute 
values. 

Example 3.1.1 (1) Every field k is equipped with the absolute value | |o defined by 
\x\o = 1 if X 7̂  0 and |0|o = 0. This absolute value is called the trivial absolute value on k. 

(2) If A is equal to Z or ¥q[t], the map x \-> \x\oo defined by 

kloo = 0 ifx = 0 

\x\oo = Card(A/(x)) if JC / 0 

is an absolute value on A. We extend it to the field of fractions A: of A by the formula 

if J / 0. 
\y\c 

This absolute value is called the "absolute value at infinity" of Q or of ¥g(t). 
To justify this terminology, consider the case where A = F^[r], and suppose that x = 

cimt^ + • • • -h flo with Gm ^ 0. As cach element of A/(jc) can be represented by a unique 
polynomial of degree < m, we see that 

Now, ify = bnf H h ^o with bn / 0, then 

= q^-^ = q^^^'^^'y\ (2) 

and we easily check that | | oo is an absolute value on F^ (r). We can give a second expression 
of |x/}^|bynotingthatF^(0 = F^(^)with^ = l/r("uniformising parameter at infinity"). 
We then have 

y n̂ + • • • + b^e^ 
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where z is a rational function in 0 which admits neither zeros nor poles at ^ = 0 (i.e. "at 
infinity")- Thus, we see that n — mis the valuation ofx/y at 0, and we set 

/x\ 
n — m 

Therefore 

,^-v^ix/y)^ (3) 

(3) P-adic absolute value on ¥q{t). 
What we did in example (2) with 0 can be repeated with an arbitrary irreducible poly­

nomial P(t) e ¥g[t]. Fix a monic irreducible polynomial P(t) e ¥q[t], and for every 
z e ¥q(ty, let Vp(z) denote the exponent of P in the decomposition of z into prime factors. 
We then set 

1 ^ 1 ^ : = ^ — - ( ^ ) , ( 4 ) 

where n denotes the degree of P. 
When z = 0, we write Vp(0) = oo, hence \0\p = 0. Clearly relations (i) and (ii) are 

satisfied by | \p. As for (iii), it follows from the inequality 

vp(x-^y) > inf{vp(j), vp(y)}. 

Thus we have the ultrametric inequality 

(v) \x + y\p < sup{|x|/>, \y\p]. 

Remark 3.1.2 One may be surprised to see that the degree nofP occurs in formula (4). In 
fact, this is due to a normalisation designed to ensure the validity of the product formula: 
for every X e F^(/)*, 

O'l^i/'^i' (5) 
PeV 

where V denotes the set of monic irreducible polynomials of F^[r]. Applying (5) iox = P, 
we understand the need to introduce n in (4). 

(4) The p-adic absolute value on Q. 
The construction of example (3) can easily be transposed to Q. 
Fix a (positive) prime number/?, and for every z G Q*, let Vp(z) denote the exponent of 

p in the decomposition of z into prime factors. We set 

|^|^=p-M^), |0|^ = 0, (6) 

and we check, as above, that | 1̂  satisfies the relations (i), (ii), (iv) and (v). 

Remark 3.1.3 We can also check the product formula (5) for every x G Q*, where now 
V denotes the set of (positive) prime numbers /? in Z. 
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The following result is immediate. 

Lemma 3.1.1 Let a, P, y be three real numbers > 0. If for every n e N we have y" < 
an + fi, then y < I. 

Proposition 3.1.1 Let A be a commutative ring with unit U, and let \ \ be an absolute 
value on A. Then the following conditions are equivalent. 

(1) The absolute value \ \ is ultrametric. 
(2) For every n elj.we have \n • \A\ <l> 

Proof We may assume without loss of generality that the absolute value is triangular. 

(1) If (i) is satisfied and if AI G N, we have 

Kui<sup{mi, . . . ,mi} = i. 
Furthermore, it is clear that | — 11 = 1, so this property extends to Z. 

(2) Let X and y e AAf (ii) is satisfied, then for every n G N we have 

n 

< \x\" + Ixl"-' |>'| + • • • + \y\" < (n + DM", 

whereM = sup{|x|, |>'|). 
Thus we have 

(\x + y\\" ^ ^ , 

SO y := \x-\-y\/M < 1 by lemma 3.1.1. • 

Corollary 3.1.1 Every absolute value on A which is bounded onZ - IA is ultrametric. 

Proof. Let M be the bound of |«1AI- Then for every v G N, we have 

\n\U\ = \nU\' <M, 

so \nlA\ < I. • 

Example 3.1.2 

(1) Every absolute value on Q which is bounded on Z is ultrametric. 
(2) If /: is a field of positive characteristic, every absolute value on k is ultrametric. 

Ostrowski's Theorem 3.1.1 Every non-trivial absolute value on Q is either \ \^, or\ |̂  
with 0 < a. 
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Proof. Let | | be a triangular absolute value on Q. 

(1) For every « € N, we have 

\n\ = | l - f . . . 4 - l | <n. 

Now let a and b be two integers in N*. We can expand b^ in powers of a, and we have 

b"" = Co -h cia -\ l-Cna"" 

with 0 < Ci < a and c„ ^ 0. 
Since a^ < b^, we have n < y(logZ?/loga). 
We deduce from the expression of b^ in base a that 

l^r <|co| + |ci||a| + . . . + |c,||«r 

< fl(l + |fl| + . •. + \an < a(n + l)M\ 

where M = sup{l, \a\}. Therefore, for every y G N, we have 

i.e. y^ < av -^ fi with 

logb ^ \b\ 
a = a- , p = a, " — log a' ^ ' ^ J^\ogb/\oga' 

The above lemma implies that y < 1, hence 

\b\ <supjl,|fl|'^s^/^^^"j. 

(2) If I I is not ultrametric, there exists b eN such that \b\ > I and the inequality of 
(1) shows that for every a > 1, we have 

For reasons of symmetry, we deduce that 

Thus if 1̂1 = /?", we see that |a| = a". 
Furthermore, |n| < « for « G N implies that 0 < a < 1. 
(3) If the absolute value | | is ultrametric, then |«| < 1 for every a e Z. 
We see easily that I = {a e Z; \a\ < 1} is a prime ideal of Z. If the absolute value is 

not trivial, this ideal is different from (0). Thus there exists a prime number/? e N such 
that I = (p). Now, if X e Q*, we can write 

V 

where u and v do not contain the number/? in their prime decompositions. 
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We deduce that u and v do not lie in /, so \u\ = |v| = 1. 
Finally, we obtain 

\x\ = ipi""*̂ * = ipir"*'' = M;. 

Since \p\ < 1, we see that of > 0. D 

The proof of the analogue of Ostrowski's theorem for F^ (t) can be found in the exercises. 
Here is its statement. 

Theorem 3.1.2 Every non-trivial absolute value on ¥q(t) is either \ |^ or | |p, with 0 < a 
and P monic irreducible in ¥q[t]. 

3.2 COMPLETION OF A FIELD EQUIPPED WITH 
AN ABSOLUTE VALUE 

We know that the field of real numbers R contains the field of the rationals Q, and that M is 
equipped with an absolute value | | which induces the absolute value at infinity | |oo on Q. 

When a field K is equipped with a triangular absolute value | |, we can define a distance 
^ on ^ by the formula 

d(x.y) = \x-yl (1) 

and this distance, in turn, lets us define a topology on K (see [Di,l]). 
If K is the field of real numbers, we know that Q is dense for this topology (its closure 

is K) and we know that K is complete. We now propose to find a field K possessing all 
the above properties for every absolute value of Q. With this goal in mind, we introduce a 
generahsed form of the construction of R given by Cantor^^. 

Definition 3.2.1 Let k be afield equipped with a triangular absolute value \ \ . 
A sequence {an) of elements ofk is said to be a Cauchy sequence if and only if for 

every e > 0, there exists an integer N(£) such that p > N(£) and q > N(£) imply that 
\an -aJ < s. 

Example 3.2.1 
(1) Every sequence of elements of k which converges to an element of /: is a Cauchy 

sequence. 
(2) We know that the converse is false for the absolute value at infinity on Q; there exists 

a Cauchy sequence of rationals which converges to y/2 G R \ Q. 
(3) The same remark holds for the p-adic absolute values on Q and the P-adic ones on 

¥q(t), see the exercises. 

33 G. Cantor 1845-1918. 
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Thus, we see that Q (resp. F^(r)) is not "complete" for any of its non-trivial 
triangular absolute values. Let us give the precise definition of this notion (which is 
extremely useful in analysis) in the case which interests us (cf. [Di 1]). 

Definition 3.2.2 Let k be afield equipped with a triangular absolute value. 
We say that k is complete if every Cauchy sequence of elements ofk converges to an 

element of k. 

Example 3.2.2 Every field is complete for the trivial absolute value. 

Given a triangular absolute value | \onk, our goal is to construct a field K containing 
k which is complete for an extension | \j^ of the absolute value of k. 

The following lemma is proved in Exercise 3.10. 

Lemma 3.2.1 Let A be the ring of maps from N to k. Then 

(1) the Cauchy sequences form a subring C of A, 
(2) the sequences converging to zero form an ideal NofC, 
(3) the quotient ring C/N is afield K. 

Our next objective is to equip K with an absolute value | \K extending that of k. 

Corollary 3.2.1 Let (an) e C be a Cauchy sequence of elements ofk. 
Then {\an\) is a Cauchy sequence of real numbers. 

Proof. Indeed, the triangle inequality implies that 

\cip\ - \aq\ < \ap-aq\ 

\ciq\ - \ap\ < \ap-aq\. 

Thus lip and q are greater than A^(^), we have 

\\ap\-\aq\\<e. • 

Since R is complete, the sequence (|a„ |) has a limit; if {an) e C, we obtain the following 
result. 

Lemma 3.2.2 For (an) e C, set 

\{an)\c : = l i m ( K | ) G R . 

Then 

(1) the map (an) \-^ \(cin)\c satisfies conditions (ii) and (iv) of Section 3.1; 
(2) it induces an absolute value \ \K on K. 
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Proof. (1) Since |fl„ + ^„| < |(2„| H- \bn\, we have 

lim(|a„ + bn\) < lim(|«J) + lim(|^J), 

so \a + b\c < \a\c + \b\c, where a (resp. b, c) means (am) (resp. (Z?̂ ), (c^)). 
Similarly, we have 

lim(laAI) = lim(|aJ)lim(|Z?„|), 

so 

\ab\c = l^lcl^lc. 

(2) If, in particular, a e N, then \a\c = 0. Thus ifx = x-\-N = y-\-NeK, then 
J = jc + a, with a e N, so 

\y\c < \x\c + \a\c = \x\c. 

By symmetry, |jc|c < |j|c, so |jc|c = |j|c. It follows moreover that 

j \x + y\K = \x-\- y\c < \x\c + \y\c = \X\K + lyk 

\\xy\K = \xy\c = \x\c\y\c = Ixklyk-

Finally, |JC|A: = 0 implies |jc|c = 0, hence x e N and x = 0 e K. D 

We can now state the main result of Section 3.2. 

Theorem 3.2.1 
(1) If we identify k with the set of constant Cauchy sequences, the image of this set by the 

canonical map C^ C/N = K is afield k isomorphic to k. 
(2) The field k is dense in Kfor the topology associated to\ \K -
(3) The field K is complete for this topology. 

Proof (1) Let x ek, and let G{X) e C denote the constant Cauchy sequence equal to x\ 
clearly G(k) is a field k isomorphic to k. 

Furthermore, G{k)C\N = {0}, so the image ofa(k) under the map C - » C/N is a field 
k which is isomorphic to k. 

(2) Let X = (Xn) -\-N e K, with Xn e k for every n eN. We want to show that for every 
e > 0, there exists y e k such that 

\x-G(y)\K <e. 

Now, there exists N{s) such thatp > N{£) and q > N(£) imply that \Xp — Xq\ < e, so we 
can take y = XN^S)-

(3) Let (xn) be a Cauchy sequence of K. We know that for every n e N, there exists 
yn^k such that |x„ - G(yn)\K < !/«• 
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Let us show that (y„) is a Cauchy sequence of/:. Indeed let 6: > 0 and N(s) be such that 

_ _ 6 

psLndq>N(s) => \Xp - Xg\ <-. 

Then for/7 and q > N(£), we have 
\yp-yq\ < kCVp) -Xp\K-\- \Xp-Xg\K-^ \Xq -Or(yq)\K < £. 

Now let y = (j^) e K; for every n € N, we have |jc„ - ^̂ IA: < l/n, so lim„_^oo Xn =y. • 

Definition 3.2.3 Let k be afield equipped with a triangular absolute value \ \. Afield K 
containing k and equipped with a triangular absolute value \ \K is called a completion 
ofkif 

(i) for every X e k, we have \x\j( = |x|, 
(ii) K is complete for the absolute value \ \K, 

(iii) k is dense in Kfor the topology associated to \ IK-

Important Remark 3.2.1 When /: = Q is equipped with the /?-adic absolute value | \p, 
the preceding construction gives us a completion K equipped with an absolute value | \K. 

Since the set of absolute values of the elements of Q* is the discrete group (/?), it follows 
from the preceding construction that the set of absolute values of ^* is the same group. In 
this case, we say that the absolute value is discrete (even though o is an accumulation point 
of(p)!). 

In Chapter 6 and in the exercises, we will find other ways to construct a completion of 
k. It is natural to ask if all these completions are isomorphic. The answer is given by the 
following result. 

Theorem 3.2.2 Let ki and ki be two fields equipped with triangular absolute values \ \ \ 
and I 12. Assume that there exists an isomorphism (p \ k\ ^ k2 such that \(p{x)\2 — \x\\. 
Then ifK\ and K2 are completions ofk\ and k2, there exists an isomorphism (j) \ K\ ^^ K2 
such that 

(i) 0Ui = (P, 
(ii) 10(x) 1/̂2 = \x\Kjor everyX 6 K^. 

Proof Let x e Kx. 
To construct 0(x), consider a sequence (x„) of elements ofk\ such that |JC — x„|i < \/n 

for every n (which is possible since ki is dense in ATi). The sequence (JC„) is then a Cauchy 
sequence, so this is also true for {(p{xn)). Consequently there exists y e K2 such that 
lim^^oo ^{Xn) = y-

Set0(x) \=y. 
We easily check that </> is an isomorphism of rings with unit, and also that assertions (i) 

and (ii) hold. D 
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3.3 THE FIELD OF P-ADIC NUMBERS 

The notions introduced in the preceding paragraph now enable us to give a definition of 
"the" field of p-adic numbers. 

Definition 3.3.1 Letp > 0 be a prime, and let \ \p be the p-adic absolute value ofQ. 
The completion of Q for the absolute value \ \p is called the field of p-adic numbers, 
and is denoted by Qp. 

Thus, this field is defined (here!) as a ring quotient, the quotient of C/N. But we would 
like to define each p-adic number by a unique representative modulo Â , just as we represent 
a real number by an infinite sequence of decimals; the idea of the latter is due to Stevin, 
although its "uniqueness" is a little tricky! 

First, we need to mention an important criterion of convergence of series. 

Theorem 3.3.1 Let K be afield which is complete for an ultrametric absolute value \ |. 
In order for the series Xl«»-oo^«' of general term an G K, to converge in K, it is 

necessary and sufficient that its general term an tends to zero. 

Remark 3.3.1 The notation X!n»-oo ^« nieans that there exists an integer N (depending 
on the series) such that a„ = 0 if « < -A^. Similarly, nn»-oo "« Cleans that there exists an 
integer Â  such that M„ = 1 if « < — Â . 

Proof 

(1) The necessity of the condition is a general property of normed vector spaces. 
(2) To show the converse, we consider the sequence of partial sums 

m\—> Sm= ^ an\ 
—oo<n<m 

we must show that (Sm) is a Cauchy sequence. So, let ^ > 0. Since an tends to zero, 
there exists M such that n > M implies that |̂ „ | < s. Now if ^ > p > M, we have 

\sq -Sp\ = \ap+i 4- \-aq\ < sup{|fl^+i|,..., \aq\} <£. • 

Definition 3.3.2 Let K be afield which is complete for an absolute value \ |. 
An infinite product Y[n:^-oo "«' of general term Un e K*, is said to be convergent in 

K* if there exists I e K"^ such that the products Ttm = Y\-oo<n<m^n tend to I. 

The preceding criterion admits an important analogue for infinite products. 

Theorem 3.3.2 Let K be afield which is complete for an ultrametric absolute value \ |. 
For the product nn»-oo "« of general term Un 6 ^* to converge, it is necessary and 

sufficient that Un tend to L 
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Proof. (1) The necessity of the condition follows from the fact that 
7Tm 

and if TT̂  -> £ G i^*, the left-hand side tends to 1. 
(2) Since rCm = UQ-\- Yl^=\('^n — ^n-i), we are led to show that the series of general 

term 

Cln=^n— ^n-\ = ^n-\{Un — 1) 

converges. 
Set M„ — 1 = v„. 
Since v„ tends to zero, there exists Â  such that n > N implies that |v„| < 1, hence 

\Un\ = 1. 

Thus, for n> N,wc have 

Denoting this number by A, we see that for n > N,we have 
\an\ =A\Vn\. 

Since v„ -^ 0, theorem 3.3.1 implies that the series of general term «„ converges. D 

Definition 3.3.3 A local ring O is a commutative ring with unit which has a single 
non-zero maximal ideal M. The field O/M is called the residue field ofO. 

Example 3.3.1 If /z > 1, the ring Tj/p^l, is a local ring; in particular, '\fh= 1 it is a field 
and its single maximal ideal is zero. 

Theorem 3.3.3 LetZp := [x e Q^; |JC| < 1}. Then 

(1) Zp is a local ring whose maximal ideal is pZp. 
(2) The group of units ofZp is Up = {x e Zp\ \x\ = 1}. 
(3) The residue field ofZp is F^ = Z/pZ. 

Proof Properties (ii) and (iii) (with C = 1) of the absolute value | | show that Zp is a ring 
with unit. 

Let us show that Vp = [ze Zp\ \x\ = 1}. 
Indeed, if |M| = 1 we know that w 7̂  0, so there exists v G Q^ such that wv = 1. But if 

\u\ = 1, then |v| = 1 so V G Zp. 
Conversely, if w G Up, there exists v e Zp such that uv = 1. It follows that \uv\ = 1. As 

\u\ < 1 and |v| < 1, we must have \u\ = 1. 
Now let / be an ideal of Zp.lf I is not contained in pZp, then / contains a unit u since 

pZp = {x e Zp\ \x\ < 1}, so there exists v e Zp such that uv = 1, but uv e I so I = Zp. 
This shows that/?^ is maximal. 
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Clearly F^ is a subfield of Zp/pXp, since the image of Z under the canonical projection 

Zp -^ Zp/pZp 

is isomorphic to (Z/ ker TT n Z) = Z/pZ. 
Thus, it suffices to show that #(Zp/pZp) < p. For this we will see that the image of U^ 

contains at most/? — 1 elements. 
Indeed, if w € Up, then u is the limit of a sequence of rationals r„, so we have 

\u-rn\ < 1 

for n greater than some fixed N. 
Thus we have |r„| = 1 for n > Â , so r„ is congruent modulo /? to a rational integer a 

not divisible by p; this follows from Bachet's theorem (usually called Bezout's theorem). 
But we also have 

{\u — r„| < 1 and |r„ — a\ < 1} ==> \u — a\ < 1, 

sou = a modpZp. 
As #{a -\-pZp\ a e Z] = p, WQ are done. D 

Definition 3.3.4 A system of digits S of Qp consists of zero and a system of repre­
sentatives of the elements of\]p modulo pZp. 

Example 3.3.2 (1) The most frequent example is 5 = {0, 1 , . . . , / ? - 1}. 
(2) When/7 is odd, S = {-(p - l ) / 2 , . . . , - 1 , 0, 1 , . . . , (p - l)/2} is more symmetric 

and sometimes preferable. 
(3) The best system of digits consists of the Teichmiiller digits 

S = [0,cOp{\),...,a)p(p-\)}, 

where a)p{x) is the unique p — V^ root of unity of Q^ which is congruent to x modulo p, 
so that 

F ; - A 5* = 5\{0} 

is an isomorphism of multiplicative groups. 
The computation of (Op{x) is easy; we note that if x = M with w G Up, then 

(i>p{x) = lim (u^"). 
n—>oo 

Indeed, we know by Fermat's little theorem that x^" — x for every n 6 N, so 

uF = u -\-pa\ 
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with ai eZp, By induction on n, it follows that 

ŵ  = w -f- p^an 

with an e Zp. Thus we see that (u^") is a Cauchy sequence, and passing to the limit, we have 

(jOpixf = copix). 

(4) When/7 = 2, the system S of example (1) is a Teichmiiller system. When/7 = 3, 
the same holds for that of example (2). For/7 > 3, the three systems of digits are distinct. 

Theorem 3.3.4 Let S be a system of digits ofQp. 
Every element x e Qp can be written uniquely in the form 

x= Y. ""-p' ^^^ 
n^-OQ 

with an e S, and every series of the form X!n»-oo ^nP^ converges to a p-adic number 

Proof The second assertion follows from theorem 3.3.1 since 

lim {anp"") = 0. 
n—>OQ 

Now let X G Qp. Up to dividing x by \x\p, we can assume that x e Zp. 
We know that there exists a number ^o ^ ^ such that x = a^ modulo /7Zp, and this 

determines the first term of the expansion of jc. 
Then, we set x\ = x — a^ and we obtain the second term of the expansion of x since 

ki \p S 1/p. Proceeding this way successively, we see that \Xn\p < I//7" and 

X = ao + aip -\ h a„_i/7"~^ + Xn. 

We obtain the result by passing to the limit as « ^ 00. D 

Remark 3.3.2 
(1) We deduce from theorem 3.3.4 that Qp, like R, is not countable. 
(2) In order to compute the sum of two series of the form (1), it suffices to know how to 

write the sum of two arbitrary digits a and b e S; to compute the product of these 
series, it suffices to know how to write ab. 

Example 3.3.3 
(1) IfS = {0, 1 , . . . ,/7—1}, weknowthatt7+^ e Sifa-\-b < panda+b = (a-hb—p)-\-p 

ifa-\-b >/7. 
For the product, the expression of ab is a polynomial of degree < I in p with 

coefficients in S. In particular, we have 

( p - l ) ( p - l ) = l + (/7-2)/7. 
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(2) If 5 = {-(p - l ) / 2 , . . . , - 1 , 0, 1 , . . . , (p - l)/2}, we see that a + b eS if amdb 
do not have the same sign. If they do have the same sign s, then 

a -]- b = (a -]- b — sp) -\- sp. 

This system is useful to write the opposite of a number, for example (1), whereas in 
the first system we get the horrible expression 

-l = (p-l)^(p-l)p + (p- Dp" + . . . 

(3) For the Teichmiiller digits, we always have ab e S. 

3.4 ALGEBRAIC CLOSURE OF A FIELD 

In this part, the word "field" is always taken to mean "commutative field". 
Recall that if we are given an extension of fields ^ c L, an element x G L is said to be 

algebraic over ^ if x is a root of a non-zero polynomial of K[X}, and the extension K c L 
is said to be algebraic if every element x in L is algebraic over K. 

Recall also that a field K is said to be algebraically closed if every non-constant poly­
nomial in K[X] has a root in K (it follows that all its roots then lie in K). 

Definition 3.4.1 Given afield K, we say that an extension LofK (i.e. afield L D K) 
is an algebraic closure ofK if 

(i) the extension L/K is algebraic, 
(ii) the field L is algebraically closed. 

Example 3.4.1 The field of complex numbers C is an algebraic closure of R; the degree 
of this extension (which is the dimension of C considered as an E-vector space) is equal 
to 2. 

It is natural to ask if every field K has an algebraic closure L. The answer to this 
problem is positive, if we admit the axiom of choice; it is the object of the following 
statement (see [Bou 1]). 

Steinitz'^^ Theorem 3.4.1 

(i) Every commutative field has an algebraic closure. 
(ii) If there exists an isomorphism (p : Ki -^> K2, and ifk\ and ^2 ^^^ algebraic closures 

ofK\ and K2, then there exists an isomorphism 0 : ^ 1 - ^ K2 such that 0 \f^^= (p. 

Example 3.4.2 
(1) The field of rational numbers Q admits an algebraic closure Q. 

Since the polynomial X" — 2 € Q[X] is irreducible for every n > Iby Eisenstein's 
criterion, we see that [Q : Q] = 00. 

34 E. Steinitz 1871-1928. 
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(2) The field F^ admits an algebraic closure F^. Since for every n e N, the roots of the 
polynomial X "̂ — Z in F^ are distinct, F^ is infinite, so [F^ : ¥p] = oo. 

(3) The field Qp admits an algebraic closure Q^. Since the polynomial X^ — p e Qp[X] 
is irreducible for every n > Iby Eisenstein's criterion, we see that [Qp : Qp] = oo. 

(4) If Ki and K2 are two subfields of Q and if (p ^Ki -^^ K2 is an isomorphism, then (p 
extends to an automorphism 0 of Q. Indeed, Q is a common algebraic closure of Ki 
and^2-
It follows that Aut(Q) is infinite since the group of automorphisms of the field gener­
ated by the roots of X'̂  — 1 over Q is isomorphic to (Z/nZ)* for every n eN. 

We often read that "the algebraic closure of Q consists of the set of complex numbers 
which are algebraic over Q". This statement can be explained as follows. 

Definition 3.4.2 Let K c Lbe afield extension. We say that K is algebraically closed 
inside L (or that L is regular over K) if every element of L which is algebraic over 
K lies in K. 

Proposition 3.4.1 Let K C Lbe afield extension. The set M of elements ofL which are 
algebraic over K is an intermediate field between K and L. Moreover, M is algebraically 
closed inside L. 

Definition 3.4.3 We say that M is the algebraic closure ofK inside L. 

Proof of the proposition. Since M c K(M) and K(M) is an algebraic extension of ^ , we 
see that M = /i:(M). 

Now, if X e L is algebraic over M, the extension M c M{x) is algebraic, so x is a root 
of some polynomial Z" + an-\X^~^ -\ \-ao e M[X]. As each at is algebraic over K, the 
extension K(a\,..., a„_i) is a finite extension of K. By the tower rule, we have 

[K{au...,an-ux) : K] = [Kiau ... ,an-ux) : K(ai,... ,an-\)] 

X [K{au .. •, cin-i) : K] < 00, 

so the degree of the extension K c K(x), which divides the degree of the extension K C 
K(ai,..., fl„_i,x), is finite, andjc e M. D 

Corollary 3.4.1 Let K C L be afield extension. If L is algebraically closed, then the 
algebraic closure MofK inside L is actually an algebraic closure ofK. 

Example 3.4.3 
(1) The algebraic closure of Q inside C is an algebraic closure of Q, so it is isomorphic to 

Q. We show in Problem 4 that Aut(C) is infinite. If the complex number z belongs to 
Q, then clearly its orbit under the action of Aut(C) is finite (its cardinal is the degree 
of z over Q). Conversely, it can be shown that if the orbit of z under the action of 
Aut(C) is finite, then z belongs to Q (again see Problem 4, page 167). 
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(2) For every prime number/?, the algebraic closure of Q inside Q^ is an algebraic closure 
of Q, so it is isomorphic to Q. Thus we obtain an infinity of distinct constructions of 
the algebraic closure of Q. 

Remark 3.4.1 (1) A well-known reasoning (Exercise 3.17) shows that Q is countable. It 
follows that 

and for every prime p. 

[C : Q] = oo, 

lp'U\ = oo. 

(2) We saw earlier that [Q^ : Q^] = oo. One can also show that we can extend the p-
adic absolute value of Q^ to Q^. However, we note that Q^ is not complete for this extension 
of I \p. We can thus also consider 

and ask ourselves if Q^ is algebraically closed. The answer is "yes"! For all these results, 
[Ca 1] p. 149-151 or [Sch] are good references. 

(3) The same phenomenon occurs for the algebraic closure of the field Kp, where P 
is an irreducible polynomial of F^[r] ox P = oo and K = F^(r). We can show that Kp is 

not complete (see [Sch], pp. 43^4). However, its completion Cp := Kp is algebraically 
closed. 

Theorem 3.4.2 For every prime number p, the equation Fp (resp. Gp) locally admits 
non-trivial solutions, i.e. there exists a solution (JC, y, z) of this equation in Zi such that 
xyz 7̂  0 (resp. xyz ^ 0 andx 7̂  y)for every prime I. 

Proof. We start with the case I = p. 
Consider the equations 

xP+f + z' = 0 (Fp) 

x^+/ + 2ẑ  = 0. (Gp) 

Choose X = I and z = p^ with h > I. Then we can take y = - ( 1 ^-pP^f^ e Qp 
(resp. y = —(I -\- 2p^y/P) and try to make sense of this expression by using analysis. 

We easily check that the binomial series 

(1 + x)"P = 1 + i x + i i f- - 1) jc' + . . . 
P ^^'P\P J 

converges for every x eQp such that \x\p < pP/^^~P^ (see Exercise 3.20). 
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Taking x = jf^ (resp. 2//^), we see that the sum of this series belongs to Z^. 
Now we pass to the case i ^p, which is actually the easier case. Take x = \ and z = £. 

Then we can take y = - ( 1 + i^fP e Qi (resp. y = -(I -\- It^/P) and we see that the 
binomial series converges in Z^. D 

3.5 GENERALITIES O N THE LINEAR REPRESENTATIONS 
OF GROUPS 

Recall that the prime subfield PK of a field K is the smallest subfield of ^ . If the field K 
is of characteristic zero, then Pjc = Q, and if K is of characteristic p, then PK = Fp. 

When (7 is an automorphism of ^ , we will show that G{PK) = PK and or|p^ = idp̂ .̂ 
Indeed, PK C\O{PK) is a field contained in PK, SO PK C criPK)- Considering a " \ we now 
see that cr(PK) C PK, which gives the first assertion. The second comes from the fact that 
o-(l) = 1 and 1 generates the ring Z • IK. AS (T|Z U = ^^ZIK we see that cr|/7 = idf where 
F denotes the field of fractions of Z • 1 :̂, i.e. PK. Let us conclude these remarks with the 
following definition. 

Definition 3.5.1 
the conditions 

(i) G(F) = F, 
(ii) a\f = idF, 

Let F C K be afield extension. 

then we say that a is an F-automorphism ofK. 

If an automorphism a OfK satisfies 

Proposition 3.5.1 Let K be a (commutative) field of prime subfield PK- Then every auto­
morphism ofK is a PK-automorphism ofK. 

In particular, Aut(^) C GLpj^(K), where GLp^(K) denotes the group of the PK-linear 
bijections ofK. 

Example 3.5.1 
(1) Every automorphism of Q belongs to GLQ(Q) . 

(2) Every automorphism of F^ belongs to GLf^iFp). 

Understanding Aut(Q) is one of the great problems of number theory, and one of the 
ways of studying it is to consider, not GLQ(Q) which is too big, but rather the representa­
tions of degree n of Aut(Q), i.e. the homomorphisms 

p : Aut (Q) - ^ GLf(V) 

where V denotes a vector space of dimension n over some commutative field F. 

Definition 3.5.2 Let G be a group and F a commutative field. A representation of G 
defined over F is a homomorphism 

G - ^ GLF(V). 
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Two representations p and p' are said to be isomorphic if there exists an F-linear bijection 
(p : y - » V such that for every 5 G G, we have 

p\s)o(p = (po p(s). 

The dimension of V is called the degree of the representation, and the character Xp of 
the representation is the map s \-^ trace ip(s)) from G to F. 

Example 3.5.2 (1) If V is a line, we say that the representation is one-dimensional. Its 
character Xp is then a homomorphism 

G —> F\ 

(2) If K = Q(i) with f -\- I = 0, then Aut K = {c), where c denotes the complex 
conjugation defined by c{i) = —i. 

Since Q(/) is a Q-vector space of dimension 2, we can take V = Q(i) and F = Q. If 
we consider the basis (1, /) for Q(/), we have 

so Xp(id) = 2 and Xp(c) = 0. We see in particular that Xp is not a homomorphism of F 
orF*! 

Note that the image of p is the subgroup of GLQ(Q( / ) ) generated by p(c), and that p(c) 
has two distinct eigenvalues. Thus, we see that 

Q ( / ) = D i e D 2 , 

where Di = VecQ(l) and D2 = VCCQC/) are two lines of V which are globally invariant 
under the linear automorphisms of the image of p. 

(3) IfK = F4, then Aut (F4) = {idF4, a} where a denotes the Frobenius automorphism 
a(x) = y?-. Since F4 is an F2-vector space of dimension 2, we can take y = F4 and F = F2. 

If we take the basis (1, e) of F4, where £ is a root of the (irreducible) polynomial 
X^ + X + 1 e F2[X], then we see that 

P(id) = (j ?)' ^(^)=(i I) ' 

and it follows that X/o(id) = 0 and Xp{^) — 0. 
Moreover, we see that D = F2 is the only line of F4 which is invariant under the 

image of p. 
(4) Assume that Q(0 C Q (resp. F4 c F2). Then Q(/) (resp. F4) is globally invariant 

under every element of Aut (Q) (resp. Aut F2). 
It follows that p lifts to a representation of degree 2 of Aut (Q) (resp. Aut F2) by the 

formula r 1-̂  p(r|Q(/)) (resp. r h^ p(r IF4)). 
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Proposition 3.5.2 Let x be the character of a representation p of degree n ofG, defined 
over the field of complex numbers C. ^e have 

(i) X (^) = ^^ where e is the identity element ofG, 
(ii) Ifa is of finite order in G, then x(cr ^) = xi^)' 

(iii) x(^^^~^) = xi^) for every r e G. 

Proof Property (i) is obvious. 
Property (ii) follows from the fact that p(a) is of finite order in GLc(V), so it is 

diagonalisable. Its eigenvalues A/ are roots of unity and we have 

X(a-i) = Tr p(a-') = X^̂  + • • • + X;̂  = Xi + • • • + X, = Tr p(a) = x(^)-

(iii) We know that if/ and g are in GLdV), then 

Tr(/g/-^) = Tr(^), 

so Tr(p(r)p((7)p(r)"^) = Tr(p(a)), which gives the result. D 

Definition 3.5.3 A representation G -> GLf{V) is said to be irreducible ifVy^ {0} 
and if no subvector-space ofV (except for the trivial subspaces {0} and V) is stable 
under all the linear automorphisms of p{G). 

Example 3.5.3 
(1) Every representation of degree one is irreducible. 

(2) The representations in examples (2) and (3) above are reducible. 

The following result is a fundamental structure theorem in representation theory (see 

[Se 2] p. 18 or Exercise 3.23). 

Maschke's Theorem 3.5.1 Let p : G ^^ GLf(V) be a linear representation of a finite 
group G defined over afield F whose characteristic does not divide the order ofG. 

If y has a subspace W which is stable under p (G), then there is a subspace W in V 
which is a supplement ofW (i.e. V = W ^ W), and is stable under p{G). 

Example 3.5.4 
(1) In example (2), the field F = Q is of characteristic zero, and we saw that V = D\ 0D2. 
(2) In example (3), the field F = F2 is of characteristic 2 and 2 divides the order of 

G. We saw that D is the only invariant line inside V, so there is no supplementary 
subspace. 

Theorem 3.5.2 If the characteristic of F does not divide the order of G, then every 
representation of G is a direct sum of irreducible representations. In other words, there 
exist W\,... ,WrinV, invariant under p(G) and irreducible, such that 

V =Wie'--®Wr. 
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Proof. We prove this result by induction on dim/r(V) < oo. 

(1) If dim/r y = 0, then V is a direct sum of the empty family of stable irreducible 
subspaces. 

(2) Suppose dim/r V > 0. 
If V is irreducible, we are done. 
Otherwise, V contains a stable subspace V such that {0} cV CV. 

By Maschke's theorem, V contains a subspace V which is a supplement of V, and 
invariant under p{G). Since 

dim/r V' < dim/r V, dim/r V^' < dim/r V, 

we can apply the induction hypothesis to V^ and V and we are done. D 

Definition 3.5.4 We say that the character of an irreducible representation is an irre­
ducible character. 

Corollary 3.5.1 The character of a representation of finite degree of a finite group G 
defined over a field F whose characteristic does not divide the order of G is a linear 
combination with positive integral coefficients of irreducible characters. 

Example 3.5.5 (1) In example (1), we had V = D\ 0 D2. The representation 

G = {c) ^ GL^iDx) 

is the unit representation c \-^ ido^, and the representation 

G - ^ GLQ(D2) 

is defined by c i-> —id/)2. 
Let xi and X2 be the respective characters of these representations. Then 

X = Xi + X2-

(2) A particularly important example is the regular representation of G. 
We construct the space V = ®seGF~t, where ^ is a non-zero vector symbolically 

attached to ^ e G, and we define the action of G on V by the formula 

p(t)Ct) = Is. 

We thus obtain a representation 

G - ^ GLF(V) 

of degree g = #G. 
Assuming that the characteristic of F does not divide g, we have 

Xp =«iXi + ---+«/iX/i, (1) 

where xi, • • •, X/i ^^ irreducible characters whose respective degrees we want to determine. 
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Proposition 3.5.3 

(i) The character Xreg of the regular representation is given by 

Xregie) = g = #G and Xreg(s) = 0 ifs^ e. 

(ii) IfseG\ [ei then 
i=h 

Y^riiXiis) = 0 . 

Proof, (ii) follows from (i) and (i) follows from the fact that the matrix of p {s) in the basis 
( t )teG has no non-zero terms on its diagonal when s ^ e. D 

When the base field F is the field of complex numbers C, we can embed the characters 
in a vector space H equipped with a Hermitian product. 

Definition 3.5.5 

Forf and g 

n 

en, 

The vector 

= {f 

set 

G — 

space o/central functions H 

yC;f(tst-

(f,g):^ 

"') = fis) for every s 

seG 

is defined by 

andt e G}. 

The essential results concerning H are collected in the following statement (see [Se 2] 
or [J-L]). 

Theorem 3.5.3 

(i) The vector space H equipped with the above scalar product is a Hermitian space for 
which the irreducible characters Xi, • • •, X/i appearing in the decomposition (1) of the 
regular character form an orthonormal basis. 

(ii) Two representations having the same character are isomorphic. 

Corollary 3.5.2 Let x be the character of a representation p ofG. Then (x ^ X) is a positive 
or zero integer, and x is irreducible if and only if(x^X) = 1-

Proof. Let us write X = '^i Xi + • * • + m/jX/i- We have 

(X,X) = ^ i + - - - + ^ ^ (2) 

which is a positive or zero integer. 
If X is irreducible, then just one m, must be different from zero, and it must be equal to 1. 

Indeed, if p̂  is the representation 

mipi © • • • ®mhPh 
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where p/ admits the character xi and the direct sum means that the space of the representa­
tion is 

we see that p and p' have the same character. By (ii) of theorem 3.5.3, p' must be isomorphic 
to p, so it must be irreducible, and the space of the representation must be one of the V/. D 

Corollary 3.5.3 The number of irreducible characters of G (defined over C) is equal to 
the number ofconjugacy classes ofG. 

Proof Indeed, corollary 1 shows that every irreducible character is a x/, with I < i < h 
and h = dime H. Moreover it is clear that the characteristic functions of the conjugacy 
classes of G form a basis ofH. • 

Corollary 3.5.4 The degrees of the Xi are equal to their multiplicity nt in the decomposition 
(1) of the regular character 

Proof We deduce from formula (1) that we indeed have 

rii = (Xreg. X , ) = - X ] X r e g W X , W = " X, ( ^ ) • 

Thus x,(^) = ni. D 

Corollary 3.5.5 The following properties are equivalent: 

(!) G is commutative. 
(ii) All its irreducible representations (defined over C) are of degree L 

Proof (i) Let g be the order of G, h the number of its conjugacy classes and ni,... ,nh 
the degrees of the different irreducible representations of G. 

By formula (1), we know that we have 

But by definition, we also have 

vXreg' Xreg) ~ ~ / , Xpeg V'^^Xreg w ) • 

^ S€G 

By Proposition 3.5.3, we see that the right-hand side of this equation is equal to g, so we 
obtain 

g = n\ + '"-i-nl (3) 

(ii) Since ni > 1 for every /, we see that we have the equivalence 

(g = h) <=^ m =n2 = '•• = nh = I. • 
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Remark 3.5.1 (1) Thus, we see that the irreducible characters of G provide precious 
information about this group, since there are as many of them as there are conjugacy 
classes of G. 

In particular, corollary 3.5.5 shows how they can be used to characterise commutative 
groups (without distinguishing between their isomorphism classes, when the orders are 
equal). 

More generally, the number of irreducible characters of degree 1 of G is equal to the 
index (G : GO, where G denotes the commutator subgroup of G (see Exercise 3.26). 

(2) The theory of linear representations of finite groups can also be presented as the 
theory of modules of finite type defined over the group algebra of G. 

The underlying F-vector space V of this algebra F[G] is the space of the regular repre­
sentation, and its multiplication table is given simply by 

s ' t = St. 

Thus, we see that ^ is a unit of F[G] and that F[G] is associative. 
The regular representation is just the representation of G by "left multiplication" in F[G]; 

P I 
G-^GLf(F[G]) 
11—> {h^ : X I—> t ' x). 

An arbitrary representation p is just an F[G]-module structure over its representation 
space. This explains why the regular representation is particularly important (its space is 
justF[G]). 

(3) When the characteristic of F divides #G, the theory is much more difficult 
(see [Se 2]). 

3.6 GALOIS EXTENSIONS 

The goal of this_second-to-last section is to determine and study the finite extensions of 
Q contained in Q, which are invariant under every automorphism of Q. It is obvious that 
there exist a great many such extensions (it suffices to adjoin all the roots of any irreducible 
polynomial P{X) e Q[X] to Q), but what are the representations of Aut (Q) which we then 
obtain? 

In order to obtain statements adaptable to a varied set of situations, we need to extend 
our conceptual framework. Fix an extension K c^. 

Definition 3.6.1 Let K c Q be afield extension. The Galois group Gal(^/^) of the 
extension Q/K is the group of K-automorphisms ofQ. Thus, we have 

Geil(Q/K) = [a e Aut(^); a{x) = x for every x e K}. 

Example 3.6.1 If K = PQ, we see that Ga\(Q/K) = Aut Q. 
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3.6.1 The Galois Correspondence 

Let /C (resp. Q) denote the set of fields L such that Â  c L c ^ (resp. of groups H such that 
{id^} C H c Gal(^/^)) . We propose to show that /C and Q correspond to each other via 
a certain duality which resembles the theory of orthogonality in linear algebra. 

Definition 3.6.2 Let H eg. 
The field of invariants ofH in Q is 

^ ^ = {JC € ^ 

defined by 

(7{x) = xfor every a eH]. 

Now consider the two following maps: 

•g 

L" = Gal( /̂L) I H^o / / = <̂ «. 
IJC-^g ig^ic 

Example 3.6.2 

(p(Q) = {id^}, (p(K) = GediQ/K), V (̂{id^}) = Q, ir(Ga\(Q/K)) = ? 

Proposition 3.6.1 
(i) (p and if/ are decreasing maps for the inclusion relations in JC and Q. 

(ii) For every L e IC, we have ^(L^) = \lf o (p(L) D L, and for every H e Q, we have 
{^Hf = (pof{H)-DH. 

(iii) Moreover, we have cp o-^ o cp = cp and x// o cp o \l/ = il/. 

Proof As the proof is the same for (p and T/̂ , we give it only for cp. 

(i) IfLi cL2,then 

L^ = {cr e G2il(Q/K); a{x)=x for every x e L2} C L?. 

(ii) Let us show that L c ^(L^). 
It suffices to see that for every x € L, we have 

a(x) = X for every a e L^. 

But this follows from the definition of L^. 
(iii) Let us show that cp o xir ocp = (p,or that for every L e /C, we have 

^ ( 0 ( L « ) ) = L O . 

By (ii), we have ^L^) D L, so by (i), (p(^(L^)) C (p(L) = iP. 
Now set iP = // ; by (ii) we have 

f//)° D H, 

which is the inverse inclusion. D 
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Corollary 3.6.1 Let IC' and Q' be the images ofx// and (p. 
Then cp and x// induce mutually inverse, decreasing bijections ofK' onto Q'. 

Corollary 3.6.2 A necessary and sufficient condition for H e Q to lie in Q' is that 
(p(xlf(H))=H. 

A necessary and sufficient condition for L e JC to lie in )C' is that \l/{(p(L)) = L. 

Proof These conditions are clearly sufficient, and they are also necessary by corol­
lary 3.6.1. D 

Definition 3.6.3 IfH e Q', we say that H is a stationary subgroup ofGdXiQjK). 
IfL G K\ we say that L is a stationary subfield ofQ/K. 
We say that the extension ^/K is Galois if it is algebraic and K is a stationary 

subfield of Q /K. 

Remark 3.6.1 Thus, in order for the extension Q/K to be Galois, it is necessary and 
sufficient for it to be algebraic and to have i/r o (p(K) = K. As (p(K) = Gal (^ /^) , this 
means that 

^G^\(Q/K) ^ {;̂  ^ ^ . ^(^) ^ ^ foj. every a e Gal(^/i^)} = K. 

This gives the following important criterion. 

Criterion 3.6.1 The extension Q/K is Galois if and only if it is algebraic and if for every 
X e Q\K, there exists a G Gal(^/Ar) such that a (x) ^ x. 

Example 3.6.3 We always have {e} e Q\ but we do not always have K e K'. For example, 
Q is not stationary in R/Q since Aut (R) = {idR}. 

Indeed, every o e Aut (R) is strictly increasing {\iy > x we have y — x = z^ with 
z 6 R*, so (j(y) — a(jc) = o{z)^ > 0). Now, for every x € R and every n G N, there exists 
r G Q such that 

r <x <r -\- 10"''. 

Since Q is the prime field of R, it follows that 

r <G{X) < r + 10~", 

hence \a{x) — x\ < 10~" for every n, so cr(jc) = x. 

Proposition 3.6.2 Let K be afield of characteristic zero, and let ^ an algebraic closure 
ofK. 

Then the extension Q/K is Galois. 

Proof We will apply criterion 3.6.1. 
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Let X e Q\K; then x is algebraic over K. 
Let P(X) G K[X] be the minimal polynomial of jc over K; then degP > 1 (otherwise 

we would have x e K) and all its roots in Q are simple because the characteristic is zero. 
Let y ^ JC be a second root of P(x) in ^ . We know that the map 

cr : Q(x) K-> Q(y), 

where Q(X) e K[X], is a ^-isomorphism of the field K(x) onto the field K(y). 
By Steinitz' theorem, a extends to an isomorphism r of ^ , and we have 

T G Ga\(^/K) and T(X) ^ T(y), D 

Examples and counterexamples 3.6.4 

(1) Although Q/Q is Galois, (E Pi Q)/Q is not, for the reason explained in the above 
example. 

(2) Although Q is stationary in C/Q, this last extension is not algebraic and cannot be 
Galois (in the sense introduced above). 

3.6.2 Questions of Dimension 

As in linear algebra, this duality becomes much clearer when we make a finiteness hypothesis 
on the degrees of the extensions or the indices of the groups. 

Theorem 3.6.1 Let K CL\ C L2 C Q be a tower of extensions with [L2 : Li] = n < 00. 
Then we have {(p{L\) : (p{L2)) < n. 

Proof. We use induction on n. 

(1) When n = 1, the property is obvious. 
(2) Suppose that there exists an intermediate field V such that Li cL'cLi. Then the 

induction hypothesis gives 

Uip{U)'.ip{L'))<W'.U] 

\{cp{L')'.ip{L2))<[L2:L% 

and, multiplying these inequalities term by term, we obtain the result. 
(3) If there exists no intermediate field between L\ and L2, we necessarily have L2 = L\ (a) 

for every a eL2\L\. 
The isotropy group of a in the action of (p{L\) on L2 is equal to (p(L2), since the 

action of cr e (p(Li) is determined by the knowledge of a (a). Thus, we see that the 
cardinal of the orbit of a, under the action of (p(Li) is equal to {(p{L\) : (p{L2)). Let 
P(X) be the irreducible polynomial of a on L\\ we know that degP(X) = [L2 : Li]. 

But the orbit of a is contained in the set of roots of P{X), so 

(^(Li) :^(L2))<[L2:Li] . D 
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Theorem 3.6.1 admits a symmetric statement which we give here. 

Theorem 3.6.2 Let {e} C //i C //2 C Aut(^) with (H2 : Hi) = n < oo. Then we have 

[xlf(Hi):^lf(H2)]<n. 

Proof. (1) Note first that the left cosets of H2 modulo Hi act on \l/(Hi). 
Indeed, let C = a Hi be a left coset, and let x e \l/{Hi)\ then for every r G C, we have 

T = ah with h e Hi, hence r(jc) = a(h(x)) = a(x). We write C{x) for this common value 
a{x). 

(2) We reason by the absurd. 
If [il/(Hi) : \I/(H2)] > n, there exist ^ i , . . . , an+i e V^(//i), linearly independent over 

ir(H2). 
Now consider the following equations in (Ai, . . . , A.„+i) e -^(HiY^^: 

XiCiiai) -\ V Xn+\Ci{an+\) = 0 

: : (1) 

XlCn(ai) -\ h ln+\Cn{an+l) = 0, 

where C i , . . . , C„ are the n left cosets of H2 modulo Hi. 
The system (1) contains n -\- I unknowns and n equations: thus it admits a non-trivial 

solution in T/r(//i)""^^ Up to changing the notation, we can assume that it is 

(1 ,X2 , . . . ,X„0 , . . . , 0 ) , (2) 

with the smallest possible value for r. 
The rest of the proof is based on the following trick: if we show that for every a e 

7/2, (1, 0 (̂̂ -2), • . . , cr(Xr), 0 , . . . , 0) is a solution of (1), then we will have 

Or(A.2) = A2, ...,Cr(kr) = K\ 

otherwise the difference of these solutions would also be a non-trivial solution of (1), and it 
would admit a greater number of zeros than (2), which is impossible. Thus all the A/ would 
be invariant under H2, and « i , . . . , an+\ would not be linearly independent over ^(H2), 
which is absurd. 

(3) Thus, it suffices to see that for every a e H2, (cr(Xi),..., a(A.„+i)) is a solu­
tion of (1). 

Let us apply cr to the equations of (1); we obtain 

a{Xi)(7Ci(ai) -h • • • + a(A„+i)aCi((3„+i) = 0 

: : (3) 

a(Xi)crCn(ai) H \-a(Xn+i)crCn(an+\) = 0. 
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As the set {aCi , . . . , (7C„} is exactly {Ci , . . . , C„}, we obtain the same system (up to the 
order of the equations), and the proof is complete. D 

Corollary 3.6.3 

(i) Let K cLi CL2CQ. 
IfL\ is stationary and if[L2 : Li] = n < 00, then L2 is stationary and we have 

{(p{Lx) : (piLi)) = n. 
(ii) Let {e} C i/i C //2 C Gal(^//^). 

IfH\ is stationary and if {H2 : //i) = n < 00, then H2 is stationary and we have 
[if(H,):xlf{H2)] = n. 

Proof. We only prove (i) here. 

From the above theorems, we deduce that 

[L2 : Li] > ((p(Li) : (p(L2)) > [V̂  o ̂ (La) : if o (p(Li)]. 

By hypothesis, xj/ o (p{Li) = Li,so 

[L2:La>[^o(p(L2):L,l 

As xl/ o (p(L2) D L2, they are equal. D 

Corollary 3.6.4 

(i) If the extension K C ^ is Galois, then for every finite extension LofK contained in 
Q,L C Qis Galois and we have [L : K] = (G : (p{L)). 

(ii) All the finite subgroups ofG3i(Q/K) are stationary, and ifH e G is finite, Q/Q^ is 
Galois of group H. 

Proof For (i), we take Li = K, and for (ii). Hi = {e}. D 

Fundamental Theorem of Galois Theory 3.6.3 Let K c ^ be a finite Galois exten­
sion. 

(i) Then we have 

[Q:K]= #Gsi\(n/K). 

(ii) Let K C Li C L2 C Q be a tower of extensions; we have 

icp(L,) : (p(L2)) = [L2 : L,]. 

(iii) Let {e} C Hi C H2 C Gal(^/^) be a tower of groups; we have 

[ilf(Hi):xlf(H2)] = iH2:Hi). 

Criterion 3.6.2 Let Q/K be a Miic field extension. 
The extension Q/K is Galois if and only if we have 

[Q :K] =#G2i\(Q/K). 
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Proof. 
(1) The condition is necessary by the fundamental theorem. 
(2) Let us show that it is sufficient. Set L := \I/(G) with G := GsdiQ/K); then Q/L is 

Galois by construction. But we have [Q : L] = {G : {e}), so [Q : L] = [Q : K], which 
impHes that L = K. D 

3.6.3 Stability 

In spite of its admirable aesthetic qualities the above result does not really explain how to go 
about finding all the subextensions of A' c ^ which are stable under every automorphism 
ofGal(^/ii:). 

Definition 3.6.4 Let K c L C ^ be a tower of extensions. 
We say that L is stable relative to Q/K if for every o G Gal(^/Ar), we have a (L) = L. 

Proposition 3.6.3 Let K C L C ^be a tower of extensions, and let G = Gal(^/^) . 
(i) IfL is stable relative to Q/K, then (p(L) is a normal subgroup ofG. 

(ii) IfH is a normal subgroup ofG, then ir(H) is stable relative to Q/K. 

Proof 
(i) Letor G (^(L); we must show that for every T e G, wehaverar"^ e (^(L). This means 

that for every x e L, TGT~\X) = x, or rather a(T~^{x)) = r"^-^)- As T~^(X) e L 
by hypothesis, this is obvious. 

(ii) Letjc G V/̂ (//); we must show that for every r G G, we haver (x) G V^(//). This means 
that for every a G // , we must have or(r(jc)) = r(jc), i.e. r'^crzix) = x. But since 
r~^crr e H by hypothesis, this is again obvious. '-' 

Proposition 3.6.4 Let K C L C Q be a tower of field extensions. If Q/K is Galois and if 
L is stable, then L/K is also Galois. 

Proof. We need to show that i/̂  o (p{K) = A' in the extension L/K, so that if x G L\K, 
there exists a e Ga\(L/K) such that a(x) ^ x. 

But since Q/K is Galois, there exists a e Gal(^/^) such that a (x) / x; thus it suffices 
to take a = cr 1̂ , which is indeed a ̂ -automorphism of L, since L is stable. D 

3.6.4 Conclusions 

We will now give a more precise description of the Galois extensions. 

Proposition 3.6.5 If Q/K is Galois and if P{X) G K[X] is an irreducible polynomial 
having a rootx G Q, then P{X) decomposes into a product of distinct linear factors in Q[X]. 
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Proof. Let {xi , . . . , Xr} be the orbit of x under the action of G := Gal(^ /^) : all the xt are 
roots of P(X), so we have r < deg(P). 

Set Q(X) = (X-xi)...iX- Xr) e Q[X]. 
As the coefficients of QiX) are invariant under the action of G and Q/K is Galois, they 

lie in K. 
Now, P(X) and Q(X) are two polynomials in K[X], both of which have x as a root. As 

P(Z) is irreducible, P(X) must divide Q(X), and r > degP(jc). D 

Corollary 3.6.5 If^/K is Galois and ifP{X) e K[X} is an irreducible polynomial which 
has a root in ^ , then all the roots ofP(X) are simple. 

Corollary 3.6.6 Let K C L C Q be a tower of extensions; assume L/K is Galois. Then 
L is stable relative to Q/K. 

Proof. Let x e L and a e Gal (^ /^) ; we must show that a(x) e L. This can be seen by 
applying proposition 3.6.5 to the irreducible polynomial of jc over K. D 

Theorem 3.6.4 Let Q/K be a finite Galois extension of fields with Galois group G, and 
let L be such that K C L C Q. Then 

(i) L/K is Galois if and only if Gal(^/L) is a normal subgroup ofG. 
(ii) In this case, Gsi\(L/K) = G/Gal(Q/L). 

Proof, (i) Since Q/K finite, L/K is as well; thus it is algebraic. 
If L/K is Galois, corollary 3.6.3 shows that L/K is stable relative to Q/K, and propo­

sition 3.6.3 shows that / / = (̂ (L) is a normal subgroup of G. 
Conversely, we know that L = yjrifi) since L is stationary (since Q/K is finite Galois). 

If moreover / / is a normal subgroup of G, then L is stable by proposition 3.6.3 (ii). And by 
proposition 3.6.4, L/K is then Galois. 

(ii) Consider the homomorphism h given by 

' - ^ G2\{L/K) 

It is clear that Ker h = H, so Imh = G/H. 
It remains only to show that h is surjective, which follows from the fundamental theorem 

of Galois theory on the one hand, since 

[L:K] = ((p(K) : (p(L)) = (G:H)=#lmh, 

and from criterion 3.6.2 on the other hand, since 

[L:K]= #Gal(L/K). ° 

Theorem 3.6.5 Let Q be an algebraic closure ofK, andletK C L C Q with [L : K] < oo. 
Then L/K is Galois if and only ifL is generated by the roots of a polynomial Q{X) e K[X] 
all of whose roots are simple (i.e. a ''separable'' polynomial). 
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Proof. (1) Let us show that the condition is necessary. 
Since L/K is finite, we have L = K{a\,...,«;-) with «/ algebraic over K. Let P\,... ,Pr 

be the irreducible polynomial of c^i,..., of;-; we may assume that the s first P i , . . . , P^ are 
distinct. We then see that L/K is generated by the roots of P i , . . . , P^, since these decompose 
completely in L[X] by proposition 3.6.5 and their roots are simple (corollary 3.6.3). Thus 
we take <2 = Pi-P,. 

(2) We will prove that the condition is sufficient by induction on [L : K] = n, but 
without assuming that K is fixed in Q. 

Note first that if L = K(ai,... ,ar), where the a/ are the roots of Q(X) e K[X], then 
L is stable in Q/K. 

If [L : ^ ] = 1, there is nothing to prove. 
Assume that the assertion holds for all the K^ and V such that [V : K^] < n, and consider 

an irreducible polynomial P(Z) = {X — a\) - • • (X — as) which divides Q(X) in K[X]. 
If s = n, then L = K(ai) = • • • K(an) and as there exists a/ e Gal(^/^) such that 

cTiiai) = ai for 1 < / < w, we see that #Gal(L/A:) > [L : K]. Criterion 3.6.2 then shows 
that L/K is Galois. 

lfs<n, we set^^ = K(ai). 
Then [L : K^] = r < n, so L/K' is Galois by the induction hypothesis: there exist r 

distinct automorphisms r i , . . . , r̂  of Gal(L/ArO such that Tj(ai) = ofi and TJIK = id^:. 
But we also know (by Steinitz' theorem) that there exist s automorphisms p, of ^ such 

that Pi(ai) = Of/ for I < i < s. 
Since L is stable, they induce distinct automorphisms a, of L such that (7/(ai) = of/. 
Thus, we see that G2i\(L/K) contains at least n = rs elements, namely the TJ O C/, which 

are all distinct. 
Indeed, if / 7̂  i\ it is clear that Xj o a/ / r, o a,, and if / = i' buij / / , it is also clear 

that Tj O Gi ^ Tj' O (7/. 

Criterion 3.6.2 then implies that L/K is Galois. D 

Counterexample 3.6.5 Let t be transcendental over F^. We take K = ¥p{t),Q. = ¥p{t) 
and Q{X) = XP - t e K[Xl 

The polynomial Q(X) is irreducible, but has only one root in Q, since if a^ = t, then 
Q{X) = (X - ay. Proposition 3.6.5 then impHes that K(a)/K cannot be Galois. 

Example 3.6.6 Let /? be a prime number. We saw in Chapter 1 that the cyclotomic 
polynomial 

<t>p(X) = X^-i + . . . + 1 G Q[X] 

is irreducible. 
Let f be a root of this polynomial in Q; then we know that f generates the group /Xp(Q) 

of thep-th roots ofunity. Theorem 3.6.5 then shows that the extension Q ( 0 / Q is Galois. 
Furthermore, Gal(Q/Q) acts on (f), and (^) = {f"; n e Z/pZ,} can be considered as a line 
Din the field Fp. 
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We thus obtain a natural representation 

Gal(Q/Q) ^ G L F / D ) , 

whose character is called the cyclotomic character Xp-
The representation of the preceding example has kernel equal to the group (p(Q{0) 

[a e Aut Q; or(^) = f}, which is a subgroup of finite index (equal io p - I) in GQ : 
Aut (Q). This suggests the following vocabulary. 

Definition 3.6.5 Let K be an arbitrary field and K an algebraic closure of K. 
A representation Ga\(k/K) - A GL 
subgroup of finite index ofGa\(K/K). 
A representation Gal(^/^) —> GLf{V) is said to be continuous if its kernel is a 

By the above, we see that if we let H denote the kernel of p, the group / / is a normal 
subgroup of G2l{k/K) and xl/(H)/K is a finite Galois extension: we say that p factors 
through xf/iH). 

3.7 RESOLUTION OF ALGEBRAIC EQUATIONS 

The complete investigation of the resolution of algebraic equations falls well outside the 
scope of this book. We restrict ourselves to simply stating some general principles which 
we will then apply to equations of degree three. 

3.7.1 Some General Principles 

Let ^ be a commutative field of characteristic p, equal either to a prime number or to zero, 
and let P(X) e K[X] be an irreducible polynomial of degree n. Take an algebraic closure Q 
of K, and consider the smallest subfield L of ^ which contains K and all the roots of P(X) 
in Q. If these roots are distinct, we saw (Section 3.6, theorem 3.6.5) that L/K is Galois; we 
denote its Galois group by G. 

Example 3.7.1 (1) Let P(X) = X^ -\-a2X^ -\-a4X-{-ae e K[X] be an irreducible polynomial 
of degree 3. Then the roots JCI , X2, X3 of P(X) are distinct if and only if P(X) and P\X) = 
3X^ + 2a2X + fl4 have no common root, i.e. if and only if P(X) does not divide P\X). 

This last condition would be possible only if P\X) = 0, i.e. p = characteristic(^) = 3 
and a2 = a4 = 0. The last case occurs, for example, when P(X) = X^ -\- pX -\- q e 
^3(t)[X] andp = 0; Eisenstein's criterion shows that P(X) is irreducible if ^ G F3[/] 
and v^(^) = 1. 

(2) In any case, [L : K] e {3, 6} since we have a tower of extensions K c K(xi) C L 
md[L:K(xi)] e {1,2}. 

If L/K is not separable [L : K] = 3, but we will see that we can have [L : K] = 3 even 
if L/K is separable. 
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Theorem 3.7.1 Assume that L/K is Galois, and let S = {xi,... ,Xn} denote the set of 
roots ofP(X) in Q. Let 0 „ denote the symmetric group ofS. Then the map 

G^(3n 

or I—> a\s 

is an injective morphism of G to C5„. Moreover, the image of G acts transitively 
on S. 

Proof The only non-trivial assertion is the transitivity of the action of (p(G). 
Let Xi and Xj be two elements of S. We know that 

K(xd = K[Xy(P) = K(Xj). 

Thus, there exists a ^-isomorphism from K(xi) onto K(xj). By Steinitz' theorem, this 
isomorphism extends to a ̂ -automorphism of Q, and its restriction to L is an element a in 
G such that a (xi) = Xj. D 

Example 3.7.2 If « = 3 and if L/K is Galois, then G is isomorphic to a subgroup of order 
3 or 6 of 0 3 . Thus we have either G = 03 or G = 2I3 (they both act transitively on S\), 
where 2I3 denotes the alternating group of order 3. 

Corollary 3.7.1 If L/K is Galois, then n divides #G. 

Definition 3.7.1 The discriminant of the polynomial P(X) is the product 

Remark 3.7.1 Since D is a symmetric function of the roots of P(X), the theorem of 
symmetric functions tells us that 

D e PA: [coefficients of P], 

where PK denotes the prime subfield of K. 
If the characteristic of K is zero, we even have 

DGZ[coefficientsofP]. 

Example 3.7.3 If P(X) = X^ + «2^^ + «4^ + «6, then 

D = P'(xi)P\x2)P\x3) = -4alae + ajaj + 18fl2'34«6 - ^aj - Uaj. (1) 

In particular, the discriminant ofX^-^pX-^q is given by 

D = -(27^^+V). (2) 
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Theorem 3.7.2 Assume that p ^ 2 and that L/K is Galois. Then 0{G) C 2l„ if and only 
ifD e ^K* (i.e. D is a square in K*). 

Proof. Set 

E = Y\(xi-Xj)eL, 

SO that E^ = D. 

Let a e G and let 6(a) be the signature of ^(a) e 0 „ . Then 

G(E) = e(a)E, 

so 0(G) c 2l„ is equivalent ioE e K. D 

Corollary 3.7.2 Assume that p ^ 2 and P(X) = X^ + a2X^ + a4X + a^ is separable. 
Then the following propositions are equivalent: 

(i) G = % 
(ii) [L:K] = 3 

(iii) K(Xi)/K is Galois for / e {1, 2, 3}. 

Example 3.7.4 The extension Q(^ V2)/Q is not Galois, since the discriminant of X^ — 2 
is —108, which is not the square of a rational number (it was obvious anyway!). 

Definition 3.7.2 
subgroups 

such that G/+1 is 
{ 0 , . . . , £ - l } . 

Let G be 

G = 

normal 

a group. We say that G is solvable if there exists a chain of 

= Go D Gi D G2 D • 

in Gi and Gi/Gi-^\ is 

O G , = 

Abelian, 

{e} 

and this holds for all i G 

The next result is the core of this section. 

Galois' Theorem 3.7.3 Let K be afield of characteristic zero. The equation P(X) = 0 is 
solvable by radicals if and only if the Galois group G of L/K is solvable. 

Remark 3.7.2 
(1) This theorem can be extended to fields of positive characteristic as long as their char­

acteristic does not divide the orders of the radicals or the indices [G/ : G/+i]. 
(2) For a proof, see [Kap] pp. 32-36 or [VWl] pp. 172-175. 

Example 3.7.5 Every equation of degree three is solvable by radicals. Indeed, for P(X) 
irreducible, it is enough to note that 2I3 and 0 3 are solvable groups. 
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Corollary (Ruffini ^ -̂Abel̂ ^ Theorem) 3.7.4 Let K be a field and 
indeterminates. Then the general equation of degree n, 

P(X) = X" + wiX"-^ + . . . + M̂  = 0, 

is not solvable by radicals when n > 5. 

Proof. Indeed, the Galois group of this equation, which is isomorphic to (J5„, is not solvable 
when n> 5 (see [Tau] p. 41). • 

Remark 3.7.3 

(1) What we give here is Galois' proof of the Ruffini-Abel theorem. For the original proof, 
see [Ab]. 

(2) Note that if « < 4, then the general equation of degree n is solvable by radicals, since 
(3n is solvable. 

3.7.2 Resolution of the Equation of Degree Three 

Let us give a brief presentation of the resolution of this equation by a method attributed to 
Tartaglia^^ and Cardan^ ,̂ although apparently this resolution is really due to Scipione del 
Ferro^^. 

This method can be applied to the general polynomial 

X^ + a2X^ -f a4X + ae (3) 

when the characteristic of the field K is not equal to 2 or 3. 
The translation X i-> X — ^2/3 brings this equation to the form 

X^-\-pX^q. (4) 

Since the characteristic of ̂  is not equal to 3, K contains two primitive cubic roots of unity, 
which we denote by 7 and 7 .̂ 

Scipione del Ferro and his disciples remarked that we have the identity 

(X-u- v)(X - uj - vf)(X - uf - vj) =X^ - 3uvX - (u^ + v^), (5) 

35 P. Ruffini (1765-1822). 
3̂  N.H.Abel (1802-1829). 
37 N.Tartaglia (1500-1557). 

38 G. Cardan (1501-1576). 

39 Scipione del Ferro (1465-1526). 
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and they were led to solve the equations 

3uv = —p, ŵ  4- v̂  = —q. 

We see that w' and v̂  must be roots of the equation 

F2 + ^ y - ( | ) ' = 0 . (6) 

Thus, if the characteristic of K is not equal to 2, we have 

.l-q±^q^+4(p/3y ^_p_ 
2 ' ^ 3M' 

and we obtain the three roots of (5). 

Remark 3.7.4 A priori, it seems that this method should give too many solutions. But the 
indetermination of the root of u^ only has the effect of cyclically permuting the three roots 
of (5), and the indetermination of the ± in (7) only permutes u and v and exchanges the last 
two roots of (5). 

Explanation of this resolution when the characteristic of K does not divide 6. 
We saw in the first part of this section that if (3) is irreducible over K, its Galois group is 
either Sis or 0 3 , according to whether D is or is not a square in K*. 

Let us begin by adjoining -/D to K; set R = K{\fD) C K. The polynomial (3) remains 
irreducible over R since [R : K} is equal to 1 or 2, and its Galois group is now 2I3. 

Let JCi, JC2, X3 denote the roots of (4) in K, and let us introduce the Lagrange resolvents'̂ ^ 

0̂ = -̂ 1 + X2 + X3 = 0 

ri=xx +/X2+7X3 eK. 

We know that R{x\) = R(x2) — R{x^) because D is a square in /?*, and we see that (3) 
remains irreducible over R{j) since [R{j) : R] is equal to 1 or 2. Set M = R(j). 

Let a = (xi, X2, X3) be a generator of Gal(M(jci)/M) = 2I3. Then we have 

i crin) = X2 -\-jX3 + / x i =fri 

cr(r2) = X2 -\~fx3 -h>i =jr2. 

which shows that r̂  and r^ are invariant under a, so they belong to M. 

"^^ L.de Lagrange (1736-1813). 
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Let us define \fD by 

\ / D : = (Xx - X2)(Xx - X^){X2 -X3) = S - t 

with 

S = x\x2 -f x\x2> + x\x\, t — X\x\ + X2X3 + XsXp 

We then find that 

r^^ =z x\-\- x\-{-xl-\- 3js + 3/r H- 6x1X2X3 

= -3q + 3j5 -h 3/(5 - V D ) - 6q 

= -9q -3s- 3fVb. 

Now, the equations 

s-i-t = 3q 

s-t = VD 

give 2s = 3q -{- \fD, hence 

But equation (6) implies that 

lr\ = -21 q ± 3V-3D. 

hu^ = -q± ^-D/21 
[2v^ = -q:jp^-D/21. 

Thus, we see that r^ e {(3M)̂  (3v)^}. 
Furthermore, we have 

nr2 = x^ 4-X2 + X3 - (X2X3 + X3X1 + X1X2) = -3p, 

so r^ = (3u)^ (resp. (3v)-̂ ) impHes rl = (3v)^ (resp. (3w)^). As 

3xi = ri + r2 

3x2 =7^1 -\-jr2 

3X3 =7>1 + / ^ 2 , 

we obtain the formulae of Tartaglia and Cardan. 

Remark 3.7.5 This explanation goes back to Lagrange [Vui]. 

(8) 
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COMMENTARY 

It seems probable that Newton was delighted to be able to manipulate formal series as 
though they were decimal expansions of real numbers (which were first introduced by 
Stevin). It is an established fact that Hensel and Landsberg introduced the p-adic expan­
sions of algebraic numbers (in 1902), as analogues of the Newton-Puiseux^^ expansions 
of algebraic functions. Thus the theory made a full, and remarkably fruitful, circle! 

Another fundamental idea, which was inspired in the mind of Hasse, in the 1920s, by 
a postcard from Hensel, and which he named the "Hasse principle", consists in asking if 
a Diophantine problem (assumed to have no solution) admits /7-adic solutions for every 
p. If there exists a prime number I for which the problem has no solution, we say that the 
problem is "trivial". We saw (theorem 3.4.2 of Section 3.4) that Fermat's problem is a 
"non-trivial" problem (as we may imagine!), since in fact Fermat's equation admits non-
trivial solutions in every p-adic field, and in R, but not in the field of rational numbers. 
We say that a given problem P satisfies the Hasse principle if the existence of solutions 
to P in all the p-adic completions of a global field k implies the existence of a solution in 
k (a global field is a finite extension of Q or a finite separable extension of Fp(0)- Thus 
Fermat's equation does not satisfy the Hasse principle. 

The reader can find useful complements to Sections 3.1 and 3.2 in the books by 
Cassels [Ca 1] and by Descombes [Des]. 

For Section 3.3, we should add the books by Schikhoff [Sch] and by Amice [Am]. 
For Steinitz' theorem, the reader can consult Bourbaki [Bou 1], and Cassels [Ca 1]. 
Linear representations of groups form a vast and marvellous subject which was bom 

in the mind of Galois ("the last theorem of Galois") before being taken up and studied by 
the German school at the turn of the century (by Frobenius in particular). The books by 
Serre [Se 2] and James and Liebeck [J-L] are excellent basic references for the subject. 

For Galois theory, we recommend the books by Artin [Ar 1] or Kaplansky [Kap], 
and for its history the books by Edwards [Ed] and by Verriest [Ve]. Note also that for 
certain authors (see [Tau] p. 354), a "Galois extension" Q/K is only an extension in 
which K is stationary. In this text, we have adopted a more classical point of view by 
also requiring that Q^/K be algebraic. 

Exercises and Problems for Chapter 3 

3.1 Show that if a commutative ring with unit is equipped with an absolute value, then it is an 
integral domain. Show that the absolute value of this ring extends to its fraction field. 

3.2 Let A be a commutative ring equipped with an absolute value | | satisfying condition (iii) of 
the definition of absolute value (Section 3.1) for a certain constant C. 

(a) Show that if a > 0, then the function | |" is an absolute value satisfying (iii) for the 
constant C". 

(b) Show that if the absolute value is triangular, then we can take C = 2. 
(c) We now want to show that if C < 2, the absolute value is triangular. 

41 V. Puiseux 1820-1883. 
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Show that for every /i G N, we have 

|2^| < & <2^. 

Writing every positive integer « < 2^ as a sum of n terms equal to 1 and 2^ — n terms equal to 
0, show that 

\n] < iK 

Writing n = 2*"' + r with 0 < r < 2''"', show that 

\n\ < 2* < In. 

Let X and y be any elements of A and n = 2'' — 1. Show that 

\{x+y)"\ |]Qxy-'j<c''supj|Qxy-' 

Deduce the following inequality from the relation \m\ < 2m: 

\(x + yr\<C''sup\2(^fj\xY-'\ 

Giving a suitable upper bound for the right-hand term, show that 

and deduce that 

Conclude by letting h tend to infinity (a prototype of this kind of reasoning can be found in the 
works of A. Cauchy). 

3.3 Prove the product formula (5): 

Mac n 1̂ 1̂ =1 
PeV 

whenjc E F^(0*. 
Start by checking the case where x is an irreducible polynomial Q e ¥q[t], then extending by 
"linearity", writing every x in the form 

x = xY\ Q"Q^"^ 

with A, G F* and VQ{X) G Z almost all zero. 

3.4 Let F be an arbitrary commutative field and F{t) the field of rational functions with coefficients 
in F. Let V denote the set of monic irreducible polynomials in F[t]. 
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(a) Following the procedure given in the main text, show that every absolute value | | on 
F(t) which is trivial on F and bounded on F[t] is associated to an irreducible polynomial 
P(t) e F[t], via the formula 

where pp is a fixed real number > 1 and vp(x) is the exponent of P in the decomposition 
of X as a product of monic irreducible polynomials. 

(P) Show that if I | is not bounded on F[r], we have 

where Voo(̂ ) is the degree of x. 
(y) Consider the family of absolute values {| \p}pe[oo]uv^ associated to real numbers pp and 

Poo greater than 1. Show that in order for this family to satisfy the product formula (5), it 
is necessary and sufficient that for every P € P , we have 

degP 
PP = Poo • 

3.5 Let F be a commutative field; consider A = F[X,Y]. 

(a) Let > indicate the lexicographic order on Z x Z defined by 

, , m > m' or 
(m,n) > (m ,n) \m = m' and n > n'. 

For^c«i,«2^«iy"2 ^ o , s e t 

^ E ^«i,a2^''' ^̂ ^̂  = inf{(«i, «2); Cai,«2 ^ 0) 
I a e Z x Z / 
\ almost all zero / 

and v(0) = 00. Show that if p is a real number > 1, the map 

is an ultrametric absolute value on A. 
iP) Same question, but now replacing the lexicographic order by 

(m,n)>(m\n) <=> m-^ nVl > m -\-nVl. 

3.6 Set Q(0 = {fl + bi, a and ^ € Q} c C. 
Show that a-\-bi\-> \a-{- bi\ = a^ -\- b^ is an absolute value on Q(/). 

Is it triangular ? 
Same question for \a + b^/^\ = a^ -\- 5b^ defined over Q ( \ / ^ ) C C. 

3.7 Show that the sequence defined by 

x\ =2 
f(Xn) 

2Xn 
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with/(x) = jĉ  — 2 is a Cauchy sequence of rational numbers for the absolute value | |oo • Is it 
convergent in Q? 

3.8 Show that the sequence defined by 

1 _ /fa) 

with/(jc) = jĉ  + 1 is a Cauchy sequence of rational numbers for the absolute value | I5 . Is it 
convergent in Q ? 

3.9 Show that the polynomial P(t) = r̂  + 1 is irreducible in F3[r]. 
Consider the sequence defined by 

'xi =t 
fiXn) 

Xn+\ — Xn — 
IXn 

with/(jc)=x2 + I. 
Show that {xn) is a Cauchy sequence for the absolute value | |p. Is it convergent in F3(0? 

3.10 Let /: be a field equipped with a triangular absolute value | |. 

Let B denote the /:-algebra of bounded sequences of elements of/:, i.e. of maps 

x\^—^k 

for which there exists a constant Q G R such that 

\Xn\ < C, 

for every n eN. 

(a) Show that the set C of Cauchy sequences in k for the absolute value | | is a sub-/:-algebra 
ofB. 

(P) Show that the set Â  of Cauchy sequences which tend to zero is an ideal of C. 
(y) Show that if JC is a Cauchy sequence which does not belong to N, then there exists a 

Cauchy sequence y such that xy = 1. Deduce that A'̂  is a maximal ideal of C and that C 
is a local ring. 

3.11 We now proceed to state and prove a version of Hensel's lemma . 

LetfiX) G Zp[X], and letf(X) e Zp[X] be its derivative. Ifa\ e Xp is such that 

\f{ax)\p < \f\a,)\l, 

then there exists a slup such that 

\a -ai\p < I and f{a) = 0. 
\f (ai)\p 
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(a) Show that we have 

f{X + Y) =f{X) +/ i(X)F + • •. +fn{X)Y" 

(where n denotes the degree of/), that the/CX) he in Zp[X] and that/i (X) =f(X). 
iP) Sttbi = -fiai)/f(ai). 

Show that bi e Zp and that we have 

'{f{ai-^bx)\p<\bi\l<\f{ai)\p 

riai-\-bx) -fiai)\p < \bi\p < \f\ai)\p. 

Deduce that [f^(a\ -\-bi)\p = \f'(a\)\p and that the number a2 = a\ -{• b\ still satisfies 
the conditions of the statement. 

iy) Define an by induction on n. 
Show that {an) converges in Zp to a root a of/(X), and that this root satisfies the inequality 
of the statement. 

(5) Show that a is the only root of/(X) which lies in the closed ball 

\xe%\\x-ax\p< 
\fiax)\ 
\f{a\)\p 

3.12 Using Exercise 3.11, prove the following assertions: 

(a) Let p be an odd prime. 
Assume that there exist b and a\ inVp = Z* such that \a^ — b\ < 1. Then ^ is a square 
in Zp. 

iP) Ifp ^ 2, then Q ; / 2 Q ; ^ (Z/2Z)2 where ^Q* := [x^; x G Q^}. 
(y) IfbeZi is congruent to 1 modulo 8, then Z? is a square in Z2. 
(5) Q * / 2 Q * ^ (Z/2Z)^ 

{e) Let ^ € U 3 . Then 

(^ is a cube in Z3) 4=^ (^ = ± l m o d 9 ) . 

3.13 Show that the completion of ¥q{t) for its r-adic absolute value is the field F^((r)) of formal 
series in t with coefficients in F^. 

3.14 Give a version of Hensel's lemma (Exercise 3.11) in for the r-adic completion F^((r)) of F^(r). 

3.15 Let^ = bQ^-b\t^-b2p'^ € F^[[r]] = A. Show that if w is not divisible by the characteristic 
of F^ and if ^0 7̂  0. then we have the equivalence 

{b is an /t^^power in A) <=^ {b^ is an n^^ power in F^) 

3.16 Let I loo be the absolute value at infinity of F^[r]. What is the completion of ¥q{t) for the 
extension of this absolute value to F^ {t) ? 

3.17 We propose to show that Q is countable. 

(a) Show that the set En of monic polynomials of Q[X] of degree n is countable. 
{p) Deduce that the set A„ of algebraic numbers jc G Q of degree n is countable, 
(y) Show that Q = V}n> 1 ^n and deduce that Q is countable. 
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3.18 Irrationality of jr 
Define the number TT as the smallest real positive root of the function x \-^ sinx. Let us show 
that we cannot have TT = a/b with a and b eN*. 
Set 

f x'{a-bxr 
V ^ n'\ 
[Fnix) =fn{x)~fir^\x) + / i ' \ x ) - • • • + ( - I f / i ' " ^ ( x ) . 

(a) Show that#^(0) and/i^^jr) lie in Z, so F„(0) and Fn{n) lie in Z. 
{p) Show that JQ fn{x) ^mxdx = F„(7r) - F„(0) e Z. 
iy) Show that for n sufficiently large and x G [0, TT], we have 

1 
0 <fn (x) sm X < —. 

TT 

(8) Obtain a contradiction. 

3.19 The p-adic exponential 
We propose to study the convergence of the series X!^o ^ for x G C^, an algebraically closed 
field of characteristic zero which is also complete for an absolute value | \p which extends the 
absolute value p-adic of Q. 

(a) Let n eN; write it in base p as 

n = ao -\- aip -\ h asP^ 

with at e {0,1, ...,p - 1} and as ^ 0. 
Set Sn := Xl/=o ^j (sum of the digits of n). Show that 

M. = £[^] = ^ -
7 = 1 

(p) SeiE = {x€Cp',\x\p<p^/^-P}. 
Show that the series expjc converges for every x G E. 

(8) Show that if x and y are in E, then x -\-yisinE and we have 

exp(x -\-y) = exp(x) exp(y). 

3.20 Binomial series 
Assume that a eZp, and set 

(i+.)-=E(:)^"-
n=0 

where (g) = 1 and {^) = a(a - 1).. .{a - n+ \)/n\. 

(a) Show that for every a € Z^, we have 

\n/ \p<\ 
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(P) Conclude that the series (1 -\- x)^ is convergent for every x e B, where B denotes the 
open ball 

B = [x e Cp; \x\p < 1}. 

(y) Show that the map 

x\—> (1+Jcf 

is continuous for the topology associated to | \p . 
(8) Check that if a € Z and jc € B, we recover the usual value of (1 + x)^ (we say that we 

have p-adically interpolated the function defined over Z). 
(e) Take a fixed x e B. 

Show that there exists a unique continuous function Zp -^ Cp whose restriction to Z is the 
usual value of (1 + x)^ (use the fact that Z is dense in Zp). 

3.21 Let n eN and let 0 „ be the group of permutations of 1, 2 , . . . , /i. 

(a) If a = ( a i , . . . , Up) is a cycle of 0 „ and if r is an arbitrary element of (3n, show that 

TcrT~^ = (r(fli), ...,T(ap)). 

(p) Deduce a way of determining the conjugacy classes of 0„ . 
iy) Show that 03 is the group of isometrics of an equilateral triangle. 
(8) Use (y) to determine the three irreducible characters of 0 3 . 

3.22 Schur's Lemma 

(a) Let G —^ GLxiVi), for / e {1,2}, be two irreducible representations of finite degree 
of the same group G. 
Assume that (̂  : Vi -> Vi is a ^-linear map such that for every 5 € G, we have 

(po px{s) = p2{s)o(p. 

Show that if (p ^0, (pis a. A'-linear isomorphism between pi and P2-
ip) Assume now that K is algebraically closed, and that V\ = V2 = V. Show that cp is 3. 

homothety (multiplication by a scalar) of V. 

3.23 Proof of Maschke's theorem 
Let G be a finite group and K a commutative field whose characteristic does not divide the order 
nofO. 

(a) Reduce the proof of Maschke's theorem to showing that if a ^[G]-module V contains a 
A:[G]-submodule U, then there is a AT [G]-module Ĥ  in V which is supplementary to U 
in the sense that 
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iP) Let (7 be a submodule, and let WQ be a A'-subvector space supplementary to U in V. Let 
7T denote the projection V^> U, which has kernel WQ- Show that if for x e V we set 

0(x) = -Ts-^[jt(sg)l 

then the map ^ : V̂  ^- V is a ^[G]-endomorphism. 
iy) Show that for every t e G and y e U^^Nt have 

71 {ty) = ty. 

Deduce thate(y) = y mdO^ = 0. 
(8) Set W = Ker 6*, and show that W is a /i:[G]-submodule of V such that 

V = U^W, 

3.24 Let p : G -> GL„(C) be a representation of a finite group G. 

(i) Show that for every g G G, we have 

\xig)\<xW=n. 

(ii) Show that if |x(g)| = x( l ) , then 

p(g) = XIn = )^p{e) 

withAeC*. 
(iii) Deduce that 

Kerp = {gGG;x(8) = x(e)]. 

3.25 Recall that every finite Abelian group G is a finite product of cyclic groups C„. = Z//1/Z : 

U •=. C^j X • • • X C^^ 

(i) Let Ci be a generator of C«.. Set 

g/ = ( l , l , . . . , C / , . . . l ) 

where 1 represents the identity element of C„. for every y. 
Show that the set {^i,..., g^} generates G ,̂ i.e. that 

G= {gu...,gr). 

(ii) Consider G = Hom(G, C*). Show that every element p e G is determined by 
(pigi), '•', P(gr))y and that for every /, p(gi) e f^miQ^ where /J^miQ denotes the 
set of roots of Z"' - 1 in C. 

(iii) Show that G = /x„, (C) x • • x At„,(C) = G. 
(iv) Show that G is in bijection with the equivalence classes of representations of degree 1 of 

G over the field of complex numbers. 
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3.26 Let G be an arbitrary group. 

(i) Let G —> A be a homomorphism from a group G to an Abelian group A. Show that 
the kernel of g contains the set of commutators of G, i.e. the set of elements of the form 
[jc, _y] = xyx~^y~^, x and y e G. 

(ii) Let the commutator subgroup G' of G be the subgroup of G generated by the set of 
commutators. Show that G' is a normal subgroup of G, and that G/G' is Abelian. Let 
(p denote the canonical homomorphism G - » G/G'. Show that (p has the following 
universal property: for every homomorphism G —> A, there exists a unique homorphism 
G/G' - ^ A such that 

G - ^ G/G' 
g \ ih 

A 

(iii) Show that if p is a representation of degree 1 of G, the kernel of p contains G^ and that 
there exists a unique representation p' of degree 1 of G/G' such that p = p' o(p. Deduce 
the existence of a bijective correspondence between the representations of degree 1 of G 
and those of G/G'. 

(iv) Assume now that G is finite, and consider the complex representations of G. Show (using 
Exercise 3.25) that the number of equivalence classes of representations of degree 1 of G 
(i.e. of 'linear characters" of G) is equal to (G : G'). 

li.in Hasse principle for conies 
Let a, h and c be three non-zero integers in Z, and consider the projective conic of equation 

ajĉ  + /7 / + cz^ (^fl,̂ ,c) 

We will establish a necessary and sufficient condition for this equation to admit a rational point. 
We saw in problem 7 of Chapter 1 that we may assume that a, b and c are square-free and 
pairwise relatively prime. 

I. Show that if La,b,c admits a rational point, then it admits a real point and points in every 
/7-adic field (this is trivial!). 

II. We want to show the converse, using problem 7 of Chapter 1. 

(1) Suppose that/? divides c and that (M, V, W) is ap-adic point of La,b,c-
Show that we can suppose that sup(|M|p, \v\p, \w\p) = 1, and show that then we have 

Mp = \v\p = 1-
(2) Deduce that —ab is a square modulo/?. 
(3) Considering all the prime divisors p of c, show that —ab is a square modulo c. 
(4) Conclude. 
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Problem I 

Let I I be an arbitrary absolute value defined over a field k, and let a ek. 
We say that a subset V of /: is a neighbourhood of a for this absolute value, if there exists £ > 0 

such that 

V ^ [x ek\\x- a\ < s]. 

(1) Show that this definition equips k with a topology (attached to | |). 
(2) What is this topology when | | is the trivial absolute value? 
(3) Let ckf > 0. Show that the topologies associated to | | and | |" are the same. 
(4) Show that if the absolute values | 11 and | I2 defined over k induce the same topology, then there 

exists Of > 0 such that | I2 = | \". Show that we have the equivalence 

l^ll < 1 <^=^ \X\2 < 1. 

Now, taking x = a^W, show that if ab ^ 0, then 

logl^b _ log \b\2 
logi^ii log 1̂1 r 

(5) We say that the topology T\ is finer than the topology T2 if for every a e k, vjt have 

(limfe) =a) => {\im(xn) = a). 
Ti T2 

Show that if the absolute value | 11 is not trivial and if it induces a topology T\ which is finer 
than the topology T2 induced by | I2, then there exists a > 0 such that | |2=| I" . 

Deduce that the topologies Ti and T2 are the same. 
(6) Two absolute values | 11 and | I2 defined over k are said to be "equivalent" if there exists of > 0 

such that I I2 = I 1̂  . 
Show by induction on n that if the absolute values | 11 , . . . , | U are non-trivial and pairwise 

inequivalent, then there exists a e k such that 

\a\i > 1 and \a\i < 1 for2 < / < n. 

(7) We propose to deduce from question (6) the following result, called the "theorem of weak 
independence of absolute values". 

Take n elements a\,... ,an ofk and n non-trivial inequivalent absolute values \ 11 , . . . , | |„. 
Then for every e > 0, there exists x ek such that \x — a, |/ < s for / = 1 , . . . , n. 

To prove this, use elements c/ € k such that 

\ci\i > 1, \ci\j < 1 ifj # / . 

For every v e N, set 

c c-

T 

and then take x = x^ with v sufficiently large. 
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(8) Assume that k = Q and take n distinct primes pi,..., Pn-
Take n elements ai,... ,an eZ and let £ > 0. Show that there exists JC G Q such that 

k — /̂1/7, < ^ for / = 1 , . . . , n. 

Deduce the following property (known as the Chinese remainder theorem): there exists y e Z 
such that 

\y — «/ \pi < ^ for / = 1 , . . . , n. 

The Chinese remainder theorem is a special case of the "theorem of strong independence of 
absolute values" in global fields. 

Problem 2 

(Ostrowski's Theorem) 

Let /: be a commutative field equipped with an Archimedean absolute value |! ||, i.e. an absolute value 
which is not bounded on the subring generated by 1 .̂ 

We propose to show that there exists an isomorphism 7 : /: ^- C of commutative rings with unit, 
and a real number a > 0, such that for every x e kwQ have ||x|| = {i(x)\^. 

A. We propose to replace || || by a triangular absolute value. 

(1) Consider the special case k = Q(f). where ^ is a root of X^ + X + 1, and for a and b e Q, set 

\\a-\-b^\\ =a^ -ab + b^. 

Show that II II is an Archimedean absolute value on k; find an isomorphism; and the value of a. 
(2) Let us return to the general case. 

Show that the prime subfield of k is the field Q of the rationals, that there exists a real 
number a > 0 such that ||x|| = |jc|^ for every JC e Q, and that the completion ^ of /: for || || ^/" 
contains M. 

B. Replace || || by || || ^/", i.e. assume now that || || is a triangular absolute value. Take x e k; let us 
show that X is a root of an equation of degree two over R. 

(1) Let X e k.lfz e C, the numbers z-\-z and zz are in R, so we can consider the map 

z\-^ \\x^ -{z-^z)x-\-zz\\ 

Show that hx is a continuous function of C. 
(2) Show that hx(z) tends to infinity when |z| tends to infinity. Deduce that hx admits a minimum 

fn = hxizo) inC. 
(3) Show that h~^{m) is compact and that there exists z\ G h~^{m) such that \z\ \ is maximal in 

h-Hm). 
We now propose to show that m = 0. 

(4) Set 

g(X) =X^- izi + zi)X + zizi e R[X] 

/i(X) = ^(X) + | . 

Show that if m > 0, then h(X) has at least one root Z2 ̂  C such that \z2\ > \zi\- Deduce that 
Z2 ^ h-^(m). 
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(5) Set 

G(X) = g{Xr - ( ^ ) €M[Z]. 

Show that G(Z2) = 0. 
Let ? / ( / = ! , . . . , 2n) be the roots of G in C. Writing 

G^(X) = Y\(X^ - (ti + ~ti)X + ti'ti) 

and replacing Z by x, show that 

2n n 
1=1 

\\GHx)\\>m^''-^hAZ2). 

(6) Show that we also have 

\\G\x)\\ = \\G{x}f<m^'' (-^r 
(7) Deduce an upper bound for hxizi) and obtain a contradiction by letting n tend to infinity. 

C. We now want to prove the existence of y : k -^ C such that 

\\x\\ = [/-Wl. 

(1) Show that [k : R] < 2. 
(2) Construct; when k = R. 
(3) Using Steinitz' theorem, show that7 exists when [̂  : M] = 2. 

How many possible isomorphisms y are there? 

Problem 3 

(Hermite's Theorem) 

We want to show that TT does not satisfy any non-trivial algebraic equation with coefficients in Z. To 
show this, we use Euler's relation 

^'^ = - 1 . 

(1) Let/(x) = Em=o«m^"^ c m -
Set 

Q{x) = F{0)e^-F(x)eC[[x]l 

Show that for every jc G C, we have 

m=0 

One can start by considering the case/(jc) = x^. 
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(2) We will now obtain a contradiction, by assuming that in is the root ai of the polynomial 

E(x) = ax"^ + axx"^-^ + • • • + «m € Z[jc] 

such that a > 0. 
Show that ax is then a root of a monic polynomial P{x) with integral coefficients of degree m. 

(3) Set 

m m 

where the a/j are the roots of E(x). 
Show that R = c-\-e^^ -\ he^'', where c represents the number of terms of the expanded 

product whose exponent is zero and where the pi are (not necessarily distinct) sums of a/̂ . 
(4) Let p be an arbitrary prime. 

Show that 

fix) := ^ ^ ^ C ^ - ^ ) ^ " ' Yl^cix - aPhf 
( P - D ! h=\ 

can be written (Ap^ixP'^ 4-Apjc^ H )/(p - 1)! with A/ € Z. 
(5) Show that for every /i G { 1 , . . . , r}, we can also write 

Bp^hix - hr+Bp+i^hix - hr^^ + • • 
fix) = '̂  ( p - 1 ) ! 

where the 5^/j are polynomials with integral coefficients in the roots of P{x). 
(6) Assume now that/? is strictly greater than sup{c, a, Y\h=\i^\Ph\)]- Writing 

cF(0) + J2 ^^Ph) + Yl Q^Ph) = FiO) (c + ^ ^̂ M = 0, 
h=\ h=\ \ h=l / 

show that cF(0) = cAp-i ^ 0 (mod/?). 
(7) Show that Ylhr=\ ^iPh) = pcp +/?(/?+ l)cp+i + • • • where the Cs are symmetric functions of 

a^i,..., a^h' Deduce that the Cs lie in Z and that Yl[=\ ^iPh) ^ P^-
(8) Deduce from (6) and (7) that |cF(0) + Y^\i=\ PiPh)\ ^ U and obtain a contradiction using (1) 

when p is large enough. 

Problem 4 

The goal of this problem is the construction of an infinity of elements in Aut(C); such elements are 
called involutions of C when their order in Aut(C) is equal to 2. 

(1) Let r be an involution of C. Show that if r(M) C M, then r is the complex conjugation a. 
(2) Let T be an involution of C. Show that if r is continuous (for the usual topology on C), then 

T = cr. 
(3) Recall that an ordered set S is said to be inductive if every totally ordered subset of 5 is bounded. 

We will admit Zom's lemma: 
Every non-empty inductive set admits (at least) one maximal element. 
Let S be the set of subfields of E which do not contain \/2. Show that S contains a maximal 

element K^. 
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(4) Show that for every jc € R \ AT/2, we have \fl G K{X). Deduce that M is algebraic over K. 
(5) Show that C is an algebraic closure of Kj^. 

(6) Set L = K/2(V2), and let 0 denote the automorphism of L such that 

^k^=id^^, e{V2) = -V2. 

Show that there exists an automorphism r of C such that r \L= 0. 
(7) Considering T ( V 2 ) , show that r does not commute with the complex conjugation involution cr. 
(8) Deduce that a/2 := rcrr~ Ms an involution of Aut(C)^/;^^r^nf from a, and that cry2(V2) = V^-
(9) Let R denote the field of invariants of {idc, cr^} (i.e. R := iA({idc, cr^}) in C/Q). Show that 

[C:R] = 2 and that R D K^(V2). 
(10) Let/7 be an odd prime. Show that there exists an automorphism Zp of C such that 

Tp{^/2) = - V 2 , Tp{^) = V^. 

(11) Show that Aut(C) is infinite. 
(12) Let e and n denote two transcendental elements of C. Show that Q(^) is isomorphic 

toQ(7r). 
(13) Let Se (resp. Sj^) be the set of subfields of C which do not contain e (resp. TT). Show that Se 

(resp. 5;r) contains a maximal element E (resp. P), and E(e) = C = P(7t). Deduce the existence 
of an automorphism of C sending ^ to TT. What can one say about the orbit of a transcendental 
element of C under the action of Aut(C) ? 

Problem 5 

(Newton-Puiseux theorem) 

Let ii: be a field, and let K'^ denote the set of maps from Q to K. Iff e K^,WQ set 

Suppif) = la eQ'J(a) ^0]. 

Let N(K) be the subset of K'^ consisting of the elements/ such that 

(i) Suppif) c Z/i7^ for a certain Uf e N* 
(ii) There exists )6/ € Q such that Suppif) c [yS/, oo[. 

Write 

f= Y. /(«)̂ "' 
aeSuppif) 

and set 

if + g){ot) =fia) + g(a), (fg){a) = ^ f(P)8iy)-

A. (1) Show that N(K) is a field. 

(2) We define a map N{K) ^ Q U {oo} by 

v(0) = +00, v(f) = smallest element of Suppif) iff ^ 0. 

Show that V is a valuation on N{K). 
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(3) Let A G Q!J_, show that the map 

r^^:N{K)^N(K) 

defined by rji(f)(a) =f(X~^a) is an automorphism of N(K), and that 

vir]x(f)) = kv(f). 

B. Assume now that K is an algebraically closed field of characteristic zero. The goal of this part 
is to show that N(K) is also algebraically closed. 

(1) Let G(X) e N{K)[X] be a monic polynomial of degree n > I. Show that using a suitable 
automorphism of N(K), we can assume that 

G(X) G K((t))[Xl 

and that we even have G(X) = X^ +/2X'^"^ + •••+/« with^- e Ki{t)). 
(2) Assume that the/i are in K[[t]] and that there exists an index / such thatyiCO) ^ 0. 

Set G(X) =X^ +/2(0)X"-2 ^ . . . ^^^(Q) ^ f.^xi 
Show that G(X) is not a power of a polynomial of degree 1 in X. 

(3) Assume that F(X) e K[[tmX] and that F(X) = piX)a(X) with p(X),a(X) € K[Xl 
(p(Z), a(Z)) = 1 and degp(X) > 0. Show that F{X) = R(X)S(X), with R(X), S(X) e 
K[[t]][Xl R(X) = p(X), SiX) = a(X) and deg/?(X) = deg(p(X)) (another form of 
Hensel's lemma). 

(4) Deduce from (2) and (3) that G(X) has a factor of degree m in ^[[r]][X] with I < m < n. 
(5) Our goal is to generalise the result of (4) to the case where G{X) = Z" -\-f2X^-^ + •••+/« 

is in K((t))[X] but not necessarily in A'[[/]][Z]. We assume that the// are not all zero, and 
we choose re {2 , . . . , «} such that 

V(fr) . ,{v(fi) 
= mfj——', 2 < i < n [ . 

(5.1) Show that applying the automorphism r]r to the coefficients of G(X) and replacing X 
by t^^''^X, we obtain a polynomial 

with gi e K[[t]] for 2 < i < n. 
(5.2) Applying question (4) to the polynomial 

/ / (X):=X"+g2^ '^-2 + . . . + ^ „ , 

obtain the desired result. 

C. Now take an arbitrary prime number/?, and assume that A' is a field of characteristic zero having 
the property 

(V) Every non-zero polynomial ofK[X] whose degree is not divisible by p has a root in K. 
Applying the method of B, show that if K has the property V then N{K) also has the 

property V. 
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Problem 6 

(Casus irreducibilis) 

When an equation of degree three with rational coefficients admits three real roots, its discriminant 
is negative. It follows that the first of the equations (7) of section 3.7 contains the cube root of an 
"imaginary" quantity. Is it possible to avoid having recourse to "imaginary" quantities in resolving 
equations by radicals? We will see that the answer is no when the equation has no rational roots. 

(1) Let ^ be a field of characteristic zero. Take a e K, and show the equivalence of the conditions 
(i)and(ii): 

(i) a is a cube in K 
(ii) The polynomial X^ — ais reducible in K[X]. 

(2) Consider the equation 

X^ - 6X + 2 = 0. (E) 

Does this equation have a root in Q? 
(3) Show that (E) has three distinct real roots a, p and y. 
(4) Do we have Q(Qf) ~ Q(y6)? 
(5) Set K = Q ( x ^ ) . Show that 

K{ci) = KiP) = K(y). 

Letting L denote this field, show that [L : K] = 3 and determine Ga\(L/K). 
(6) Suppose that there exists a sequence of extensions 

/i: = /(To c Â i c /:2 c • • • c /̂ „ c M 

such that Ki^i = Ki( ^j/o/) withpt prime for / € {0 , . . . , n - 1}, «/ G AT and ai > 0, a ^ Ki for 
/ < n and a e Kn. 

Show that then we have /7„_i = 3. 
(7) Show that Kn/Kn-\ is a Galois extension, and deduce thaty andj^ belong to Kn. 
(8) Conclude. 

Problem 7 

("Galois' Last Theorem") 

A. Let F be a commutative field, and let GA be the set 

GA = [ax + b\ aeF*, beF} 

of polynomials of degree 1, equipped with the composition law 

(ax -\-b)o {a'x + b') = a{ax -\-b')-\-b = aax + (ab' + b). 

(1) Show that (GA, o) is a group, and that the map 

IGA^F* 
det 

\ax -\- b I—> a 

is a group homomorphism. 
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The group G is called the group of affine transformations of F, and T = Ker(det) is the 
group of translations of F. 

(2) Let X e F*, and let 0(k) denote the automorphism of (F, +) which sends b to Xb. 
Show that 0 \ F"" ^ Aut(F, +) is a group homomorphism, and that GA is isomorphic to 

the semi-direct product F ^ F* = {(/?, a) G F x F*; *} with 

{b, a) * {b\ a) = (b-\- e{a){b'), aa) 

(3) Deduce that in order for GA to be commutative, it is necessary and sufficient that F = F2. 
(4) Show that the isomorphism 

(ot) 
is the matrix given by a representation of degree 2 of GA over F. Is it irreducible? 
Can we apply Maschke's theorem when F is finite? 

(5) Show that every subgroup of GA which contains T is solvable. 

B. Let K be an arbitrary field, and P(X) an irreducible separable polynomial in K[X] whose degree is 
a prime number;?. Let K denote an algebraic closure of Â , and L the smallest subfield of ^ containing 
K and all the roots of P(X) in K. 

(1) Show that the extension L/K is Galois. 
(2) Let a\,... ,ap denote the roots of P(X) in K, and G the Galois group of L/K. Recall that G acts 

transitively on these roots, i.e. for every a/, there exists an element a e G such that cr(Qfi) = at. 
Let H = Staboioii) := {a G G; a(Qfi) = a\]. Show that {G : H) = p and deduce that/? 
divides #G. 

(3) Let Â  be a normal subgroup of G, and \eiS\ = {a 1, a2. • • •» CJ;̂ } the orbit of ai under the action 
of TV. Show that every other orbit of S = [ai,... ,ap] under the action of Â  is of the form 
5/ = {or(Qfi),..., (J(as)} for a eG. Deduce that s = 1 or 5 = p, and that Â  acts transitively on 
therootsofF(X)ifA^7^{^}. 

(4) Choose indices 1, 2 , . . . ,p for the roots of/ in the field F^. Following Galois, we see that G is 
isomorphic to a group of permutations of the elements of the field F^, where a permutation a 
acts via 

a (a/) ^a(/)-

Show that if #G = /?, then G = T. 
(5) Show that if G is Abehan and/? > 2, then G = T. 
(6) By induction on #G, show that if G is solvable, then G is isomorphic to a subgroup of GA 

containing T. 
Assume that G is not Abelian, and consider a non-trivial normal subgroup NofG such that 

N ^ G. Show that if a is given by jc H> jc + 1, then for every i e G, T(7T~MS a cycle of order 
/? contained in Â ; determine its expression in GA by using the induction hypothesis. Finally, 
show that r G GA. 



4 
ELLIPTIC CURVES 

Over the field of complex numbers, an elliptic curve is a curve which is isomorphic to a 
Weierstrass cubic (this will be proved in Chapter 5). Such a curve is thus the quotient of C 
by a lattice in C. 

Now, however, we wish to define the notion of an elliptic curve over an arbitrary field, for 
example over the field Q of rational numbers or over a finite field (of positive characteristic). 

In such a context, it would be illusory to try to define elliptic, or even loxodromic 
functions, and we are reduced to the resources afforded by algebraic geometry, which are 
fortunately considerable. 

It so happens, however, that in recent years algebraic geometry has developed into a 
vast territory whose language takes years of study to master, and we do not wish to assume 
here that the reader is familiar with it. Thus, we will adopt the more naive points of view 
of the "analytic geometry" due to Descartes'̂ ^ and Fermat, and the projective geometry of 
Chasles'*^ and Poncelet^. We will take advantage of the fact that, in the projective plane, 
an elliptic curve can be considered as a hypersurface, i.e. as an object given by a non-zero 
homogeneous polynomial F(X, F, Z) e k[X, Y, Z] of a certain type (modulo the constants 
of A;*), and we will study these hypersurfaces using the notion of an intersection product. 

The main results of this chapter can be found in Sections 4.4-4.7, then Sections 4.9 
and 4.15. The theorems in Sections 4.4, 4.5 and the first theorem of Section 4.7 are par­
ticularly interesting. As for Mazur's theorem (Section 4.10), it will play a crucial role in 
Section 6.6 of Chapter 6 (irreducibility of the representation using the /^-division points of 
the Hellegouarch-Frey curve). 

4.1 CUBICS AND ELLIPTIC CURVES 

We have already considered cubics and elliptic curves at length in the preceding chapters; 
recall that in Chapter 1, we studied the third-degree Fermat equation, and in Chapter 2, the 

42 R. Descartes (1596-1650). 

43 M.Chasles (1793-1880). 

44 J.V. Poncelet (1788-1867). 
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Weierstrass cubic. In the first situation, we considered the curve as being defined over Q, and 
in the second case the Weierstrass cubics were defined over C: in fact, what we want is to 
consider a general situation in which curves will be defined over an arbitrary field. Recall 
that we saw that the most natural framework for studying the geometry of these curves was 
the framework of projective geometry, which arises naturally in Diophantine problems, and 
which is motivated by internal reasons in the study of Weierstrass cubics (in order to ensure 
that the set of points of the curve forms an additive group, which in particular contains an 
identity element). 

In order to develop a precise vocabulary, we need to return to the notion of a plane 
algebraic curve. This notion goes back to the invention of analytic geometry by Descartes 
and Fermat, in the first half of the 17th century. For example, consider a conic F having a 
focus at the origin and for associated directrix the line given by the following homogeneous 
equation in (X, Y, Z) : uX -{-vY + wZ = 0. This conic is the set of points of R^ satisfying 
an equation of the form: 

F(X, Y, Z) = X(X^ + Y^) + fiiuX + vF + wZf = 0, 

with (A,/x) G M 2 \ {(0,0)}. 
When (A., /x) = (1,0) and (0, 1), we obtain two limit cases of curves of the preceding 

type: the "real point" of equation X'^ -{- Y^ = 0 and the "double fine" of equation (uX + 
vY + wZf = 0. 

At the beginning of the 19th century, a certain number of geometers considered that 
these two limit cases contained the very essence of the idea of a conic defined by focus 
and directrix, but that in order to understand this idea, one should consider these conies as 
objects inside P2(C). In other words, one should extend the field of scalars from R to C. 

If Fo denotes the conic of equation X^ -\-Y^ = 0, we see that this curve is such that 

Fo(R) := {(a, b, c) e P2(R); a^-hb^ = 0} = {(0, 0, 1)} 

Fo(C) := {(a, b, c) e P2(C); a^-\-b^ = 0} = A(C) U A(C), 

where A denotes the line X — iY = 0 and A the "conjugate line" X -{- iY = 0, and where 
we set 

I A(C) := {(a, b, c) e P2(C); a-\-ib = 0} 

[ A(C) := {(a, b, c) e P2(C); a - ib = 0}. 

The extension of our field of vision from R^ to C^ makes it possible to "see" that the idea 
of a conic with focus at the origin and associated directrix D can be identified with that of 
a conic tangent to the "isotropic lines" (here A and A are called the isotropic lines at the 
origin) at points situated on the line D (this definition is due to Pliicker"^^). 

The main idea which should be retained from this brief historical overview is that 
the equation of a curve is a more fundamental notion that the set of its points (in 
R2, P2(R),C^P2(C),etc.). 

"^^ J.Plucker, 1801-1868. 
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Definition 4.1.1 Let d be an integer > 1. A plane projective curve of degree d defined 
oyer k is just an element of F(k[X, Y, Z]^), where k[X, Y, Z]^ denotes the k-vector space 
of homogeneous polynomials of degree d in X, F, Z and ¥(k[X, Y, Z]d) the associated 
projective space. 

Thus, a curve is given by a non-zero polynomial F e k[X, Y, Z]d, of degree d > 0, 
determined up to a multiplicative constant. We will often write it as F(x, y, z) = 0. 

If Â  is a field containing k, we set 

F(K) := {(a, b, c) e F2{K); F{a, b, c) = 0}; 

this makes sense since F is homogeneous. 

Thus, we see that the curve F defines a functor 

K H-> F(K) e V(¥2(K)), 

where V(F2(K)) denotes the set of subsets of ¥2(K). 

Example 4.1.1 

(1) Curves of degree 1 are called lines. 
(2) Curves of degree 2 are often called conies. A conic can sometimes be decomposed 

as the union of two distinct or identical lines; this can be seen by taking 

F(X, y, Z) := (uiX + vi y 4- wiZ)(u2X + V2Y + W2Z). 

(3) Curves of degree 3 are often called cubics. A cubic can sometimes be decomposed as 
the union of a line and a conic; this can be seen by taking 

F(X, y, Z) := (uX + vF + wZ)r(X, Y, Z) 

where r(X, Y, Z) is a conic. 

Definition 4.1.2 Let k be an algebraic closure ofk. If the homogeneous polynomial 
F e k[X, y, Z] is irreducible in k[X, Y, Z], we say that the curve F is absolutely irre­
ducible. 

Let us now recall the definition of a singular point (or multiple point) of a curve F. 

Definition 4.1.3 LetP = 
multiple pointj ofF if 

Otherwise we say 

dF 

dx^ 

= (a, b, c) e F{k). 

dF 
b, c) = —(a, b, c 

dY 

We say that P is a singular point (or a 

dF 
) = — ia ,b ,c) az' ^ 

that P is non-singular or simple. 

= 0. 
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Remark 4.1.1 

(1) This definition is meaningful since F is homogeneous. 
(2) When the degree AZ of F is not divisible by the characteristic of k, the conditions of 

the definition are redundant since Euler's identity says that 

dF dF dF 
nF = X— + y — + Z — . 

dx dY dz 

(3) A curve having no singular points in PiC^) is said to be non-singular, or smooth. 

Example 4.1.2 (1) The curves 

x^, x2 + ŷ  Y^z-x\ Y^z-x^(x-z) 

are singular. 
(2) The cubic 

L : Y^Z-X(X-Z)(X-XZ), Xek\{0,l} 

is non-singular when the characteristic of k is not equal to 2. But if ^ = F4 = {0, 1, X, /x}, 
we see that the point P = (/x, 1, 1) is a singular point of L. 

(3) The cubic 

F : X^ + r^ + Z^ 

is non-singular when the characteristic of k is not equal to 3, but if it is equal to 3 we have 

F(X, F, Z) = (X -f F + Z)^ 

and all its points are singular (it is a triple line). 

(4) If the line D does not intersect the smooth conic C in P2(Q), then the cubic F = DC 
has no singular point in P2(Q). However, it admits singular points in P2(Q), as shown by 
the following property. 

Property 4.1.1 Let F and G be two plane curves defined over k, and let {a, b, c) be a 
point ofFik) n G{k). Then (a,b,c) is a multiple point of the curve FG. 

Proof. Let u denote one of the variables X, F, Z, and P the point {a, b, c) e k^. We have 

dFG dF dG 
—-(P) = —(P)G(P)+F(P) — (P), 
au au au 

so (dFG/du)(P) = 0 for every choice of w. D 

Corollary 4.1.1 If F(k) does not contain any singular points, then F is absolutely 
irreducible. 
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We can now give the precise conditions to be satisfied by a cubic in order for it to qualify 
as an elliptic curve. 

Definition 4.1.4 A cubic F defined over k is an elliptic curve defined over k if and 
only ifF(k) / 0 and it is non-singular. 

Example 4.1.3 

(1) Y^Z - X^ and Y^Z -X^iX- Z) are not elliptic curves over any field. 
(2) Y^Z — X{X — Z)(X — 2Z) is an elliptic curve over every field of characteristic not 

equal to 2. 
(3) X^ + Y^ -\- Z^ is an elliptic curve over every field of characteristic not equal to 3. 
(4) X^ -\-pY^ -\-p^Z^, where /? is a prime number, is not an elliptic curve over Q, but is an 

elliptic curve over Q and even over Q ( ^ ) . 

When the projective plane curve F e k[X, Y, Z]d is not absolutely irreducible, there 
exist G and H ink[X,Y,Z]\k such that F = GH. One can then ask whether they are 
homogeneous. 

Proposition 4.1.1 Let d > 1 and F e k[X, Y, Z]j \ {0}. If F = GH with G and H e 
k[X, Y,Z] \k, then G and H are homogeneous, i.e. there exist integers g and h > 0 such 
that G G k[X, Y, Z\ and H e k[X, Y, Z]h with F = GH. 

Proof. Set K = k(X,Y,Z) and consider a new indeterminate T. We have 

F(TX, TY, TZ) = F(X, Y, Z)T^ e K[T] 

G(TX, TY, TZ) = E/« / (^ ' ^' ^)T' ^ K[T] 

H(TX, TY, TZ) = J2j bj(X, Y, Z)P e K[T]. 

From the relation 

Td^(^^Kx, y,z) \ /y.bj(x, y,z)^. 
\^F(X,Y,Z) J\^F(X,Y,Z) 

in K[T], we deduce that the first factor is associated to T^ for a certain g > I and the second 
factor is associated to 7^, for /z > 1. Thus all the «/ except for ag are zero and all the bj 
except for bh are zero. D 

Corollary 4.1.2 Let F be a projective plane curve. If 
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is the decomposition of F as a product of irreducible factors in k[X, 7, Z], then all the 
polynomials F/ are homogeneous, and we have 

F{k) = [JFi{k). 
i=\ 

Definition 4.1.5 Under the conditions of the corollary, the F/ are called the irreducible 
components of the curve F, and we say that ei is the multiplicity of the component Ft. 

Let P = (a, b, c) e F(k) be a point on the plane curve F{X, F, Z) e k[X, Y, Z]j \ {0}. 
As one of the three numbers a, b,c is non-zero, we can assume, for example, that c = 1 
mdF(a,b,l) = 0. 

Definition 4.1.6 The dehomogenisation ofF in Z is the affine curve F^ (x, y) defined by 

F,(x,y)=F(x,y^l). 

We then have 

Fi^(x,y) = Fi(x — a,x — b) -\-''' -\- Fd{x — a,x — b), 

where each F/(Z, Y) e k[X, 7]/. 
We know that 

(1) If F is simple, then Fi (X, Y) ^ 0 and the equation of the tangent to Fb at (a, b) is 

Fx{x-a,y-b) =0 . 

(2) If P is multiple, then Fi (X, Y) = 0. In fact, we easily see that a necessary and sufficient 
condition for P to be singular on F is that F\ (X, Y) = 0. 

Definition 4.1.7 The order of multipHcity ofP on F, denoted by mp (F), is the smallest 
index i such that Fi(X, Y) ^ 0. 

Remark 4.1.2 The number mp (F) does not depend on the choice of a system of coordinates 
mF2(k). 

Definition 4.1.8 Consider two curves F and G defined over k, and take three homoge­
neous polynomials of the same degree d > 0 in k[X, Y,Z]: 

A(X,Y,Z), B(X,Y,Z) and C{X,Y,Z). 

We say that A, B and C define a rational map cpfrom F to G, defined over k, if for all but 
a finite number ofpoints_(x, y, z) € F(k), (p{x, y, z) = (A(jc, y, z), B(x, y, z), C(x, y, z)) 
is defined and lies in G(k). 
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Example 4.1.4 (1) Let F be the line given by 

F(X, y, Z) = Z, 

and consider the conic 

G(X, F, Z) = y2 - XZ. 

Then 

(p(x,y,z) = ( x ^ x y , / ) 

is a rational map from F to G defined over every field (it is a rational parametrisation of the 
conic). 

(2) Take the cubics 

and 

Then 

F(x, y, z) = x̂  + ŷ  + dz^ e Q[z, y, zjs 

G(X, y, Z) = y^Z - (X^ - 2^3^J^Z^) e Q[X, y, Z]3. 

^(jc, y, z) = (-2^ . 3Jz, 2^ • 3^d(x -y),x + y) 

is a rational map from F to G defined over Q. Show that (p(x, y, z) is defined for every 
(x, y, z) e F(Q) when d^O. 

(3) Consider the following cubics defined over Q: 

F(X, y, Z) = Y^Z - X(X^ + aXZ + bZ^) with b ^^ 0 and a^ - 4b ^ 0, 

G(X, y, Z) = Y^Z - X(X^ - laXZ + (a^ - 4b)Z^). 

Then 

(p(x, y, z) = (y^z, y(x^ - bz^), x^z) 

is a rational map from F to G such that (p{x, y, z) is defined for every (x, y, z) € F(Q). 

The properties of the two last examples generalise, and we have the following result 
([Fu] p. 160). 

Theorem 4.1.1 If the curve F is smooth, a rational map F ^^ G is defined at every point 
ofF(k), where naturally, k denotes afield of definition ofF,G and cp. 
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Remark 4.1.3 If F is singular, it can be shown that (p is defined at every non-singular 
point of F(^). 

Definition 4.1.9 Consider two curves F and G defined over k, and let cp : F ^^ G be 
a rational map defined over k. 

We say that cp is birational if there exists a rational map xj/ : G ^^ F, defined over 
k, such that for ''almost all" the points of Fiji) and G(k), the maps if; ocp and (poxj/ are 
defined and equal to the identity. 

We say that F and G are birationally equivalent over k, if there exists a birational 
map cpfrom F to G defined over k. 

Remark 4.1.4 

(1) The phrase "almost all" means "all but a finite number". 
(2) A birational map is bijective almost everywhere on F(k) and G(k). 

Definition 4.1.10 Two elliptic curves defined over k are said to be equivalent over k 
if there exists a birational map, defined over k, from one to the other 

4.2 BEZOUrS THEOREM 

A famous result usually attributed to Etienne Bezout"̂ ,̂ although it was already partially 
known to Maclaurin^^ and Cramer"̂ ,̂ states that two algebraic plane curves of degrees m 
and n respectively, having no common component, "intersect" in exactly mn points. 

In one direction, this result can be usefully restated as follows: if two curves of degrees m 
and n have more than mn distinct intersection points, then they have a common component. 

However, in the other direction, it needs to be made precise (who doesn't know about 
parallel lines or lines which do not meet a circle?). As we already noted in Section 4.1, the 
adequate framework for this situation is that of projective geometry over an algebraically 
closed field. 

We will first define the intersection multiplicity of the curves F and G at a point 
P G P2(^), where k denotes an algebraic closure of a field of definition common to both 
F and G. 

Since we are working here with a local notion, we can choose a system of projective 
coordinates in such a way that the homogeneous coordinates of P are (0, 0, 1). Let Fb 
and Gb be the dehomogenised polynomials of F and G in Z (i.e., we set Z = 1), and let 
Op = {U{x,y)/V{x,y), with ^ and V G k[X, Y] and V(0, 0) 7̂  0} be the local ring of 
P in k\ Then we know ([Fu], ch. VI) that the dimension of the quotient ring Op/{F\,, Gb) 
over k depends only on P and on the curves F and G (here, (Fb, Gb) denotes the ideal 

46 E.Bezout (1730-1783). 
4̂  C. Maclaurin, 1698-1746. 
4̂  G. Cramer, 1704-1752. 
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generated by F^ and Gb in Op), and not on the choice of a particular system of homogeneous 
coordinates. 

Definition 4.2.1 The intersection multiplicity ofF and G at P, denoted by iip{F, G), 
is the integer defined by 

fXp{F,G) = dim-^Op/(F,,G,). 

Using this definition, we can state our desired result as follows. 

Bezout's Theorem 4.2.1 Let F and G be two algebraic plane curves in P2(^), of degree 
m and n, having no common component in PiC^). Then we have 

y ^ IJip{F, G) = mn. 

Example 4.2.1 Let F be a cubic defined by a homogeneous polynomial of degree 3 
of k[X, 7, Z]. Assume that A e F2(k) is a multiple point of F{k). Then, choosing the 
coordinates as above, we have 

FbU, y) = «2U, y) -f ci3(x, y), 

where the polynomials ai(x, y) are homogeneous of degree / in k[x, y]. 
Up to making a projective coordinate change, we can assume that the equation of an 

arbitrary line D passing through A is F = 0. Thus we have D^ = y. 
We have three possibilities for / := (Fb, Db) namely 

(J) (i) 
(x\y) (ii) 

Sx\y) (iii). 

In the first case, we see that D divides F, so /) is a common component of D and F. 
We have 

u(x) 
Op/I = R = ekixy,v{0)^0 

[v{x) 

where u(x) and v(x) are polynomials in k[x]. Thus dim^(Op//) = CXD. 
In cases (ii) and (iii), we have 

Op/I = R/{/) (resp. R/{x^)) and dim^(Op//) = 2 (resp. 3). 

We can now see that if the cubic F has two distinct multiple points, then F is reducible. 
Indeed if this were not the case, and if D denoted the line joining these multiple points 

A and B, we would have /XA(F, D) >2 and MB(^. ^ ) ^ 2. Thus we would have 

3 = ^ /xp(F,D)> 2 + 2 = 4, 
PeFjik) 

which is absurd. D 
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The preceding example shows that the direct computation of ^Jip{F, G) is quite difficult. 
In practice, it is easier to use the following seven properties and a simple algorithm to 
compute /xp(F, G). 

List of the seven properties characterising iip. 

(1) iJip{F,G) G N U {00} and iJip{F,G) / 00 if and only iff and G have no common 
component containing P. 

(2) ijip(F,G) = 0 if and only ifP is not a point lying on both F and G. Moreover, iJip(F, G) 
does not depend on the components ofF and G passing through P. 

(3) ^ip{F, G) is invariant under change of coordinates. 
(4) iip{F, G) = fipiG, F). 
(5) ijip(F, G) > mp{F)mp{G), and equality holds if and only ifF and G have no common 

tangents at P. 
(6) IfF = n F'' andG = Y[ ^ ^ ^hen 

^ip(F, G) = ^nsj/ipiFi, Gj). 

(7) For every A e k[x,y], we have 

fMp(F,G) = fMp(F,G-\-AF). 

Algorithm 4.2.1 Assume that P = (0, 0) (this is legitimate by property 3), and 
/xp(F, G) < 00 (which can be seen using property 1). 

Property 2 tells us if /x/>(F, G) = 0. 
Let us use induction on « = /x/>(F, G), assuming that we know how to compute fip{A, B) 

if/xp(A,B) < n. 
Let r and s be the degrees of F(x, 0) and G(x, 0). By property 4, we may assume that 

r < s. 

First case: r = — 00. 
Then F = yH and /xp(F, G) = jjipiy, G) + tip{H, G) by property 6. 
But 

X ^ x property 7 / ^ / A W / m\ properties 5 and 6 

/xp(y, G) = iip(y, G(x, 0)) = /xp(j, x^) = m. 

Since P e G(k), we have m > 0, so fipiH, G) < n, and we finish by induction. 

Second case: r > 0. 

We can take F(X, 0) and G(X, 0) monic, and set 

H = G- X'~'F. 

We then have 

/xp(F,G) = /xp(F,//), 

and deg(//(jc, 0)) = ^ < s. 
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Repeating this procedure a finite number of times, and possibly inverting the curves, 
we reduce to the first case. D 

Example 4.2.2 Computation of ^ip{F, G) when 

P = (0,0), 

G = ( x ^ + / ) ^ - 4 j c y . 

In characteristic zero, we can draw the curves F(R) and G(R) as in the following figure. 

Three-leaved clover 

We have 

Four-leaved clover 

/xp(F, G) = iJp(F, G - (x' + / ) F ) = fXp(F, yH), 

with H = (x^ -\- y^)(y^ - 3x^) - 4x^y. Let us compute fjip(F, H). We have 

F ( x , 0 ) = x ^ //(jc, 0) = - 3 / , 

so, if the characteristic of k is different from 3, r = 5 = 4. We find that 

3F-\-H = y(5x^ - 3y^ + 4y^ + 4x^y) = yE. 

Hence 

A6p(F, G) = 2/xp(F, y) + /xp(F, E). 

But jjipiF, y) = fip(x^, y) = 4 and /x/>(F, E) = mp(F)mp(E) — 6 if the characteristic ofk 
does not divide 10, so /xp(F, G) = 14. 
If the characteristic of k is equal to 5, we have 

/zp(F, E) = fXp(F, - 3 / + 4 / + 4x^y) 

= fjipiF, y) + fMp(F, -3y + 4 / + 4x^) 

= 4 + fip{-3y + 4 / + 4x^ F). 
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For the last multiplicity r = 2 and 5 = 4, we consider 

AF - x^(4x^ + 4 / - 3j) = J^[(4x^ + 4^^) - 4>;], 

so 

Now, 

so 

fipi-3y + 4 / + 4x^ F) = HP(F, / ) + ^ ^ ( F , 4^^ + 4 / - 4y) 

F-(x^+ /)(jc^ +y^-y) = 3xy - / + JCJC^ + y^) = 4x^y, 

fMpiF, x^+y^-y) = fip{F, x^y) = fMp{F, y) + 2/Xp(F, x) 

= 4 + 2^ip(y\x) = 4-\-6= 10. 

Thus, /xp(F, £) = 22 and /xp(F, G) = 30. 

If the characteristic of k is equal to 2, we have 

/xp(F, £) = /xp(F, x^ + / ) = ^^(;,2^ + y\x^-\- y^) = oo, 

so /xp(F, G) = oo. 

If the characteristic of k is equal to 3, we have 

/x^(F, G) = /x^(F, / / / ) = 8 + ^lpiF, H) 

with H = y{x^ + y'^) — x^. Now, 

/xp(//, F) = fXp(H, yK) = fip(H, y) + /xp(//, /^) 

with K = x^(x^ +y^) — yx'^ -\-y^ —y^- We also have 

/zp(//, /^) = /xp(//, ^ + jc'//) = ^ip{H, y) + /xp(//, L), 
withL = x^ -jc^ + (y2 + j)jc2 + / _ ^ Furthermore, /xp(//, L) = /zp(//, L + (jĉ  - 1)//) = 
/ip(//,};). It follows that iip{F, G) = 14. D 

4.3 N INE-POINT THEOREM 

Bezout's theorem can be expressed in a particularly agreeable way if we introduce the 
AbeHan group of (dimension zero) cycles of P2(^). This is the free Z-module generated by 
the points of P2(^), where k denotes an algebraic closure of k: 

A cycle is thus a sum XipePsCî ) ^P ̂  ' where rip e Z and where all but a finite number of 
the rip are zero. 
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Definition 4.3.1 The homomorphism 

deg 
Y^np~P ^^Y.np 

is known as the degree, and ^ np is the degree of the cycle ^npP . 

Let us define a partial ordering on Z by setting 

( ^ mp P > ^ Alp P J <(=^ for every P e PiC^), mp > np. 

A cycle is said to be positive if it is greater than or equal to the zero cycle. 
Now, consider two plane curves F and G having no common component. 

Definition 4.3.2 The intersection cycle off and G, denoted by F 

F'G:= J2 f^p(F,G)'^. 
PeF-ik) 

G, is the cycle 

Remark 4.3.1 With this notation, Bezout's theorem (theorem 4.2.1) can be stated as 

deg(F • G) = deg F • deg G. 

Given this, we can now state the following consequence of "Max Noether's fundamental 
theorem'"^^ ([Fu] p. 120); all curves here are assumed to be defined over k. 

Theorem 4.3.1 Consider two curves F and G having no common component, and such 
that all the points ofF{k) Pi G(Ji) are simple over F. 

Then ifH is a third curve such that 

H F >GF, 

there exists a homogeneous polynomial A such that A • F = H • F — G - F. 

Corollary (Nine-point Theorem) 4.3.1 Let C be an absolutely irreducible cubic and let 
C and C" be two arbitrary cubics. 

Assume that C - C = X!/=i ^ i ^^^ ^^^^ ^^^ points Pi are simple (but not necessarily 
distinct) on C. 

Then ifC • C^' = J^Li ^ / + ^ ^ ^e have Q = Pg. 

49 M.Noether, 1844-1921. 
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Proof. We will reason by the absurd, by assuming that Q^ P(). 
Let D be a line passing through P9 but not through Q. We have 

Thus, 

{DC") 'C = C' 'C + (Q ^~R ^~S)>C' C. 

The preceding theorem ensures the existence of a line D' such that 

D' • C = ~Q -V~R +~S , 

but this is absurd since the line RS intersects C at P9! D 

Remark 4.3.2 The nine-point theorem illustrates a situation which was remarked around 
the middle of the 18th century by Cramer^^ and which gave rise to the theory of determinants. 

Let k[X, F, Z]„ be the space of homogeneous polynomials of degree n. It is not difficult 
to see that 

(n + 2)(«+ 1) 
dim, k[X, F, Z\ = ^ ^ -. 

"Cramer's paradox" consists in noting that, in general, an algebraic plane curve of degree 
n is determined by 

(n-^2)(n+l) _ _ n(n + 3) 
2 " 2 

points ("in general position"); however Bezout's theorem (theorem 4.2.1) impUes that two 
distinct curves of degree n intersect, in general, in n^ points. But n^ > n(n -\- 3)/2 ifn>3. 

The solution of this paradox for plane cubics comes naturally from the fact that the nine 
points of intersection of two distinct cubics are not "in general position". 

4.4 GROUP LAWS O N A N ELLIPTIC CURVE 

Let us choose our elliptic curve in the form of a plane cubic C defined over k having no 
multiple point in P2(^). 

When k is the field of complex numbers C and the curve C is given in Weierstrass form, 
the theory of elliptic functions gives us a key to equip C(k) with a group structure (see 
Section 2.8 of Chapter 2). 

We will generalise this construction in two different directions: k will be an arbitrary 
field, and the zero of the group will be an arbitrary point O of C{k) (rather than an inflection 
point). 

Rule 4.4.1 Let A and B be in C(k) and let R be the third point of intersection of the line 
AB with C. Then the sumA^B relative to the origin O will be the third point of intersection 
of the line OR with C. 

5̂  G. Cramer (1704-1752). 
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Remark 4.4.1 We easily check that R and A 0 B lie in C(k). 

We then check that for every point A e C(/:), we have A 0 O = A. In particular we compute 
(9 0 O by drawing the tangent to C at the point O. It intersects C at the point T, and the 
line TO gives back the point O. Thus, we have 0^0 = 0. 

Finally, A and B will be opposites in the group if and only if the line A^ passes through T. 

Theorem 4.4.1 

(1) The addition law associated to the choice of an origin O is an Abelian group law on 
C(k). 

(2) IfO and O' are two points ofC(k) and if® and 0 ' are the corresponding laws, the 
groups {Cik), 0 ) and (C(k), 0 0 cire isomorphic via a birational isomorphism defined 
over k. 

Proof (1) In order to show that (C(k), 0 ) is a group, it remains to show that the addition 
law is associative. Let P,Q,R e C{k)\ we want to show that 

( P 0 G ) 0 / ? = P 0 ( e e ^ ) -

To construct the point S := —[{P 0 2) 0 R], consider the following collinearities: 

Li • C = ^ + ^ + ^ ' , Mi-C = 'd -\-~U' + ~U, L2 • C = 7/ + ^ + ^ . 
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To construct the point T := - [ P © (g 0 /?)], we consider the following coUinearities: 

M2'C = ^ +~R +V, L3'C = ~0 -\-V +'V, M3'C = ~P +~V +^. 

It remains to show that S = T. For this, we apply the nine-point theorem to the smooth 
cubic C and to the decomposed cubics 

C =LxL2L3, C" = MxM2M3. 

(2) Let P and Q e C{k), and let P * 2 = /? denote the third intersection point of the 
line PQ with C. We propose to show that 

(p:Pe iC{k), 0 ) h-^ O * (O' * P) 6 iC(k), 0 ^ 

is a birational isomorphism of groups defined over k. 
If we set V̂  '• Q \-> O' * (O * 2) , it is clear that yj/ o ip = id and (p o ij/ = id, so (p is 

birational and bijective. 
Moreover, it is clear that (p(0) = O' and the nine-point theorem shows that (p(QP) = 

Q'(p{P). Thus, it remains to show that (p{P^Q) = (p{P) 0 ' (p{Q), and to see this, it suffices 
to check that 

O * (O' * (O * (P * Q))) = 0' ^ {{0{0'P)) * {0{0'Q))) 

(we have omitted the * on the right for simplicity). 
Let us temporarily admit the following lemma. 

Lemma 4.4.1 For every quadruple L, Q,M, N of points ofC(k), we have 

L * (^ * (M * A )̂) = M * (^ * (L * A )̂). 

For the right-hand term we have 

0'^{{0{0'P)) * {0{0'Q))) 

= O * {{0{0'P)) * {O' * {O'Q)) (here Q = 0{0'P)) 

= O * {{0{0'P)) * Q) 

= 0^m^{0{0'P))] 

= O * [O' * {0{QP)] (here we take ^ = O inside the square bracket), 

which is indeed the left-hand term. D 

Proof of the lemma. Since the law of origin ^ is associative, we have 

^ * (L * (^ * (M * A )̂)) = ^ * ( (^ * (L * M)) * A )̂, 

and simplifying by Q (which is legitimate), we obtain the result. D 
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Remark 4.4.2 When C is singular, let Co(k) denote the set of non-singular points of C in 
PiC/:). Then if O e Co(k), the above construction makes it possible to equip Co(k) with an 
Abelian group law and the theorem continues to hold mutatis mutandis. 

When the singular point of C is a cusp, Co(k) is isomorphic to the group (k, +), see 
Exercise 4.11. 

When the singular point of C is a point with distinct tangents in PiC^), Coik) is isomor­
phic to (^*, x), see Exercise 4.12. 

When the singular point of Q (k) is an "isolated point" whose tangents are in an extension 
of k (which we can assume to be quadratic), then the group law group of Co(k) is a litde 
more complicated; see Exercise 4.13. 

Formulae 4.4.1 We restrict ourselves to the case where the curve is given by the long 
Weierstrass equation 

W : y^ -{- a\xy + a^y — {y? -h a^^ + aa,x + a^ = 0, 

and where we choose O = (0, 1, 0). We say that W is a Weierstrass cubic if this cubic is 
smooth. 

Then if P = (x, y), we have 

—P = (x, —y — a\x — ai). 

If Pi e P2 = ^3 with Pi = (jc/, yi), then 

(i) \fxi / JC2, set 

yi - y\ y\X2 - yixx 
A = , /X = 

X2 — X\ X2 — Xi 
(ii) If xi = X2 and Pi = P2, set 

3xj + 2̂ 2X1 -h «4 — aiyi —xl -\- a/^x\ -\- 2a^ — a-^yi 

lyi -1- aixi -f «3 2y\ + aiXi -h «3 

in both cases, we have 

1X3 = k^ -\- a\X — a2 — x\ — X2 

ys = -{X + ax)x^ - fi-a3. 

Remark 4.4.3 

(1) The line y = lx-\- /xis the line ̂ 1^2-
(2) If ai = as = 0 (short Weierstrass form), the formulae simplify, and we have 

1X3 = ^} — a2 — X{ — X2 

j 3 = -A.X3 - /X. 
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4.5 REDUCTION M O D U L O P 

It is clear that when we want to study the rational points of a projective plane curve of 
equation 

F(X,y ,Z)GQ[X,F ,ZL, 

we can assume that the polynomial F has integral coefficients whose greatest common 
divisor is 1, and that the points of F(Q) are represented by triples (a, b, c) G I? whose 
greatest common divisor is also 1 ("primitive solutions"). We can now consider the equation 
modulo/?: 

F(a, b,c) = Oe Fp. 

Example 4.5.1 Consider the curve 

If this equation admits a primitive solution (a, b, c) el?, we have 

and as ŵ " e {0,1} in F3, we see that abc = 0 mod 3. 

Similarly, if 2« + 1 is a prime number p (« = 5 for example), we have ŵ " G {0, 1} in 
F^ and abc = 0 mod p. 

Now consider a plane cubic which is smooth and rational over Q, given by the long 
Weierstrass equation 

W = Y^Z-^ aiXYZ + asYZ^ - {X^ + a2XZ^ -f a4X^Z -h aeZ^) = 0, 

where a\,a^, a2, ̂ 4, a^ are rational numbers. When we make a projective transformation 
of the type 

with A G Q*, we find a new equation (in (^, r;, ^)) which is of the same type but where 
Gi becomes X^at. 

Thus, by choosing X suitably, we reduce to an equation with integral coefficients which 
are "not too large" (in order to avoid systematically finding the uninteresting reduced 
equation y^Z-X^) . 

We now consider an arbitrary prime number /?, and the following reduced equation: 

W = 7^2 + aiXYZ + a3YZ^ - {X^ + h2XZ^ + a4X^Z + aeZ^) G F.[X, F, Z]. 
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Our goal is to study the reduction map 

fP2(Q) ^ F2(¥p) 
1 (a, b, c) I—> (a, b, c), 

where a,b,c are chosen relatively prime, and to show that it induces a homomorphism from 
W(Q) to W(¥p) when W is smooth. 

Let us first note, by duality, that a line D of P2(Q) has an equation of the form 

D : uX + vY + wZ = 0 

such that the greatest common divisor of (w, v, w) € Z^ is 1. Thus if Pi ,^2,^3 are colhnear 
on D, the points 7r(Pi), 71(^2), ^(Ps) are collinear on the line 

D: uX + vY-\-wZ = b. 

Let us state the following special case of a much more general result. 

Proposition 4.5.1 Let C be a plane cubic defined over Q, andD a line of ¥2 (Q). Assume 
that C(Q) n D{Q) = {Pi, P2. Ps}^ ^here Pi is repeated as many times as its intersection 
multiplicity (in P2(Q)). Let C, D and Pj denote the objects deduced from C, D and Pi by 
reduction. Then ifD is not a component ofC, we have 

with the same convention on the repetition of points. 

Proof. (1) First consider the special case where the equation of D is Z = 0. Set P/ = 
(£/, m/, 0) with (€/, mi) e I? relatively prime. Thus, we have 

3 

C(X, y, O) = c Y\(miX - UY) = c Fix, F), 
i=\ 

withcGQ*. 
Since fhiX - UY 7̂  0 in Fp[Z, 7], we see that P(Z, Y) ^ 0, so that/? does not divide 

all the coefficients of P(Z, Y). 
Since D is not a component of C(X, F, Z), we see that C(Z, F, O) 7̂  0 and that/? cannot 

divide either the numerator or the denominator of c (written as an irreducible fraction). Thus, 
we have 

3 

C(X, 7, O) = c.F(X, Y) = dYl {mX - liY), 
i=\ 

which gives the result in this case. 
(2) When the line D is arbitrary, we can reduce to the preceding case by a suitable 

change of coordinates in P2(Q). But in order for this change of coordinates to "pass to the 
quotient modulo /?", we need to make sure to choose it in SL^, (Z). 
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Let D = uX -\- vY -\- wZ,, where the greatest common divisor of (M, V, W) e Z^ is 1. We 
want a matrix of the form 

W2 V2 W2 I € 5L3(Z), 
^ W V W 

so that if we take 

a I \u V w) \Z) 

the equation of DisZ' = 0. 
Let d be the greatest common divisor of v and w. We know that there exists V2 and W2 

such that V2W — W2V = ^, and V2 and W2 are relatively prime. Now, we know that the greatest 
common divisor (u, d) = 1, so there exists u\ and x such that u\d + XM = L Finally the 
greatest common divisor (v2, W2) = 1, and there exist vi and w\ such that v\W2 — V2W1 = x. 
We check that the determinant of the matrix 

U\ 

0 
u 

V\ 

V2 

V 

W\ 

W2 

W 

is indeed equal to L D 

Theorem 4.5.1 Let C be a smooth cubic in P2((Q)), and let O e C(Q). Let C be the 
cubic reduced modulo p, and let O be the reduction ofO. 

(1) If the cubic C is smooth, then the reduction map 

P2(Q) ^ m^p) 

induces a homomorphism from C(Q) equipped with the addition law of origin O to 
C(¥p) equipped with the addition law of origin O. 

(2) If the cubic C admits a double point S in ¥2 (F^), let Q (Q) denote the set C(Q) \7T ~HS). 

Then if O e Co(Q), the set of points of Co(Q) forms a subgroup of C(Q) and the 
reduction map induces a homomorphism of this subgroup on the set of non-singular points 
ofC(¥p) equipped with the addition law of origin O. 

Proof Saying that Pi 0 F2 = ^3 is equivalent to stating that each of the triples Fi, P2, ^ 
and R, (9, P3 is coUinear. The preceding proposition then shows that these collinearities are 
preserved by TT. D 
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Vocabulary 4.5.1 

- When W is smooth, we say that W has good reduction at/?. 
- When W admits a double point with distinct tangents in P2(Fp), we say that W has 

multiplicative reduction at p. 
- When W has a cusp in P2(Fp), we say that W has an additive reduction at p. 

Remark 4.5.1 It is clear that the whole of this theory continues to hold if Z is replaced 
by an arbitrary principal ideal domain A, and Q by the fraction field of A. 

4.6 ^-DIVISION POINTS OF A N ELLIPTIC CURVE 

Let E be an elliptic curve defined over k, and let Q be an arbitrary field containing /c. It is 
clear that E(k) is a subgroup ofE(Q). 

Definition 4.6.1 Letn eN and P e E(Q). We say that P is an n-division point ofE if 

np := p e p e - • e p = o. 
n times 

We say that P is of order nifnP = 0 and ifmP ^ Ofor every m eW smaller than n. 

The goal of this paragraph is to show that all the w-division points of E lie in k (where 
k denotes an algebraic closure of k), and that if the field k is a. field of characteristic zero, 
they form a group isomorphic to Z/nZ x Z/nZ. 

Since the isomorphism class of the group (E(k), 0 ) is invariant under birational trans­
formation defined over k (let us admit this point), we can replace £" by a Weierstrass 
cubic. 

4.6.1 2-Division Points 

In order for P e E(Q) to be a 2-division point, it is necessary and sufficient that 2P = 
P^P = 0. 

It is clear that P = O is a 2-division point. 
Suppose now that P ^ O, and take E in long Weierstrass form: 

E \ ŷ  + a\xy -h a^y — (x^ + a2X^ + a4X + a^) = 0. 

By Section 4.4, the abscissa f and the ordinate r] of 2P are given by 

§ = X^ -\- aiX - a2 -2x 
T] = -(A-f ai)^ - fx-a^. 

But ^ is infinite only if X is infinite, i.e. if2y-\-aix-\-a3 = 0. 



ELLIPTIC CURVES 193 

When the characteristic of A: is equal to 2, we see that these points satisfy the equation 
aix + (23 = 0, and are thus contained in the intersection of E and of this Hne. If ai 7̂  0, we 
find a single point in k. 

If ^1 = 0 and as / 0, then E has no points of order 2. 
If ai = as = 0, then E admits a multiple point: it is not an elliptic curve. 

Example 4.6.1 Let £ : / + y - (x^ + 1). We have 

X = x^, fji = x^ -\-y, 

so (§, T]) cannot be the point O. • 

When the characteristic of k is not equal to 2, we can take E in short Weierstrass 
form (see Section 4.13): 

E : y^ — {x^ -\- a2X^ + a4X + ae>). 

The curve is smooth if and only if the polynomial D{x) = x^ + a2X^ + a4X + a^ has no 
multiple roots. The points of order 2 ofE(k) are the three points (ei, 0), (^2, 0), (^3, 0) with 
ordinate equal to zero. Thus ei, ^2, 3̂ are the roots of D(x) in k. To summarize, we have 
the following theorem. 

Theorem 4.6.1 IfE is given by a short Weierstrass equation, and if the characteristic of 
k is not equal to 2, the points of order 2 on E(k) are the points with ordinate equal to zero. 
Together with the origin O, they form an Abelian group isomorphic to Z/2Z x Z/2Z. 

Indeed, we know that there exist only two isomorphism classes of groups of order 4, 
namely Z/4Z and Z/2Z x Z/2Z. Since all the points of Z/4Z are not 2-division points, 
only the latter group is possible. 

4.6.2 3-Division Points 

Here we restrict ourselves to the case where E can be given in short Weierstrass form, and 
where ^ = L We set D{x) = jĉ  + a2X^ + a^x + a^,. 

The condition 3P = O is equivalent to IP = —P. 
If P :/: O, this is again equivalent to saying that P and 2P have the same abscissa x, 

which gives the equation 

3x • 4 / = (3x^ + 2a2X + a^f ~ 4^2 / , 

which can be rewritten as 

\l/2,(x) = 3x^ + 4a2X^ + 6fl4jĉ  + 12a6-̂  + (4fl2^6 — ^4) = 0. 

When the characteristic ofk is equal to 3, we have 

XJ/^ix) = a2X^ + ^2^6 — «4, 

SO if ^2 = 0 but a4 ^ 0, E(Q) has no points of order 3. 
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Now assume that the characteristic of k is either zero or strictly greater than 3. We 
check that 

ir3(x) = 2D(x)D'ix)^[D\x)]\ 

which gives 

^3(jc) = l2D(x). 

Since D(x) has no multiple roots, we see that the same holds for ir3(x). 
If Pi, ^2^ A . ^4 are the roots of 1/̂3 in k, and if yt = ±^D(Pi) for / e {1, 2, 3,4}, it is 

clear that yi ^ 0 for every / (otherwise P would be of order 2), so we obtain 8 points of 
order 3, i.e. nine 3-division points. 

Theorem 4.6.2 If the characteristic of k is either zero or different from 2 and 3, the 
3-division points of E{k) form a group isomorphic to Z/3Z x TjjyL. 

Indeed, there are only two isomorphism classes of Abelian groups of order 9. 

Remark 4.6.1 A moment of thought about the definition of 2P is enough to convince 
oneself that the 8 points of order 3 of £(^) are the inflection points of £". As the point at 
infinity of E is also an inflection point, we see that E has exactly 9 inflection points in 
PiC^). Note that the lines joining two of these points always contain a third such point 
(Maclaurin's theorem^ ̂ ). 

4.6.3 n-division points of an elliptic curve defined over Q 

Clearly, it is prudent to limit oneself to the case of characteristic zero if one desires to keep 
to simple statements. Moreover, if ^ = Q, we can take Q = C and make use of the theory 
of Chapter 2, as long as we admit that every elliptic curve can be parametrised by elliptic 
functions attached to a period lattice A (see theorem 5.4.2 of Section 5.4, Chapter 5). 

Let E\n\ denote the set of ^-division points of £(€) . We see that E\n\ is a group 
isomorphic to {l/n)A/A = Z/nZ x Z/nZ. 

Indeed, if coi and 6D2 are generators of A, it is clear that 

1 la] ai ai 
- A / A = i —0)1 + —a)2\ - e Z/nZ for j = 1 and 2 
n \ n n n 

Set m = n^ — 1, and let (x/, yi) G C^, 1 < / < m, denote the coordinates of the points of 
order n of E{€). These coordinates generate a field extension Kn = Q(xi, j i , . . . , x^, j ^ ) 
of Q, to which we now turn our attention. 

Reminder of some notions of field theory 
Let Aut(C) denote the group of all the automorphisms, continuous or discontinuous, of C. 
In Chapter 3, Section 3.4, we noted that in order for a number z € C to be algebraic, it 
suffices that its orbit under the action of the automorphism group of C be finite. 

*̂ C. Maclaurin 1698-1746. 
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We saw that an extension L/Q is Galois if L is an algebraic field and if for every 
G G Aut(C) we have a{L) c L. The Galois group of L/Q is then the image of Aut(C) 
under the homomorphism a i-> a/L of restriction to L. 

Theorem 4.6.3 Let E be an elliptic curve defined over Q, and let n be an integer > 1. 

(1) The group £"[«](€) ofn-division points ofE is isomorphic to Z/nZ x Z/nZ. 
(2) The extension K^/Q generated by the coordinates of the n-division points ofE(C) is 

a Galois extension ofQ. 

Proof. 

(1) Let E[n] denote the group of w-division points of E{C). 
If P G E[nl i.e. [n]P = O, it is clear that for every a e Aut(C), n[a(P)] = O. 
Indeed, a | Q = JQ, and since E is defined over Q, the automorphism a respects the 
addition law of the points on E{C). 

(2) Since #(E[n]) = n^, we see that the coordinates (x, y) of P e E[n] can only have a 
finite number of conjugates under the action of Aut(C); thus they are algebraic, so Kn 
is algebraic. 

(3) For every a G Aut(C), we have cr(E[n]) C E[n], so a(Kn) C Kn. This shows that 
Kn/Q is Galois. ° 

Remark 4.6.2 Let E be an elliptic curve defined over Q, and let p be a prime number. 
One can show ([Sil] p. 96) that E[p] is equipped with a non-degenerate "bihnear" form 

Cp : E[p] X Elp]-^fip(Q), 

where /Xp(Q) denotes the multiplicative group (isomorphic to (Z/pZ, +)) of the/7-torsion 
elements of Q*. To every pair (P, Q) of points of E[p]{Q), this form associates a root of 
unity CpiP, Q) by a construction which is algebraic (and nearly canonical), which shows 
that iJipiQ) C Kp. This Weil form is "bilinear alternating" in the sense that 

eimiP, + m2P2, Q) = ^(^i, 0"'K/^2, 0 " ^ 
\ e(P, niGi + n2P2) = e{P. Qi^eiP, Qif^ 

e(P,Q)e(Q,P) = l. 

Furthermore, it is non-degenerate, and commutes with the action of GQ = Gal(Q/(2) in the 
sense that if a G GQ, then 

e(aiP), a(Q)) = a(e(P), e(Q)) = [e(P, 0 ]^^^" \ 

where Xp denotes the cyclotomic character of GQ (see Chapter 3, Section 3.6). 

4.7 A MOST INTERESTING GALOIS REPRESENTATION 

Let Q denote the algebraic closure of Q in the field of complex numbers C, i.e. the set of 
numbers z G C which are algebraic over Q. 
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We saw in Chapter 3 that Q is a field and that Q/Q is a Galois extension. 
We have also shown that the image of Aut(C) by restriction to Q is the Galois group 

of Q/Q; we denote it by GQ and call it the absolute Galois group. One of the essential 
problems of number theory is the study of this group GQ, and we have seen that an important 
tool in this study is the notion of a representation of GQ in a vector space (or a module) V, 
i.e. the notion of a homomorphism 

GQ -^ GL(V). 

Example 4.7.1 Let w > 1, and let V = /x„(C) = Z/nZ be the Abelian group of the 
w-division points of unity in C*. 

Let f be a generator of V, and let L„ = Q(f). For every cr e GQ, it is clear that 

a(f) = f̂ ^̂ ) with a(a) e Z/«Z, 

and in order for a to preserve the order « of f, it is necessary and sufficient that a(a) e 
(Z/nZ)^, in other words, it is necessary and sufficient that the endomorphism 

Z/nZ —> Z/nZ 

X I—> a((7) • X 

be an isomorphism. 
Thus, we see that we have a surjective homomorphism (the surjectivity is non-trivial): 

GQ -^ {ZjnZY = GLx{Z/nZ). ^ 

Now, let E be an elUptic curve defined over Q, and let w > 1. Set V = E{n\{Q)\ we will 
consider the action of Gg on V. 

Since V is a free Z/«Z-module of rank 2 (and even a vector space over F^ if «is a prime 
number/?), we see that if Pi, P2 is a Z/«Z-basis of V, we have 

a(Pi) = a^Px + CaPi aa. c^ € Z/nZ 

a(P2) = baP\ -f daPi ba^da e Z/nZ 

I.e. 

Now if we take an arbitrary pair Q\,Q2of points of V such that 

then by linearity we obtain 

(o{Qi)\ ^ (k v\ (a{P,)\ (k v\ [a„ cA (Pi\ 
\<r{Q2)J \H Sj\<y(P2)) U V W ^ J W ' 

Qi 
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Finally a simple computation shows that 

\Ccyoz da ox) \Ca da) \C^ d^) ' 

and in particular, 

A 0\ ^ (aa ba\ (aa-^ K-A 
\{) \) \Ca da)\Ca-^ d^-i) ' 

This whole situation is summarised in the following statement. 

Theorem 4.7.1 The action ofGq onV = E[n] defines a homomorphism 

GQ - ^ GLiiZ/nZ), 

so the image is isomorphic to the Galois group of the extension Kn/Q generated by the 
coordinates of the n-division points ofE. 

Proof It remains to see that Imp„ = Gal(^„/Q). Now, it is clear that p„ factors through 
Gal(^„/Q); thus it suffices to show that p„ restricted to Gal(Ar„/Q) is injective. So let 
a G GQ be such that p„(a) = ( i ?). Then we have a (Pi) = Pi and cr(P2) = P2, which 
shows that a\K„ = I |A:„ . • 

Remark 4.7.1 Since E[2] is formed by four points of E(Q), it may happen that Imp„ / 
GL2(Z/nZ). However, this does not happen frequently, as shown by the following theorem. 

Serre's Theorem (1972) (Theorem 4.7.2) Let E be an elliptic curve defined over Q 
which is not isomorphic over Q to any curve having complex multiplications. Then there 
exists an integer N > 1, depending only on E, such that for every integer n prime to N, the 
representation pn is surjective. 

Remark 4.7.2 

(1) This result is far from elementary, and even its statement is not really elementary, 
since it uses the notion of an elliptic curve with complex multiplications, which will 
be defined in the next section. 

(2) One can show that if € is a prime number > 163, then pi is irreducible; furthermore, 
if E is also semistable, then it suffices to take £ > 7, see [D-D-T] p. 51. 

4.8 RING OF ENDOMORPHISMS OF AN ELLIPTIC CURVE 

Recall from Section 4.1 that two elliptic curves defined over k are equivalent over k if there 
exists a birational map of one onto the other defined over k. One can show that if this is the 
case, then the groups of points of these curves in ¥2(k) are isomorphic. 

In what follows, we will need a more general and more precise notion, which is analogous 
to the notion of a homomorphism of abstract groups. 



198 INVITATION TO THE MATHEMATICS OF FERMAT-WILES 

Definition 4.8.1 Consider two elliptic curves (Ei, 0\) and (E2, O2) defined over a 
field k. 

An isogeny Ex -> E2 defined over k is a rational map from E\ to E2, defined over 
k, such that(p(0\) = O2. 

One can show ([Sil] p. 75) that the isogenies are homomorphisms of (Ei(Q), 0 i ) in 
(£'2(^), 02), whatever the choice of the extension Q of k. The theorem 4.9.2 shows the 
importance to be accorded to the field of definition of an isogeny. 

Example 4.8.1 (1) Let n be an integer >0. The multipHcation by n: 

p h-^ [n](P) = p e - • e p 

n times 

is an isogeny (E, 0 ) -> (E, 0 ) . 
We say that this isogeny is an endomorphism of E; when A2 = 0, it is the constant map 

P \-^ O, and when n = 1, it is the identity. 
The kernel E[n] of this endomorphism is the group of n-division points studied in 

Section 3.6. When n > 0 and the characteristic of k is zero or large enough (i.e. if it does 
not divide n), we have 

#E[n] = n^. 

(2) Assume that the characteristic of k is not equal to 2, and consider the curves 

iE\ =y^ — (jc* + a\x^ + b\x) 

E2=y^- (x^ + a2X^ + b2x) 

with 

a2 = -2au b2=a\-Ab\, 2bib2y<^0. 

Then the map cp :(EuO) ^ (E2, O) defined by 

^y^ j(jc^ — b 

•') 
is an isogeny. 

Indeed, one checks that for almost all the points P of Ei (Q), we have (p(P) e E2(Q). 
Moreover, we see that O i-> O, by writing cp in the form 

(X, F, Z) K-^ (y^X, Y{Y^ - aiX^ - Ib^XZ), {Y^ - aiX^ - biXZ)Z). 

lfx(P) = o, we can use the form 

(X,Y,Z)^—> {Y{X^-\-aiXZ + biZ^), {X^ - biZ^){X^ + aiXZ -\- biZ^),XZ^), 

and we see that the point A = (0, 0, 1) gives the point O. Thus, we have 

Kercp D {0,A}, 

so #Ker cp is even since {O, A} is a subgroup of Ker (p. 



ELLIPTIC CURVES 199 

(3) If we define xj/ : (£2, O) h^ (£1, O) by 

»,2 „/v-2 

we see similarly that 1/̂  is an isogeny, and that Ker ilr D [O, A}, so #Ker x/r is even. 
A simple computation shows that 

Uo(p = [2]:E, -^Ei 

\(poif = [2]:E2—^E2. 

(4) Assume that the curve E is defined over a finite field F^. Then we know that the 
map z i-> ẑ  is an injective F^-endomorphism of the field ¥q(x, j ) ; we call it the Frobenius 
endomorphism of the field F^(jc, y), and denote it by Frob^. 

If O denotes a point of £^(F^), it is clear that Frob^ induces an isogeny of (£, O) to itself 
which we call the Frobenius endomorphism^^ of (E,0). 

Remark 4.8.1 Let ^ be a field containing F^. Since Frob^ preserves collinearity in P2 (^), 
it is clear that Frob^ preserves the group law of EiQ) of origin O when O e E(¥q). D 

Definition 4.8.2 Let_ (E, O) be an elliptic curve defined over k. An endomorphism of 
(E, O) defined over k is any isogeny (£", O)—>{E, O) defined over k. 

Note that two isogenics (£1,0i) -^ (£2, O2) can be added using the addition law 

(cp + xlf)(P):=cp{P)e2ir(P). 

It is clear that if cp and i/r are two isogenics defined over k, then (p -\- ij/ is again an isogeny 
defined over k. 

Finally, if (p and \l/ are two endomorphisms of (£, O) defined over k, the composition 
map (p o\j/ is again an endomorphism of (£, O) defined over k. 

Definition 4.8.3 The ring of endomorphisms ofE defined over k, written Endi(E), 
is the set of endomorphisms ofE defined over k, equipped with the addition and multi­
plication laws defined above. 

In order to fully justify this definition, we still need to check that multiplication is 
distributive with respect to addition. 

It is clear by definition that 

{(p^-i;)oe = (poe + foe, 

so it suffices to see that 

52 G. Frobenius, 1849-1917. 
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Thus, for every P e E(k), we must show that 

0((p(P) e ilr(P)) =0o (p(P) © 6> o V^(P), 

but this is nothing more than the group homomorphism property of ^. 
We need one last definition in order to formulate the essential properties of Endj^(E). 

Definition 4.8.4 Let cp be a non-constant isogeny defined over k : (E\,0\) -^ 
(E2, O2), and let P G P2(^) be a point ofE(Q) whose coordinates are transcendental 
over k (we choose Q D k large enough for this). 

Set Q = (p(P) and let k(P) (resp. k(Q)) denote the extension ofk obtained by 
adjoining the coordinates ofP (resp. Q). 

Then one can show that the degree [k(P) : k(Q)] is independent of the choice ofP, 
and we call this number the degree of the isogeny cp (written deg((^)). 

Remark 4.8.2 (1) It is clear that if V̂  is a second non-constant isogeny (£2, O2) -> 
(£•3, O3), then by the tower rule, we have 

degixj/ ocp) = deg xj/ • dcgcp. 

(2) If the extension k(P)/k(Q) is separable (in which case we say that the isogeny is 
separable), and if (p is not constant, one can prove that 

deg((/9) = #KcT(p. 

This important relation will enable us, later on, to compute #£'(F^) when E is defined over 
the field F^. 

Example 4.8.2 In example 2 above, we saw that ^/z o (p = [2]. 
We saw earlier that if the characteristic is not equal to 2, we have 

#Ker[2] = #£[2] = 4, 

which gives the relation deg ([2]) = 4. 
We deduce from remark 1 above that 

deg xj/ • deg (p = 4, 

and since we noted that #Ker (p = deg (p and #Ker V̂  = deg xj/ are even, we have 

deg(p = deg}l/ = 2. • 

We refer to [Ca 3] or [Sil] for the proof of the following theorem. 
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Theorem 4.8.1 Let (E, O) be an elliptic curve defined over k. 

(1) The ring End^ (E) is an integral domain with unit, which is not necessarily commutative 
but is of characteristic zero. 

(2) Set deg((^) =Oif(p = 0. Then the map deg : End-^(E) -^ (N, x) is a morphism of 
multiplicative monoids. 

(3) Endi(E) is equipped with an anti-involution (p \-^ ^such that 

(po^='(po(p = [degcp] = [degcp]. 

(4) The map (p h^ deg((^) is a positive definite quadratic form on End-^(E). 

Remark 4.8.3 (1) Recall that an anti-involution a of a (not necessarily commutative) 
ring A with unit is a map A -> A such that 

\a^ = HA (involution) 
\a(x-\-y) = or(x)-\-a(y). 
\cr(l) = 1 1 (anti-morphism) 
cr(xy) = cr(y)a(x) ^ 

(2) Let n be an integer >0, then the isogeny [n] is a non-constant endomorphism ofE. 
The isogeny [1] = l^ generates a subring of End^(£') isomorphic to Z since we have 

[m] + [n] = [m-{-n] 

[m] o [n] = [mn]. 

(3) When (E, O) is defined over Q we show that in general EndQ(£') is reduced to the 
ring generated by [1], so that EndQ(£') = Z. 

However, there exist exactly 9 equivalence classes over Q of elliptic curves 
(defined over Q!) for which EndQ(£')3.Z. These elliptic curves were discovered by N.H. 
Abel. The elements of EndQ(£')\Z are called the complex multiplications ofE. 

When E runs through the set of curves with complex multiplications defined over Q, 
the fraction field of EndQ(£) runs through the set of 9 principal quadratic imaginary fields 
(see Chapter 1, Problem 1) and EndQ(£) itself runs through the set of maximal orders (rings 
of integers) of these fields, i.e. IJ[CO] with 

if J = 3,7, 11,19,43,67, 163. 
z 

Example 4.8.3 E = y^ - {x^ -^ x). 
Let (p : (x, y) \-^ (—jc, iy). 
Clearly, (p e EndQ(/)(£') c EndQ(£') and cp ^ ±1. 
If (p was in the image of Z, we would have (p = [n], with AZ G Z, hence 

#Ker (p = n^. 

But clearly, #Ker(^ = I, so n = ±1. We already noted that this is impossible, so cp has 
complex multiplications. As (p^ = —% we have (p = ±i and EndgiE) = Z[/]. D 



202 INVITATION TO THE MATHEMATICS OF FERMAT-WILES 

(4) When (£", O) is defined over a finite field F^, EndF^(^) is never isomorphic to Z 
(i.e. E always has complex multiplications, see [Sil] p. 137). 

One then proves that End^ (E) is either an order of a quadratic imaginary field (of 
characteristic zero!) or an order of a quaternion algebra (we then say that E is supersingular, 
even though it is actually not even singular!). 

4.9 ELLIPTIC CURVES OVER A FINITE FIELD 

Let F^ be a finite field of cardinal q and characteristic p. We know that q is of the formp^. 
Let E be an elliptic curve defined over F^ by a long Weierstrass equation 

y^ + aixy + a^y = x^ -\- aix^ + a^x + a^. 

Our goal is to explain that #£'(F^) is not too far from q + 1 (which is #Pi (F^)). 
Why q-\-\l because this is what we find if £" has a double point with distinct tangents 

when we add twice the double point to the simple points. It is also what we can hope to 
find, on average, when a\ = a^ = 0 ; there are as many quadratic residues in F* as there are 
non-residues . . . 

The precise result was conjectured in 1924 by E. Artin^^ in his thesis, and was proved 
in 1934 by Hasse. It can be stated as follows. 

Basse's Theorem 4.9.1 Let E be an elliptic curve defined over ¥q. Then the number of 
points ofE in P2(F^) satisfies the inequality 

| # £ ( F , ) - ( ^ + l ) | < 2 V ^ . 

Proofi (1) Let (p be the Frobenius endomorphism 

j(x,>^)h->(x^y^) 
[Oh-> O. 

Since ¥q = [ze F^; z^ = z}, we see that 

E(¥q) = Kcv((p - J); 

consequently 

#£(F^) = #Ker((/? - 1). 

(2) Now, sei^l/ = (p-te End(£). 
In Section 4.8, we noted that if x// is separable (which we assume here), we have 

#KeriA =deg(iA). 

Thus, we have a way to compute this cardinal. 

53 E. Artin 1898-1962. 



ELLIPTIC CURVES 203 

(3) Since the quadratic map 

(m, n) I—> dGg(m(p H- nil/) 

is positive semi-definite, we have 

degimcp + nl) = (deg (p)m^ + smn + (deg t)n^, 

with s^ <4 deg <̂ . deg 1 = 4 deg (̂ . 
Now, it is clear that if/? > 2, we have deg (p = q. Indeed, 

deg^ = [¥,(x,y) : F , ( x ^ / ) ] = [F,(x,>') : F , ( x , / ) ] [ F , ( x , / ) : F , ( x ^ / ) ] . 

The first factor is equal to 1 since y satisfies a quadratic equation over ¥q(x), so the degree 
ofy over ¥g(x, y^) divides both 2 and q. The second factor is naturally equal to q. Note that 
this result can be extended to the case where p = 2 ([Sil] p. 30). 

Thus, we have 

s^ < Aq. 

(4) Finally, #Ker V̂  = deg((^ — 1) = ^ — 5 + 1 , so 

| # £ ( F , ) - ( ^ + l ) | < 2 V ^ . • 

Remark 4.9.1 The inequality above is optimal. Indeed, consider the supersingular curve 

E : y'^ -\-y = x^ 

defined over F2, and let us compute £'(F4). We can write F4 = {0, 1, co, co^] with 

(Ŵ  + (W + 1 = 0. 

We find that 

£(¥4) = {O, (0, 0), (0, 1), (1, 0)), (1, co^), {(JO, 0)), (o), 0)^), (a>^ 0)), (<^^ 0)^)}, 

so #£(¥4) = 9. It follows that s = -2^ = - 4 and 

dcg(m(p -\- nt) = 4m^ — Amn + n^ 

= (2m — nf'. 

Thus, we have 

deg((^ + 2 1) = 0, 
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even though (1,2) ^ (0, 0); thus the quadratic form 

(m, ri) I—> dtg{m(p + « 1) 

is not definite. But since deg : Endi{E) ^^ Z is positive definite, we have (p = —It. 

Theorem 4.9.2 Consider two elliptic curves {E\,0\) and (E2, O2) defined over F^, and 
let 0 : (El, Oi) -^ (E2, O2) be a non-constant isogeny defined over F^. Then we have 

#£i (F , )=#£2(F, ) . 

Remarli 4.9.2 In other words, if E\ and E2 are "isogenous" over F^, they have the same 
number of points in P2(F^), where two eUiptic curves are said to be "isogenous" if there 
exists a non-constant isogeny from one to the other. 

Proof. (1) Let (p\ (resp. (̂ 2) be the Frobenius endomorphism of E\ (resp. E2). We saw 
earher that 

j#^i(F,) = deg(^i-l l£,) 

[#£2(F,) = d e g ( ^ 2 - % ) . 

(2) Now, we also see that the following diagram is commutative, since 0 is defined 
overF^: 

Ex >Ex 

E2 >E2 

A second commutative diagram follows naturally from this one: 

Ex > Ex 

E2 ^£^2-

A little reflection shows that 

deg^ • deg((^i - l^,) = deg((̂ 2 - hj)' deg6>, 

so 

deg((^i - ! £ , ) = deg((/?2 - h^) 

since deg ̂  > 0. D 
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Example 4.9.1 (1) If a and b are in F^ and 

2b{a^ - Ah) ^ 0, 

then the elliptic curves 

Ex\ y^ - x{x^ +ax^-b) 

£2 : y^ - x{x^ - lax -\-a^ - 4b) 

have the same number of points in P2(Fp). 
(2) Consider the elliptic curves over F3 given by 

E, : / - ( j c ^ - x + l ) 

E2: y^-(x'-x-l). 

These curves are isomorphic over F9, but #Ei(¥3) = 1 and #£'2(F3) = 1, so they are not 
isomorphic over F3! 

Remark 4.9.3 We cannot move on without at least a brief mention of the famous result 
due to F.K. Schmidt, which states that every smooth cubic defined over a finite field F^ has 
a rational point over this field, and consequently can be equipped with the structure of an 
elliptic curve over F .̂ 

4.10 TORSION ON AN ELLIPTIC CURVE DEFINED OVERQ 

We know that every Abelian group A contains a certain important subgroup, namely its 
torsion subgroup, which we write T{A). By definition, 

T{A) = [x eA\ there exists n e N* such that nx = O}. 

Example 4.10.1 If k denotes a commutative field, the torsion subgroup of (/:*, x) is the 
group iJ.(k) formed by the roots of unity lying in k. 

When the group A is the group E{k) of points on an elliptic curve defined over a number 
field k, the torsion group of A can be determined more or less easily. But when k = Q and 
the elliptic curve E is given by its equation, this determination is even easier, since as we 
will see, the Weierstrass coordinates of a torsion point are integral when the Weierstrass 
equation has integral coefficients. 

Now, we have the following very nice result at our disposal (note that here R denotes 
an integral domain which is integrally closed in its fraction field K, i.e. such that ifxeK 
is a root of a monic polynomial with coefficients in /?, then x is in R). 
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Theorem 4.10.1 Let E be an elliptic curve defined by a short Weierstrass equation 

/ = x^ + a2X^ + a^x + ^6, (1) 

with coefficients in a ring R, assumed to be of characteristic ^ 2, integrally closed in its 
field of fractions K. 

IfP e E(K) is such that its coordinates and the coordinates of[2]P lie in R, then the 
ordinate ofP is either zero or a divisor (in R) of the discriminant 

D = —4alae + ajal + IMia^a^ — Aa\ — 21 a\. 

Proof The quantity D is precisely the discriminant of 

F{x) := x^ + a2X^ + a4X -\- ae = (x — ei)(x — e2){x — ^3), 

with Ci e kfoxi e {1,2, 3}, i.e. we have 

D = {e,-e2f{ex-e^f{e2-e^f. 

Let us show that if the ordinate y of P = (jc, y) is not equal to 0, then y divides D in R. 
Indeed, we saw in Section 4.4 that if 2P = {^,r]), then 

2x-\-^ =X^ -a2 with X = . 

But the theory of the discriminant gives us the relation 

D = U(X)F(X) + V(X)F\X) with U(X) and V(X) e R[Xl 

Since X^ e R and A € AT, we see that X e R and it follows that y divides F\x). 
As y^ = F(jc), we see that y divides F(jc), so y also divides D. D 

Corollary 4.10.1 If the elliptic curve E is defined over Qbya short Weierstrass equation 
with integral coefficients, and ifP and [2]P are integral points ofE(Q), then the ordinate y 
ofP is either zero or a divisor ofD. 

Proof Indeed, we know that Z is integrally closed in Q. • 

Special case 4.10.1 When a2 = 0, we traditionally write (1) in the form 

y^ =x^ -j-Ax + B, A and5 in/?, (10 

and we have D = -(4A^ + 27B^), 
Then ifP and [2]P have integral coordinates and y ^ 0, y^ divides D in R. 
Indeed, we can improve the expression of D using F and F\ by replacing F^ by F^^, 

and we find that 

D = (3X^ + 4A)F'(Xf + U(X)F(X) 

with U(X) e R[Xl • 
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We assume from now on that R = IJ and (1) has integral coefficients. 
Our goal is now to show that if P = (jc, y) e Q^ is a torsion point of £'(Q), then the 

coordinates of P are integers. To obtain this result, we will show that Up is an arbitrary 
prime number, then the /?-adic valuations of x and y are positive or zero. 

Recall the definition of the p-adic valuation of Q (see Chapter 3): 

;u{+oo}. 

Definition 4.10.1 Ifr--

lfr = 0,we write Vp(r) 

= p^{u/v) 

= +00. 

G Q* with 

Vp{r) = 

u and 

n. 

V e Z\pZ, we set 

Recall also the following proposition: 

Proposition 4.10.1 

(1) For any x and y e Q, we have 

Vp{xy) = Vp(x)-\-Vp(y) 

VpCx -\-y)> inf (Vp(x), Vpiy)) with equality if Vp(x) / Vp(y). 

(2) The set Z(p) = {x e Q\ \x\p < 1} is a subring ofQ called the valuation ring ofvp. It 
is a local ring whose maximal ideal is [x e Q\ \x\p < \]. 

The absolute value | \p makes it possible to define a p-adic topology on Q by defining 
the /7-adic distance of two elements x and y in Q by the formula 

dpix.y) = \x-y\p. 

Thus, the smaller the absolute value \x\p, the nearer the rational number x is to 0. 
Since our goal is to study the points P = (x, y) e E(Q) such that Vp(x) < 0, we are 

led to consider the elements of E(Q) which are p-adically close to the projective point 
(0, l,0) = O. 

For this, we dehomogenise the equation 

Y^Z = X^ + a2X^Z + a4XZ^ + aeZ^ 

by setting Y = I, and we find that 

z=x^ -\- a2X^z -\- a^xT^ H- a^T?, with «/ G Z for / = 2, 4, 6. (2) 

The origin of E is then the point 

0 = (x, z) = (o, o), 

and the opposite of the point P = (x, z) is 0 P = (—JC, —Z). 
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The "Abel-style" construction of the group law of E{Q) which we gave in Section 4.4 is 
still valid: to construct P3 = Pi 0 P2, we first take the third point of intersection R of the 
line (P1P2) with E, and then take the point obtained from this one by a symmetry through 
the origin. Let z = ax -\- fibe the equation of this line. By (2), we have 

_ -32 - Zl _ ^2 + X1X2 -\-x\-\- a2(X2 4- Xx)Z2 + ^4̂ 2 

X2 - xi 1 - a2X^ - a^xx (Z2 + Zi) - «6(̂ 2 + Z1Z2 + z\) (3) 
^^ =Z\-OtX\, 

The equation for the abscissae of the points of intersection of E and (P1P2) can be written 

ax-\- p =x^ -\- a2X^(ax + P)-\- a^x{oix + ^f + ae{otx + pf 

= {x-Xx){x-X2){x-r), 

where r denotes the abscissa of the point R. 
Thus, we have 

xi 4- X2 + r = 
(fl2 -f 2(240? + 3aea^)P 
1 + (22̂  H- (24Qf2 + (26Qf 3* (4) 

Now, if Vp(x) < 0, we must necessarily have Vp(y) < 0 in equation (1), and in fact we 
find that 

Vp(x) -2v Vpiy) = -3y, with v e N*. 

Thus, the points we wish to study are of the type (X, Y, Z) with Y = 1, Vp(X) = v, 
Vp(Z) = 3v. 

Let Epv denote the set of points {x, z) of (2) such that \x\p < l/p'' and \z\p < l/p^"": they 
form a/7-adic neighbourhood of the point (o, o) = O, and we have the following result: 

Lemma 4.10.1 Epv is a subgroup ofE(Q) when v eW. 

Proof. Assume that Px and P2 lie in Epv; then we have 

1 1 
Mp < 5 \Zi\p S o,. for ie {1,2}. 
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From (3) and the fact that M < 1 for / e {2, 4, 6}, we deduce that 

\a\p < ^ W\p < ^ . 

Plugging this result into (4), we see that the absolute value of the second term is less than 
or equal to \P\p = l/p^\ 

As|Xj|p < l//7^for/ G {1, 2} we deduce from the ultrametric inequality that |r I < l/p''. 

Next, we note that the ordinate s of Ris equal to ofr + y6; we have 

\s\p = \ar + p\p<—. 

Thus, we see that R, and thus also P3 = P^ 0 P2 lie in Epv. D 

Remark 4.10.1 We obtain a sequence of nested subgroups, 
Ep D Ep2 D Ep^ D '•-

whose intersection is reduced to {O}. We say that this sequence forms a filtration of E(Q). 
We will compare this filtration to the filtration of subgroups 

pZ(p) D /Z(p) D /Z(p) D •" 

of the valuation ring Z(p), considered as an additive group. 

Lemma 4.10.2 The group Epv/Ep^v is isomorphic to a subgroup ofp^Z(p)/p^^Z(p). 

Proof. By the proof of lemma 4.10.1, we see that the map 

\Ep.-^ p^Z^^/p'^Z^^ 

is such that 

X(P3) = X(P, 0 P2) = x(Pi) + X(P2), 

so it is a homomorphism of additive groups. Clearly, the kernel of this homomorphism is Ep^v. 
Indeed, if \x(P)\p < l/p^^ and \z(P)\p < 1//? '̂ we deduce from (2) that \z(P)\p < 1 / / ^ ! 

Thus, the isomorphism theorem implies that Epv/Ep3v is isomorphic to the image of this 
homomorphism. D 

Lemma 4.10.3 When v > I, the only point of finite order in Epv is O. 

Proof Let P G Epv be a point of order n > I. Since P ^ O, there exists /x > v such that 

P G Ep, but P / Ep,+i. 
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(1) If n is not divisible by p, it follows that [n]P = O that nx{P) e p^^1>{p) hence 
x(P) e p^^Z(p), which is absurd since 3/x>/x + l i f / x > l . 

(2) lfn= pm, then we see that Q = mP is of order/?. Then there exists A, > /x > 1 such 
that Q e Epx and Q ^ Epx+i. It follows from [p]Q = O that/?x(0 e p^^Z^p), hence 
x(Q)ep''-'Z^^. 

But as A > V > 1, we have 3A, — 1 > A, -f 1 so x(Q) e Epx+i, which is absurd. • 

Nagell-Lutz Theorem 4.10.2 Let E be an elliptic curve of equation 

y^ = x^ -\- aix^ + a^x + a^, 

with at G Z for i G {2, 4, 6}. SetD = —Aa\a(^ + a\a\ + 18a2«4«6 — 4^4 — 21 a\. 

Then if(x, y) is a torsion point ofE lying in Q^, x andy are integers, and ify is non-zero, 
then y divides D (and in fact, y^ divides Difai = 0 | 

Proof We saw in lemma 4.10.3 that for every prime number/?, Ep does not contain any 
torsion point apart from O. 

It follows that the torsion points of E{Q) which are different from the origin O have 
integral coordinates (JC, y). 

Since Z is integrally closed in Q, it follows from the preceding theorem that if y 7̂^ 0, 
then y divides D. D 

Corollary 4.10.2 An elliptic curve defined over Q admits at most a finite number of torsion 
points in F2(Q). 

Proof Indeed, we can choose for E a short Weierstrass equation with integral coefficients, 
and D admits only a finite number of divisors. D 

An infinitely more difficult problem is to inquire whether we can uniformly bound the 
torsion of an elliptic curve defined over Q (or over an algebraic number field). The answer 
is yes (Mazur, Kamienny, Merel), but we restrict ourselves here to stating Mazur's result, 
which concerns the field of rational numbers. 

Mazur's Theorem 4.10.3 
(1) If an elliptic curve E defined over Q contains a point of order n defined over Q, then 

1 < Az < 10 or n=l2. 

(2) More precisely, the torsion subgroup ofE(Q) is isomorphic to one of the following 
groups: 
(i) Z/mZ with 1 < m < 10 or m = 12. 

(ii) Z/2Z X Z/2mZ with I < m < 4. 

Remark 4.10.2 There exists no elliptic curve E defined over Q such that E(Q) contains 
a point of order 11. 
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4.11 MORDELL-WEIL THEOREM 

Conjectured by H. Poincare at the beginning of the 20th century, the most important theorem 
concerning the group E(Q) of the points of an eUiptic curve defined over Q was proved 
by L.J. Mordell^^ in 1922. He showed that for every curve E, this group is generated by a 
finite number of points. Some years later, in 1930, A. Weil extended this result to the group 
E{K) of the points of an elliptic curve E defined over an algebraic number field K. 

Mordell-Weil Theorem 4.11.1 Let K be an algebraic number field, and E an elliptic 
curve defined over K. Then the group E{K) is generated by a finite number of points. 

Corollary 4.11.1 Under the same conditions, the torsion subgroup ofE{K) is finite. 

Proof of the corollary. We say that an AbeUan group with a finite number of generators is 
of finite type, and a classical theorem shows that a subgroup of an Abelian group of finite 
type is also of finite type [Bou 2]. But a torsion group of finite type is a finite group. D 

Remark 4.11.1 We will see in the exercises that if, contrarily, the cubic E is singular and 
has a simple rational point O, then £'o(Q) is not an AbeUan group of finite type. 

4.12 BACK TO THE DEFINITION OF ELLIPTIC CURVES 

(a) Introduction 
In Section 2.4 of Chapter 2, concerning Liouville's theorem (theorem 2.4.5), we saw that 
a non-zero elliptic function/ e C(p, p') has as many zeros as poles in a suitable period 
parallelogram FI, and that the number of these is called the order of the function/. 

We also saw that a function of order 0 is a constant if e C) and that there exists no 
function of order 1. 

Definition 4.12.1 Let AZ 6 N and let O e Yl denote the origin of the complex plane. 
Let C(n(0)) denote the C-vector space of elliptic functions f attached to the lattice A 
admitting (at most) one pole at O of order < n, and let l{n{0)) denote the dimension of 
this vector space. 

Remark 4.12.1 If some non-zero/ belongs to Cin(0)), then the order of/ is < n since 
/ admits only the pole O in 11, and the order of this pole must be < n. 

Proposition 4.12.1 For every n eW, we have 

l(n(0)) = n. 

Proof Let us use induction on n. 

4̂ LJ. Mordell (1888-1972). 
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(1) If n = 1, we saw that l({0)) = 1. 
(2) Assume the property holds for « — 1, and let a and p eNbe such that 20̂  + 3̂ 6 = n. 

It is clear that p"(pO^ is of order n and has a pole of order n at O. 
It is also clear that 

C(n(0)) D C{{n - l)(0)) + Cp"(pO^ 

and the sum of the vector spaces on the right is a direct sum. 
Thus, it suffices to prove the inclusion in the other direction. 
Let / e C(n(0)). 
If the order of/ is < « - 1, then/ e C{(n - 1)(0)). Otherwise, there exists A e C* 

such that/(z) and Xp(zT(p'(z))^ are infinitely large quantities which are equivalent when 
z tends to 0. Thus/ - Ap"(pO^ e C((n - 1)(0)), which was our goal. 

Thus, we see that 

C(n(0)) = C{(n - l)(0)) 0 Cp"(pO^ 

and as l((n — 1)(0)) = « — 1 by the induction hypothesis, we see that 

l(n(0)) =n. ° 
(b) Generalisation 
We now propose to generalise the above considerations to the case of a curve F defined 
over k, irreducible over k and contained in projective space of dimension d. We assume 
that r(^) contains a simple point O. Let k{T) denote the function field of the curve, i.e. the 
extension of k obtained by adjoining the coordinates of a generic point of F (i.e. a point 
with transcendental coordinates over k). 

Definition 4.12.2 Let« € N. 
Let C{n(0)) denote the k-vector space of functions on C which admit (at most) a pole 
at O of order < n, and let i{n{0)) denote the dimension of this vector space. 

Definition 4.12.3 We say that the pair (F, O) is an elliptic curve defined over k if for 
every n e W, we have l(n(0)) = n. 

It is not at all obvious that a smooth cubic defined over k and equipped with a rational 
point is an elliptic curve in the sense of definition 4.12.2. We need to admit the following 
result. 

Theorem 4.12.1 
(1) Every smooth cubic defined over k and equipped with a rational point is an elliptic 

curve in the sense of definition 4.12.2. 
(2) Every curve which is birationally equivalent to an elliptic curve over k and equipped 

with a rational point is an elliptic curve in the sense of definition 4.12.2. 



ELLIPTIC CURVES 213 

Example 4.12.1 (1) Let ̂  G Q* and let B be the biquadratic 

IkX^^Y^ -\-2TY = 0 

kX^ - Z^ - 2TZ = 0. 

We see that ^ := (0,0,0,1) G 
Eliminating T, we obtain the projection of 5 in PiCQ)- It is given by 

r : Z(kX^ + Y^) + YikX^ - Z^) = 0. 

The curve T is a smooth cubic, and O := (1, 0, 0) G r(Q). Thus (F, O) is an elliptic curve, 
and (B, Q), which is birationally equivalent to it, is also one. 

(2) Assume that F isY^ = X"^ + k^, with k e Q\ and set O := (0, k) G r(Q). 
We can write the equation of F in the form 

(Y-{-X^)(Y-X^) = k^. 

Setting Y-\-X^ = SmdY -X^ = k^/S, we obtain 

, k^ 
2X^ =S . 

S 

Hence, after multiplication by S^, we have 

2iXSf =:S^ - k^S. 

If we set XS = V/4 and 25 = (/, we obtain the Weierstrass equation 

W: V^ = U^ -4k^U. 

(X, Y) ^ > ([/, V) = {2(Y + X^), 4X(Y + X^)), 

. V U^+4k^ 
(U, V) H-> (X, Y) = 

The rational map is 

and the inverse map is 

(TI_ V^ 1—> (X Y^ = ( 
^2U 2U 

Thus, we see that (F, O) is an elliptic curve over Q, since k ^Oby hypothesis. 

Theorem 4.12.2 Let (F, O) be an elliptic curve defined over k, with function field C = 
kiV). Then 

(1) There exist two functions x and y e C, such that the map 

\r^F2ik) 

^\M ^^ (x(M),y(M),l) 

is a birational map from (F, O) to a Weierstrass curve W of equation 

Y^Z + aiXYZ + a3YZ^ = X^ + aiX^Z + a^XZ^ + a^Z^ (1) 

defined over k, and such that (p(0) = (0, 1,0). 
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(2) Every other pair {x\ y') satisfying the same conditions can be written 

(2) 
x' = u^x + r 

I y = u^y -\- sx -\-t 

with u,r,s,t e k and w ^ 0. 

Proof. (1) Since i(2(0)) = 2 and 1(3(0)) = 3, there existX2indy eC such that 

C(2(0)) = kekx, C(3(0))=kekx^ky. 

Thus, X must have a pole of order 2 at O (and no other poles), and y must have a pole of 
order 3 at O (and no others). 

Consider the seven functions 

l,x, y,x^,xy, y^,x . 

We easily see that these functions belong to C(6(0)). 
Since 1(6(0)) = 6 by hypothesis, these functions are linearly dependent over k, and we 

have 

Ao + Aix + X2y + Asx̂  + A,4xy + Xsy^ + ^6^^ = 0, 

with (A.0,..., ^6) non-zero. 
We cannot have (A5, Xe) = (0, 0), because the functions l,x,y, x^, xy have different 

orders at O (namely 0, —2, —3, —4, —5), and all the A./ would be zero. 
For the same reason, we also cannot have k^k^ = 0. Replacing x by —ksX^x and y by 

ksXly, we obtain an equation W of the desired form. 
(2) To prove the birationality of the map V ^^ W defined by P \-^ (x(P),y(P)), it 

suffices to see that C = k(x,y), since the field of the functions of a curve determines the 
curve up to birational equivalence. 

Thus, we are led to prove that C = k(x,y). For this, we note that since x admits only a 
double pole at O, we have 

[C : k(x)] = 2. 

As y admits only a triple pole at O, we have 

[C : k(y)] = 3. 

We deduce that [C : k(x, y)] divides 2 and 3, so C = k(x, y). 
(3) For another choice of x and y, we necessarily have 

y = U{X + r 

y = U2y -\- sx -\-1, 

with U1U2 7̂  0. 
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In order for y'^ and x'^ to have the same coefficient in the new Weierstrass equation, it 

1 — "2-is necessary and sufficient that \JC[ = u? 
Setting u = W2/W1, we have 

ix^ = u^x + r 

y = u^y -\- sx -\- t, 

which gives the result. 
(3) Finally if W had a multiple point, C would be a field of rational functions, and we 

would have l(n(0)) = n-{- I, which is false. D 

Remark 4.12.2 
(1) The change of variables (2) is called an admissible change of variables for the Weier­

strass form. 
(2) The entire "philosophy" of this paragraph concerns the famous Riemann-Roch theo­

rem, which is beyond the scope of this book. This theorem associates to every curve 
r defined over k and irreducible over k, an integer g called the genus of F. 
The genus can be defined in various ways, but what counts here is the following 
definition. 

Definition 4.12.4 An elliptic curve is a curve of genus one, defined over k, which has 
a rational point over k. 

Thus, saying that a Weierstrass smooth cubic is an elliptic curve comes down to 
showing that it is of genus one: for this, we can either check that the differential 
0) = dx/{2y + ai -\- as) has no zeros or poles, or note that a plane cubic which is not of 
genus one must be parametrisable in k{t), and use Exercise 4.2 when the characteristic of 
k does not divide 6. 

4.13 FORMULAE 

If we start from a long Weierstrass form 

y^ + aixy + a^y = x^ -\- a2X^ -h a4X -\- a^ (1) 

defined over k, and if we desire to put this equation in "short" form by completing the square, 
then the cube, a certain number of new coefficients (Z72, b^.b^, b^ and C4, C6) appear. 

The coefficients bi are given by 

b2 = a\-\- 4a2 

b^ = aya^ -\- 2(24 

^6 = «3 + 4(36 

[Z?8 = a\ae — aia^a^ + 4a2«6 + ^2^3 — ^4-
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If the characteristic of k is different from 2, then with adequate coordinates, we have 

/ = X ^ + - x 2 + y X + - . (2) 

Remark 4.13.1 
(1) The coefficient b^ does not appear in (2), and we can compute it in terms of Z72, ^4, ^6 

by the formula 

4/78 = b2h - bl. 

(2) The nice thing about this coefficient is that it greatly simplifies the computation of the 
discriminant A of the cubic (1), the very discriminant whose non-vanishing expresses 
the condition that the cubic is of genus one. Indeed, we have 

A = -blb^ - ^bl - 21bl + %2^4^6. 

The coefficients c/ are 

C4 = ^ 2 - 24/74 

c^ = -bl-^36b2b4-2l6be. 

Then, with adequate coordinates, and if the characteristic of k does not divide 6, 

2 3 <̂ 4 ce 
y = X X , (3) 
^ 48 864' 

Remark 4.13.2 
(1) If we make an admissible change of coordinates by formulae (2) of the preceding 

paragraph (see top of page 214), we find that 

4 / 6 / 
W C4 = C4, W C^ = C6. 

(2) The discriminant A is given in terms of the c, by 

12^A = c^ -c^ . 

After an admissible change of coordinates, we thus have 

u^^A' = A. 

Definition 4.13.1 The quantity 

A ~~ cl-cl 

is invariant under an admissible change of coordinates: j is called the modular invari­
ant of the curve E and is written j(E). 
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Remark 4.13.3 
(1) Every number j in k is the modular invariant of an elliptic curve defined over k. 

(i) If J = 0, we can take 

(ii) If 7 = 1728, we can take 

E : y^ = x^ -\-x. 

(iii) If J ^ {0, 1728}, we can take 

.,2 36 1 
E : y -j-xy = X — —x — 

j - 1728 j - 1728 

(2) E is singular if and only if A = 0. 
When A = 0 and C4 ^0 E admits a double point in k. 
When A = 0 and C4 = 0, E admits a cusp. 

Theorem 4.13.1 A necessary and sufficient condition for two elliptic curves E and E' 
defined over k to be birationally equivalent over k is that they have the same modular 
invariant]. 

Proof. (1) If E and E^ are birationally equivalent over k, then they admit the same 
Weierstrass forms, so j(E) =zj{E'). 

(2) We prove the converse only for a field k of characteristic / 2 and 3 (it is left as an 
exercise for characteristics 2 and 3). We have 

I E : y^ =x^ -^Ax + B 

E' : y'^=x'^^A'x' ^B' 

andyX^) =j(E^) can be written 

4A^ 4A'^ 
1728 —: = 1728 4A3 -h 21B^ 4A'3 _̂  275^2 • 

Eliminating denominators, we obtain 

A'B''=A''B\ 

(1) If; = 0, then A = 0 and 5 7̂  0. Since; = / , we then have A' = 0 and B' / 0; we 
take u = {B/B')^^^ for an admissible change of coordinates. 

(2) If 7 = 1728, then 5 = 0 and A :7̂  0. Since7 = / , we then have B' = ^ and A' ^ 0; 
we take u = {A/A^y^^ for an admissible change of coordinates. 

(3) If 7 ^ {0, 1728} then A^ / 0 and Â B̂  / 0 and we take u = (A/A')^/^ = {B/B'y^ 
for an admissible change of coordinates. D 
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Remark 4.13.4 
(1) A closely related question is to compute the order of the group Aut(E) of invertible 

elements of End(E). Up is the characteristic of/:, we find that 

Mut(E) = 2 if 7 ^ {0, 1728} 

Mut(E) =4 if j(E) = 1728 and/7 ^ {2, 3} 

Mut(E) = 6 if j(E) = 0 and/7 ^ {2, 3} 

Mut(E) = 12 if j(E) = 0 andp = 3 

Mut(E) = 24 if j(E) = 0 andp = 2. 

On this topic, see [Sil] p. 103. 
(2) When A: = Q, we find that there are exactly 13 isomorphism classes (over Q) of elliptic 

curves defined over Q which admit complex multiplication (i.e. End(E) ^ Z). 

4.14 MINIMAL WEIERSTRASS EQUATIONS (OVER Z) 

Suppose we are given the elliptic curve E : y^ = x^ -\- I defined over Q, and an arbitrary 
prime number/?. We saw that the elliptic curve E^ : y^ = x^ -\-p^ is isomorphic to E over Q. 

However if/? > 3, the first one has good reduction modulo p, while the second has 
(bad) reduction of additive type (the curve has a cusp at the origin). 

By what we saw above, it is clear that every elliptic curve E defined over Q is isomorphic 
to a Weierstrass curve with integral coefficients of the type 

/ + aixy + asy = x^ -\- aix^ + a/^x -f a^, (1) 

We then saw that the discriminant A of £" is a non-zero integer (see Section 4.13). Now let 
p an arbitrary prime, and recall that the ring Z(p) of/7-integers is defined by the equality 

^(P) = [xeQ; \x\p < 1}. 

We say that equation (1) is/7-integral if its coefficients «/ are/7-integers. 

Definition 4.14.1 Equation (I) is said to be minimal atp if 

(1) This equation is p-integraL 
(2) Vp(A) cannot decrease because of an admissible change of coordinates with coef­

ficients in Q leading to a new p-integral equation. 

Example 4.14.1 If Vp(A) = 0, then equation (1) is clearly/7-minimal whenever the at are 
/?-integers. D 
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From now on, we will write an admissible change of coordinates in the form 

X = u^x' -f r 

y = ur'y' -\- su^x' + t 
(2) 

with w, r, s, t in Q. We then have 

u^a'2 

An' -
wa 

a\ + Is 

- as — sai -\-3r — s^ 

-- as + rai + 2t 

fl4 — sas + 2ra2 — (t -\- rs)ai + 3r^ — 2st 

u^a'^ • ae + ra4 + r^a2 -\- r^ — ta^ — f' — rta\ 

u% = 

u% = 

u% = 

b2 + 12r 

b4 + rb2 + 6r^ 

be + 2rZ74 + r^b2 + 4r3 

Z78 + 3rbe + 3r2Z74 + r3^2 + 3r^ 

C4 

= A. 

(3) 

Lemma 4.14.1 Assume that the coefficients of equation (1) are p-integers. Then: 

(i) If\A\p > p~^'^ or \c4\p > p~^ or \ce\p > p~^, the equation is minimal 
(ii) Ifp > 3 and /f | A l̂ < p~^^ and \c4\p < p~^, the equation is not minimal. 

Proof, (i) We will show that if | A1^ > p~^^, then equation (1) is/7-minimaL The reasoning 
is analogous for the other two conditions: \c4\p > p~^ and \ce\p > p'^-
Indeed, suppose that (1) is not minimal. Then there exists an admissible change of coordi­
nates of type (2), with coefficients in Q, such that the new equation (1)̂  has coefficients a'-
in Z(p) and such that 

lA'l;, > |A|^. 

Since |A|p = |A%|M|^^, it follows that \u\^^ < 1, so Wp 6 Z(p). Now, we know that 
I A|p > p~^^ and A' G Z(^) (since the a'- are p-integers), so | A'|p < 1. It follows that 

lA 
'\P - 1 2 
-^ > P , 

which implies that \u\p = 1. But this is a contradiction! 
(ii) Suppose now that j!? > 3 and 

12 \A\p<p-'\ \c4\p <P 
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Since 1728A = c\ - cj, it follows that \c6\p < p~^ (and conversely, \ce\p < p~^ and 
\c4\p < P~^ imply that | A^l < p~^^, etc.). Now, recall from Section 4.13, equation (3), that 
after an admissible change of coordinates (if p > 3), we obtain 

If we make the admissible change, 

we find 

X = p^x' 

y=p^y'^ 

CA ce 
y^ =X^ - TTTJ^ 48/7^ 864/76' 

whose coefficients are/7-integers and whose discriminant A^ = A/?"^^ is such that 

The existence of this curve shows that, under these conditions, (1) is not minimal. D 

Lemma 4.14.2 Consider an elliptic curve E defined over Q and a prime number p. 

(i) The equation ofE can be made minimal at p by an admissible change of coordinates 
(with coefficients in Q). 

(ii) If the coefficients ofE are already p-integers, then the coefficients of this admissible 
change are also p-integers. 

(iii) Two minimal equations at p coming from E are related by an admissible change of 
coordinates for which \u\p = 1 and r, 5, t are p-integers. 

Proof We give the proof only for/? > 3, and refer to [Kn] p. 292 for the other case. 

(i) Since we can assume that the equation ofE has integral coefficients, we have | A |p < 1. 
Since \A\p > 0, there are only a finite number of possible | A^l^ between \A\p and 1, 
which proves the existence of a minimal equation. 

(ii) If the new equation is minimal, the twelfth equation of (3) shows that \u\p < 1. 
Since the a^- are in Z(p), the first, second and third equations of (3) show that 5, r 

and t lie in Z(p) (if/? = 2 or 3, we need other equations). 
(iii) If the equation ofE^ is minimal, we saw in (ii) that \u\p < 1, but the parameter u of the 

inverse transformation is w~^ so if E was already minimal \u~^\p < 1, i.e. \u\p > 1. 
Thus, it follows that \u\p = I. O 

We will now define a globally minimal model. 

Definition 4.14.2 Equation (1) is said to be globally minimal if 
(1) The equation has coefficients in Z; 
(2) At every prime p, the equation is minimal. 
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Example 4.14.2 The equation j ^ = x^ + 1 is globally minimal by lemma 4.14.1. D 

To show that every elliptic curve admits a globally minimal equation, we will need the 
following form of the Chinese remainder theorem (see Problem 1 of Chapter 3). 

Chinese Remainder Theorem 4.14.1 Letp\,... ,pnbe a finite set of prime numbers and 
Si,... ,Snbe real numbers > 0. For every i € {1, . . . , w}, take p-integers x/ € Z(p). 

Then there exists x e 7J such that for every i we have 

\X-Xi\p^ < £i. 

Neron's Theorem 4.14.2 
(i) Given an elliptic curve E defined over Q by a Weierstrass equation, there exists an 

admissible change of coordinates, with coefficients in Q, such that the new equation 
is globally minimal. 

(ii) Two globally minimal equations for the same curve E, are related by an admissible 
change of coordinates such that M = ±1 and r,s,t lie in Z. 

Proof Part (ii) follows immediately from lemma 4.14.2. 
Thus, it remains to prove the existence of a globally minimal equation for E (part (i)). 
Up to changing the equation ofE, we can assume that the at lie in Z, so A G Z . Let/? be 

a prime number dividing A. Then we can make an admissible change of coordinates, with 
coefficients {Up,rp,Sp,tp}, such that the new equation (having coefficients ai^p) is minimal 
at p. By lemma 4.14.2, the coefficients Up,rp,Sp, tp are p-integers. Furthermore, we know 
that 

\Up\l^\Ap\p = \A\p^ 

where A^ denotes the discriminant of the new equation. 
If we now set 

Up=p^''Op 

with Op G Z(p), \Op\p = 1 and Ap > 0 (by lemma 4.14.2), and if we take u = Y\P\AP^' ^ ^ ' 
then if w is the first coefficient of an admissible change {M, r, s, t}, and ifp divides A, we have 

lA Î̂  = \u\;'^ \A\p = \up\;'' \A\p = lA^I^. 

As IÂ  |£ = 1 if £ is a prime number not dividing A, we see that the new equation is globally 
minimal insofar as its coefficients aj are integers. We realise this condition by suitably 
choosing r, s, t using the Chinese remainder theorem (theorem 4.14.1). 

Indeed, we take r,s,t in Z such that 

\r - rp\p < p-^'p, \s - sp\p < p-''r^ \t - tp\p < p-'^^; 

then the formulae (3) show that the a[ are integers. 
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To see this, we check that for every prime £, we have 

WM < 1. 
If I does not divide A, there is no problem because the a/ and r, s, t He in Z. If £ = p 
divides A, we need to look more closely, comparing the global transformation to the local 
transformation dXp. 

For example, let us show that \a\ |p < 1. By (3), we write 

ua\ = fli + 2^ = ^1 + 2(5 — Sp) + ISp 

~ Upa\p -\-2(s - Sp), 

hence 

\ua[\p < M2ix{\upa\p\p, \2(s - Sp)\p} 

<M2iX{\Up\p,p-^^P} = \Up\p 

since \Up\p = p~^p by definition. 

As \up\p = \u\p, by definition, we obtain 

\a[\p<L 

We leave the cases / = 2, 3, 4, 6 as an exercise for the reader. D 

Definition 4.14.3 Let E be an elliptic curve defined over Q, and birationally equivalent 
over Qto a Weierstrass cubic W whose equation is minimal We say that the curve E is 
(globally) semi-stable if and only ifW has good reduction or multiplicative reduction 
(see Section 4.5) at every prime number 

Theorem 4.14.3 In order for E to be (globally) semi-stable, it is necessary and sufficient 
that A and C4 be relatively prime. 

Proof Let us show that the condition is necessary. 
Indeed, if the prime number/? divides both A and C4, we have A = C4 = 0 in F^. Thus, 

the curve Wp is of additive type, by a remark from Section 4.13. 
Let us show that the condition is sufficient. 
Indeed, ifp does not divide A, Wp is of genus 1 by a remark from Section 4.13. Moreover, 

ifp divides A, then/? does not divide C4. 
We then have A = 6 but C4 7̂  0, and a remark from Section 4.13 shows that Wp is of 

multiplicative type. D 

Remark 4.14.1 
(1) It follows easily from (3) and Neron's theorem (theorem 4.14.2) that the choice of 

minimal equation W has no bearing on the question of whether E is semi-stable. 
(2) We say that E is semi-stable at/? if the reduction ofWaip is good or of multiphcative 

type; this condition can be seen "locally", i.e. on an equation which is minimal at/?. 
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4.15 HASSE-WEIL L-FUNCTIONS 

The zeta function of an elliptic curve is constructed on the model of the Riemann zeta 
function (which was studied intensively by Euler in the 18th century). Let us rapidly recall 
some properties of this function. 

4.15.1 Riemann Zeta Function 

We know that the Riemann zeta function is defined over C, for Re(^) > 1, by the formula 

and Euler found that the zeta function can be decomposed into an "Euler product": 

p premier ^ 

This equation tells us that every natural integer n > I can be decomposed in a unique way 
as a product of primes. 

Thus, the zeta function (often called the ^ function) expresses, in a synthetic and hidden 
form, important properties of Z. However, it is important to note that in (1), the only integers 
n which appear on the right-hand side are > 1. Thus, the f function can be considered to 
be attached to the set of "norms" of the non-zero ideals of Z, i.e. the set of numbers 

\n\ = Card(Z/(n)). 

Since we know some rings which are, in some sense, "simpler" than Z, namely the rings 
of/7-adic integers Z^, all of whose non-zero ideals are of the form (p^), we can construct 
an analogue of the Riemann zeta function for these rings. Indeed, for RQ(S) > 0, we set 

Then, equation (2) is quite simply 

p premier 

Moreover, if we set 

we obtain the obvious functional equation 

Ap(s) = -Api-s). (5) 

We can then wonder whether the Riemann zeta function has analogous properties. In 
Chapter 5 (or see [Og 1]), we will see the proof of the following result. 
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Theorem (Riemann, 1859) 4.15.1 The Riemann zeta function defined by equation (l)for 
Re(s) > 1 can be analytically continued to a meromorphic function of the complex plane. 

The only pole of this function is at s = 1, and its residue is 1. 
Moreover, the function A defined by 

Ais):=7T-'''r(^\(s) (6) 

satisfies the functional equation 

K{s) = H\-s). (7) 

Remark 4.15.1 
(1) The function F is the Euler gamma function, defined by 

JO 
T{s):= / e-'t'-'dt 

Jo 

(it is the MeUin transform oft\-^ ^~^ see Chapter 5). 
It admits a meromorphic continuation to all of C, and satisfies the functional 

equation 

r(s-hi) = sr(s). 

(2) The f function vanishes at every even integer < 0. The famous Riemann conjecture 
("Riemann hypothesis") asserts that all the other zeros of f He on the line Re(^) = ^ 
(i.e. on the symmetry axis of the functional equation (7)). 

4.15.2 Artin Zeta Function 

Before defining the Hasse-Weil zeta function of of the minimal model of an elliptic curve 
defined over Q, let us begin by considering certain fields which are in some sense "simpler" 
than Q, namely the finite fields F^. This is what Artin did in his thesis [Ar 2]. 

Artin took an elliptic curve over ¥p in affine Weierstrass form 

E: 7^ + aiXY -h asY - {X^ + ^2^^ + «4^ + ae), 

and associated to it the Dedekind domain 

A = F^[Z, Y]/iE) 

which is the quotient of the polynomial ring ¥p[X, Y] by the ideal generated by E. 
Naturally, A is a quadratic extension of ¥p[X] and we know that ¥p[X] is analogous 

to Z. As for the quadratic extensions of Z, we can define the norm of a non-zero ideal of 
A by 

A^(a) = Card(A/a); 
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thus we define the zeta function of A by 

;Ais)= y —^ (8) 
14- ideal of A 

when RQ{S) > 1 (a proof of the convergence of the right-hand side of (8) when Rt(s) > 1 
can be found in [Ar 2]). The fact that A is a Dedekind domain proves the existence of an 
Euler product for f̂ , i.e. of an equation of the form 

p prime ideal of A ^^ '^ 

However, the zeta function of A is not really the zeta function of the curve E, since this 
curve is not really an elliptic curve: we have "forgotten" the point at infinity (0, 1, 0) of the 
projective model of E\ This corresponds to an ideal of degree 1, so to the factor 

and we are 

^oo(s) = 

led to the following definition. 

1 
1 

-P-' 

Artin shows the following result. 

Theorem (Artin) 4.15.2 Set T = p~^ and letNE denote the cardinal of the group of points 
ofE in ¥p. Then 

l-aET+pT' 

il-T)i\-pTy 

where aE is defined by the relation 

aE =p+l -NE. 

Corollary ("Riemann Hypothesis") 4.15.1 The roots of the function ^E He on the line 
Re(s) = 1/2. 

Proof We need to show that the roots Oi and O2 of the polynomial pT^ — ^^T + 1 are of 
module/7~^/^. 

This is easily seen if we know that they are non-real or identical. Indeed, if O2 = Oi, we 
know that \02\ = |6>i|, hence \0j\ = \0i02\^^^ = (p'^y^^ wheny e {1, 2}. 

Now, theorem4.9.1 shows that \aE\ < 2p^^^, so 0\ and O2 are non-real or identical. D 
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As the polynomial 1 — GET-^PT^ will play an important role in what follows, we are led 
to the following definition (which is not the same as that given by Silverman [Sil] p. 360). 

Definition 4.15.2 The L-function ofE is defined by the formula 

LE(s) = (l-aEp-'+P'p-^'y'. 

Corollary 4.15.2 Changing s to I — s, we have the functional equations: 

(i) P-'LE(S)=P'-'LE(1-SI 

(ii) ^E(S) = ^E(1-S). 

Proof Clearly, (ii) follows from (i), and (i) is obtained by a simple computation. D 

4.15.3 Hasse-Well L-function 

Now, let us take an elliptic curve defined over Q by a globally minimal equation E = 0 
as in Section 4.14. We cannot proceed directly as in Section 4.15.2, since the norm of a 
non-zero prime ideal of A = Q[X, Y]/(E) is always infinite. Then, instead of (8), we can 
consider (4) and formally set 

LE(S) = YILP(S), (10) 

p 

where 

[ LE (S) if E has good reduction at p, 

(1 — p~^)~^ if E has multiplicative reduction 

with rational tangents at/?, 

(1 + p~^)~^ if E has multiplicative reduction 

with irrational tangents at/?, 

1 if E has additive reduction at p. 

In the formulae (11), the three last cases occur only for prime numbers p which divide the 
discriminant ofE, i.e. only for a finite number of p. In the first case, Ep denotes the elliptic 
curve over ¥p deduced from E by reduction modulo p. 

By corollary 4.15.1 above, we have 

Lg/.)-(l-V~0"'(l-V'0"'' 
where Op denotes an (arbitrary) root of I — a^ T -\- pT^. Thus, we see that, up to a finite 
number of factors, LE(S) is the infinite product 

n(i-v-r'n(i-v-r'-
p>c p>c 

As \Opp~^\ = p-0/2)-Re(s)^ ^g jgg jĵ ĵ j jjjjg infinite product converges if Reis) > 3/2. 

Lpis) = (11) 
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Remark 4.15.2 Neron's theorem (theorem 4.14.2) shows that LE does not depend on the 
choice of a globally minimal equation for the curve. 

Hasse and Weil were the first to conjecture that, in analogy with the Riemann ^ function 
and the Artin L-functions, the functions LE associated to elliptic curves E defined over Q 
possess meromorphic continuations to the whole complex plane. 

This conjecture is now proved, as a consequence of the theorems of Wiles and his 
disciples. 

Their second conjecture, which also follows from the results of Wiles and his disciples, 
is that the function LE satisfies a functional equation, but in order to write it down, we first 
need to introduce the notion of the conductor of the curve E. 

Definition 4.15.3 Let E be a globally minimal equation of an elliptic curve defined 
over Q. The conductor NE is the product 

where 

fp--

'o 
1 

2 + Sp 

NE= Y\ ^'^ (12) 
p prime 

ifE has good reduction at p, 

ifE has multiplicative reduction atp, 

with 8p >OifE has additive reduction atp. 

Naturally, this definition is incomplete, since we have not yet defined 8p precisely. We 
limit ourselves here to saying that 8p = 0 if p > 3, referring the reader to Ogg, [Og 2] 
p. 361, for the case where/? e {2, 3}. 

To write the functional equation of LE, we will modify this series by multiplying it by 
a normalisation factor containing the Euler gamma function and the conductor NE. Set 

AE{S):=(^] r(s)LE{s). (13) 
V 2n 

The desired equation functional is given by 

AE(S) = WAE(2-S) 

with w = ±1 . 

Remark 4.15.3 The famous Birch-Swinnerton-Dyer conjecture asserts that the rank r 
of the Mordell-Weil group of an elliptic curve E defined over Q is equal to the order of the 
zero of LE{S) at the point 5 = 1 (note that this point is situated on the symmetry axis of the 
involution s ^^ 2 — s which appears in the functional equation (14)). 
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We can give a more down to earth aspect to this assertion by writing it as follows: 

Card{Ep(¥p)) n 
p<R 
p\A 

C (log RY 

for a constant C 

COMMENTARY 

The last ten years have witnessed an enormous explosion in the English-language liter­
ature devoted to the subject of elliptic curves. For the point of view which concerns us 
here, the most relevant books are those of Knapp [Kn], Silverman [Sil], Cassels [Ca] and 
Silverman and Tate [S-T]. But many others, for example that of D. Husemoller [Hus], 
can be extremely useful. 

Before that, there may have been a shortage of books, but there was certainly no lack 
of excellent articles; we cite in particular those of Cassels [Cas 3] and Tate [Tat]. 

An introduction to the notions of algebraic geometry used in this chapter can be 
found in "Fulton's little book" [Fu]. But for a veritable initiation into modem algebraic 
geometry, the reader can consult the books by Hartshome [Ha], as well as Silverman 
[Sil]. We also recommend the excellent book by D. Perrin [Per]. 

Curves of genus one are implicitly present in a large number of problems considered 
by Fermat, as A. Weil showed in [Wei]. But the systematic study of cubics (of genus 
zero or one) was apparently inaugurated by Newton. In the "divergent parabola" (which 
is the Weierstrass cubic if the genus is one), he was able to recognize the archetype of all 
plane cubics. Later, in his book Geometrica organica, his distant disciple C. MacLaurin 
explained the basic principles ("Bezout's theorem", the nine-point theorem) which we 
used to define a group law on a genus one cubic having at least one rational point. To 
conclude, let us mention that E. Artin's thesis [Ar 2] is a magnificent introduction to the 
study of elliptic curves over finite fields. 

For deep results which are not proved within this book, we refer to [Sil] for Mordell-
Weil, to [Se 3] for Serre's theorem and to [M] for Mazur's theorem. 

Exercises and Problems for Chapter 4 

4.1 Let /: be a field of characteristic not equal to 2, in which every number is a square (for example 
k = C), and take/? and q e k[t] such that there exist four distinct projective points (A/, /x/) e 
Pi (k) such that for every / G {1, 2, 3, 4}, Xip -\- ^iiq is a square in k[t]. We propose to show that 
p and q are constants. 
(a) Up to replacing/? and q by a\p -\-b\q and aip + b2q with {a\ ,b\) ^ (aj, ^2) in Pi (k), we 

may assume that (A. 1, jLti) = (1, 0), (>i2, M2) = (0, 1), (>̂ 3, Ms) = (1,-1), (A4,/X4) = 
(1,-A). 

(P) Assume that max{deg/7, deg^} is minimal among all the possible relations such that 
max{deg/7, deg^) > 0. Show that setting p = u^, q = v ,̂ we find a new quadruple 
of squares which contradicts the minimality of max{deg/7, deg^}. 

(y) Conclude. 
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4.2 Let /: be a field of characteristic not equal to 2, in which every number is a square. Consider the 
cubic Wx of the equation 

y^ =X(X- 1 ) ( J C - X ) 

for some X e k. We propose to show that if A ̂  {0, 1}, then this cubic is not parametrisable in 
k(t). 

(a) Show that in the contrary case, there exist four polynomials p,q,r,s in k[t] such that 
X = p/q, y = r/s (irreducible fractions) and 

r --p{p-q){p-kq). 

(a) Deduce thatp, q,p — q,p — Xq are associated to squares in k[t]. 
iP) Conclude using Exercise 4.1. 

4.3 Short Weierstrass form 
An elliptic curve is said to be in short Weierstrass form up to a birational transformation if its 
image under this transformation can be written 

W : Y^Z = X^ -^ a^XZ^ + a^Z^ 

with a\ and a^ e k, the field of definition of the cubic. The characteristic of k is assumed to be 
different from 2. 

(a) Assume that P is a rational point of the cubic C, and that it is not an inflection point. Let O 
be the (other) intersection point of the tangent to C at P with C. 

P + 

Show that if we take the origin at O and OP for the _y-axis, the affine equation of C is 

C{x,y) = Ciix,y) + C2{x,y) + C^ix.y) = 0, 

where C/(x, y) is homogeneous of degree / (for / = 1,2, 3), and that 

C2(0, l ) 2 -4Ci (0 , 1)C3(0, 1) = 0. 
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iP) Cut C by the line y = tx and discard the fixed point O. Show that if we set 

5 :=2C3(1, 0-̂  + ^2(1,0, 

the point (t, s) lies on the cubic 

52 = C 2 ( l , 0 ^ - 4 C i ( l , 0 C 3 ( l , 0 . 

(y) Put this last cubic in short Weierstrass form W when k is of characteristic not equal to 3. 
(8) Show that if C has a multiple point, the cubic W is "unicursal", i.e. parametrisable in k(0). 
(e) Deduce that the polynomial 

x^ + a4X + ^6 

then admits a double root in k (use Exercise 4.2). 

4.4 Consider an affine quartic defined over a field k of characteristic zero, which admits the rational 
point (a, h) and has equation 

y^ = rQ + VQX + r\x^ + r^x^ + r^x"^. 

(a) Setting M = \/{x — a) and v = y/{x — a)^ (this change of variables sends the point {a, b) 
to infinity), show that we have 

2 2 3 4 

V = ao -\- a\u -\- a2U -i- a^u + a4U 

and that ^4 is a square in A:. 
()S) Write the right-hand side of this equation in the form G(u)^ -\-H(u), with G(u) = g2U^ -\-

giu + go, H(u) = h\u + HQ. 

iy) Set r = V + G{u) and tu = s. Show that 

2g2S^ + 2gir5 + IgQp- = p -his- hot. 

(8) Put this cubic in Weierstrass form W. 
(e) What can we say about W if g is unicursal? (use Exercise 4.2). 

4.5 Consider two quadrics Qi and Q2 of P3 (k) passing through the point (0, 0, 0, 1) which intersect 
along a non-degenerate biquadratic. 

(a) Show that Qi and Q2 can be written 

TL -h /? = 0 

7M -h 5 = 0, 

where L and M are in k[X, Y, Z\x and R and 5 in k\X, 7, Z]2. 
(j5) Show that if L and M are linearly dependent, then Q\ fi Q2 is unicursal over /:. 
{y) Show that if L and M are linearly independent, (2i n 22 projects (eliminating T) onto the 

cubic LS — /?M, and that this cubic has a rational point. 
(5) Deduce that Q\ 0 g2 is either unicursal or birationally equivalent to an elliptic curve. 
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4.6 In E^, draw the curves of equations 

Ci : ( X 2 + / ) ' * - 4 J C V = 0; 

it may be helpful to use polar coordinates. 

4.7 Let C and C be two plane cubics such that, in P2(^), we have 

c.c' = Y.^i. 
i=\ 

(a) Assume that there exists a conic T such that 

6 

Show that P7, Pg and F9 are collinear. 

/=i 

m 

Take six points A, B, C, A', B', C 
on a conic . 

Let C and C denote the decomposed cubics (AB') U (CAO U {BC) and (fi'C) U (A^^) U 
{CA). Show that the intersection points U, V, Ŵ  ofBC' and C^', CA' and AC', AB' and 
BA' are colhnear (Pascal's theorem). 

(y) Prove the same result when the conic T decomposes into two lines (Pappus' theorem, 4th 
century A.D.). 

(^) Show the converse of Pascal's theorem, and deduce a way to construct each point of a 
conic passing through five given points, using only a ruler. 

{e) Describe what Pascal's theorem becomes when A = B'. Deduce a construction of the 
tangent to a conic at a point using only a ruler. 

{(p) Same question when A = B\ B = C and C = A\ 

4.8 Let C be an irreducible cubic and D a line. We assume that k is algebraically closed. 

(a) Let D • C = Pi + P2 + P3, Pi be distinct. 
Let Ti be the tangent to C at P/, and set 

TiC = IPi + Qi. 

Show that 2 i , G2, Gs are collinear. 
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iP) Show that if a Une passes through two inflection points of a cubic, then it passes through 
a third inflection point (Maclaurin's theorem). 

4.9 Desboves' Formulae 

Consider the cubic 

F(X) = aiXf + a2Xl + a3X^ + dXiX2X3 = 0. 

Show that F(X) is non-singular if and only if 

21 axaia^ + J^ ^ 0. 

Assume that F{x) = 0, and show that the third point t of intersection of the cubic and of the 
tangent at x is given by the formulae 

ti = Xi{ai+ix^^^ - fl/+2-^f+2)' i = 1' 2, 3. 

If X and y are two distinct points of F(X), show that the third point of intersection z of the line 
(xy) with the cubic is 

4.10 Starting from ( 2 , - 1 , - 1 ) on X^ -\-Y^ -\- IZ^ = 0, find 10 distinct points. 

4.11 Let kbe a. field of arbitrary characteristic, and C the singular cubic y^ — x^. Let Coik) denote 
the set of non-singular points of C in P2(^). 

(a) Show that Co{k) can be rationally parametrised using the parameter t = x/y. 
ip) Give a necessary and sufficient condition for the points of parameters ti,t2, 3̂ to be 

collinear. 
(y) Let O be the point of parameter o and ri and t2 the parameters of Pi and P2 e Eo(k). 

Compute the value of the parameter of Pi 0 P2. 
What can we say about the group {Eo{k), 0)? 

4.12 Let /: be a field of characteristic not equal to 2, C the singular cubic y'^ — x^{x + 1) and Co{k) 
the set of non-singular points of C in P2(^)-

(a) Show that Co(k) can be parametrised using t = x/y. What are the forbidden values of tl 
iP) Set r = (^ - l)/(^ + 1), and give a parametrisation of Co(k) using 0. What are the 

forbidden values of ^? 
(y) Give a necessary and sufficient condition for the points of parameters Oi, O2 and 63 to be 

collinear. 
(8) Let O be the point of parameter 1 and 0\, 62 the parameters of Pi and P2 e Co{k). 

Compute the value of the parameter of Pi 0 P2. 
What can we say about the group (Coik), 0)? 

4.13 Let khe a. field of characteristic not equal to 2. Assume that k contains an element a which is 
not a square, and consider the singular cubic F of equation y'^ — x^{x-]- a) = 0. 

(a) Set a = ^ e k. Show that k(a)/k is a Galois extension of degree 2. 
(P) Set jc = a^^, y = a^rj, and show that (x, y) e F is equivalent to (^, rj) e C, where C is a 

cubic whose equation we will determine. 
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(y) Use the preceding exercise to give a parametrisation of Co{k{a)). 
(8) SetGal(yt(Qf)A) = {id,a}. 

Let P e Co (/:(«)) be of parameter 0. 
Show that P e Co(k) if and only if A (̂̂ ) = 9-a(e) = \. 

(e) Show that the map Â  given by 

X I—> X - a(x) 

is a group homomorphism and that (Co(A:), 0 ) is isomorphic to KerA .̂ 
(<p) Show that if/: = F7, then Co(k) contains 8 points. 

What is the structure of this group? 

4.14 Let Ci and C2 be two curves in the projective plane, with no common components and of 
respective degrees di and ̂ 2-

Assume that C\ and C2 intersect at d\d2 distinct points and that Ci is smooth. 
Let D be a third curve in the projective plane of degree d\ +6^2 — 3, which passes through all 

the points of C\ H C2 except for at most one. Show that D then necessarily passes through the 
remaining point. 

4.15 Let C be the affine quartic y^ — xy — x^. 

(a) Determine the tangents to C at the point O of coordinates (0, 0). 
(P) Let D be the line jc = 0, compute Ato(C, D). 
(y) Let L be the line y = 0, compute /io(C, L). 
(8) Let A be a line passing through O not equal to D or L. Compute fioiC, A). 

4.16 Consider the elliptic curve C = y^ — (x^ -\-x) G Q[x, y]. 

(a) Show that in order for (x,y) e C(Q) to be of order 3, it is necessary and sufficient that 

3 / + 6JĈ  - 1 = 0. 

(p) Compute the points of order 3 of C(Q). 
(y) Show that the field K^ which is generated over Q by the coordinates of these points is 

b, /), where 

(8) Show that [K3 : Q] = 16. 

4.17 Again consider the elliptic curve C = y^ — (x^ -\- x) defined over Q. 

(a) Show that in order for (x,y) e C(Q) to be of order 4, it is necessary and sufficient that 

x^ + 5 / -5x^-\=0. 

(P) Noting that ±1 are roots of this polynomial, decompose this polynomial as a product of 
irreducible polynomials in Q[JC]. 

(y) Compute the points of order 4 of C(Q). 
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(8) Show that the field K4 which is generated over Q by the coordinates of these points is 
Q(/, V2). 

(e) Determine the Galois group of A'4/Q. 

4.18 Determine the Galois representations p2 of Gq in GL2(F2) attached to the 2-division points of 
the following elliptic curves: 

(a) El =y^ -x(x^- 1). 
(p) E2=y^-(x^+x). 

In this case, show that K2 = Q(/), and take as a basis of £;2[2] the points 

Fi = (0,0) and P2 = {i,0). 

(y) E3=y^-{x^-2). 
In this case, show that K2 = Q ( V ^ , ^ ) and that Gsi\{K2/Q) = ©3- What can we say 
about the image of p2^ 

Lety be a primitive cubic root of unity, and set 

Pi = ( ^ , 0 ) , P2 = (J^,0). 

Take (P2, P2) as a basis of £3 [2]. 
Compute P2(<7) when a e Gal(^2/Q) is defined by cr(y/^) = V ^ and cr(V2) = 

4.19 Consider a field k of characteristic not equal to 2, and the elliptic curves 

Ex : / =x{x^ +axx^bx), 

E2 : y^ =x(x^-\ra2X^b2), 

with a2 = —2a\,b2 = a\ — Ab\,b\b2 7̂  0. 

(a) Express the rational map E\ -> E2 given by 

<P (r_ y{x^-bi)\ 

in homogeneous coordinates. What can we say about the image of the points (0, 1, 0) and 
(0, 0, 1)? 

(P) We know that (p must be defined everywhere over E\ (since E[ is smooth). 
Find a homogeneous expression of (p which is defined at (0, 1,0). Use the fact that 

(X,Y,Z) G £ I . 
Deduce that cp is an isogeny. 

(y) Find a homogeneous expression of (p which is defined at (0, 0, 1). What is the image of 
this point under (pi 

4.20 Assume that the map 

z \ ^ aoz""-\-aiz""'^ + . . . + a„ 

is a homomorphism (C*, x) -> (C*, x) and that ao ^ 0. 
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(a) Show that ao -\-ai -\ h a« = 1. 
iP) What can we say about the zeros of the polynomial (^(z)? 
(y) Deduce a simplified expression of (p(z). 
(8) Same question, replacing (p{z) by a rational function in z. 
(e) Same question, replacing (p{z) by a meromorphic function in z. 

4.21 Compute #£'(F^) for/7 = 3 and 7 and £ = / - (jĉ  + JC + 1). 
Determine the structure of the Abehan group E(¥p) in the two preceding cases. 

Problem I 

(Congruent Numbers) 

Consider the elliptic curves 

El : y^ =xi{xj +ai-Xi +/?i), 

El' y\= X2 {xj + 02^2 + h), 

both defined over a field K of characteristic different from 2, and assume that 

a2 = —2ai, b2 = a\ — Ab\, 2bib2^0. 

Recall that E\ and E2 are isogenous via the following isogenics of degree two: 

(xuyi) 

(X2,y2) 

ix2, yi) = 
^ yiix^,-bi) 

, . [yiY y2{xl-b2) 

Recall that, if Q. denotes the point (0, 0), the kernels of (p and \l/ are just the group {O, ^ } . 

I. (1) Assume here that a\ — Ab\ is not a square, and show that 

{x2, y2) G Im (̂  =^ X2 is a square in ^*, 

which we denote by ;c2 € ^A'*. 
(2) Show that if a\ - 4bi e ^K*, and if fe, J2) € Im (̂ , then X2 € ^/^* or X2 = 0. In the latter 

case, give (p~^(Q). 
(3) Show that if (x2, y2) = (^^, Â) = <̂ (-̂ i, yi) with X e K* and 11 e K , then we must have 

XI = ± -
X\ A 

xi H = A — fli 
xi 

j l = ±Xxi. 

(4) With notation as in question (3), compute ip~^ (X^, jx) when (A.̂ , /x) G E2{K), and deduce 
that (A.̂ , 11) G Im</?. 
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II. Assume that (a, b, c) is a primitive Pythagorean triple, i.e. that 

a^ -\- b^ — c^, abc ^ 0, « even, 

{a, b, c) G N-̂ , relatively prime. 

Set 

E2 : yl=X2{xl-c^X2-\-a^b^). 

(1) Is E2 an elliptic curve? 
(2) Find a curve E\ such that E2 is related to E\ by the formulae of part I. 
(3) Compute the 2-division points of E2. 
(4) Set A = (a^,0), B = (b^, 0) and C = {c^, abc). Using a question from part I, show that 

Q,A,B and C belong to Im (̂ . 
(5) Show that (p~^(C) is contained in the image of x// (use question 3) of I for inspiration. Prove 

the equations 

^(X2,y2) = (>^^,M) 

X2 = ± 4 -
X2 A 

JC2 + — = 4A.2 - a2 

X2 

y2 = di2A,X2. 

Compute the points Ci, C2, C3, C4 of £'2(Q) which are such that [2]C/ = C for / e 
{1, 2, 3, 4} (use the relation (p o \l/ = [2], and find points with integral coordinates). 

(6) Taking a simple Pythagorean triple, show that C is not (in general) a point of finite order of 
E2 (apply the Nagell-Lutz theorem (theorem 4.10.2)). Deduce that (in general) the points 
±Ci, with / G {1, 2, 3, 4}, are not of finite order. 

(7) Compute ^ ® C and show that C is never a point of finite order of E2(Q). 
(8) Let /? be a prime number not dividing abia^ — b^). Show that if we reduce E2 modulo /?, 

then the order ofE2^p) is divisible by 4. 

III. Take the situation of II, but now consider the curve E^i i^i _̂ 2 given by 

T2: yl=X2{x2-b^){x2-C^). 

(1) Is r2 an elliptic curve? 
(2) Find a curve T\ which is related to r2 by the formulae of part I. 
(3) Compute the points of 2-torsion of r2. 
(4) SetB = (/72,0),C = (c^0). 

Using a question from I, show that ^ , B and C lie in Im (̂ . 
(5) Show (as in part II) that (p~^ (C) is contained in the image of ir{E\ (Q)). 

Compute the points Ci, C2, C3, C4 of r2(Q) which are such that [2]Q = C for / e 
{1, 2, 3, 4}. Do they lie in the image of (pi 

(6) is(^-i(5)ciA(r2(Q))? 
Noting that (p~^{B) C V^(r2(Q(/))), compute the points Bi,B2,B3,B4 of r2(Q(/)) 

such that [2]Bi = B for i e {1,2,3, 4}. 
(7) Compute all the points of r2[4](C), and determine the smallest field K4 which contains 

them all. 
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(8) Show that if (jc, y) e r2[4], then if y is not zero, it divides the discriminant of the right-hand 
side of the equation of r2 in Z[i]. 

(9) Assume that/? is a prime number congruent to 1 modulo 4 and which does not divide abc. 
Show that #f 2(Fp) is divisible by 16. 
Show that if/? € {31, 47}, then 

IV. (1) Define a map 

by the formulae 

Â : 

#f2(Fp) = / ? + ! . 

E2{K)—^Ky^K* 

N(X2.y2)=X2eK'') ifX2y^O 

N(Q) = (al-4bi)eK*) 
N(0) = ̂ K*. 

Show that Â  is a group homomorphism (one can show that if jci, X2, ^3 are the abscissae of 
three collinear points of £^2(^), then N(x\)N(x2)N{x3) = 1). 

What is the kernel of Â ? 
(2) Now assume that K = Q and that the equation of E2 has integral coefficients, and let r 

denote a square-free integer. Show that in order to have r(^Q*) e ImN, it is necessary and 
sufficient that r divide ^2- To do this, one may remark that 

X2 = rt X2 + a2X2 4- b2 • 

with t and 5 in Q*, and show that if the prime number/? divides r then it divides Z?2-
(3) Deduce from question (2) that £'2(Q)/Ini (̂  is a finite group, then that Ei (Q)/[2]Ei (Q) is 

finite (recall that i// o (p = [2]). 

Problem 2 

I. (1) In an affine Euclidean plane, consider a point S and two lines A and A^ 
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Prove the relation 

M'A' MA SA' SA 

M'B' MB SB' SB 

when M, A, 5 he on A and M\A\ B' are the points on Â  deduced from them by projection 
from the perspective of the point S. 

(2) Deduce from the preceding question that every product o) of quotients MA/MB, NB/NC, 
etc, in which M,A,B; N, B, C; etc. are (respectively) colUnear and in which A, B, C, etc. 
occur an equal number of times in the denominator and in the numerator, is an invariant of 
perspective. 

(3) Check that if A, B,C,D are collinear, the cross-ratio 

CA DA 
[A, B,C,D] = = : = 

CB DB 

is an invariant of perspective. 
(4) Let k be an algebraically closed field and F(x,y) an affine curve of degree n in the plane 

k^, given by 

F{x,y)=Fn{x,y)-^----\-Fo(x,y), 

where F/(jc, y) is homogeneous of degree /. 
Show that if A = (a, b) and U = (u, v) are two distinc^oints of Z:̂ , and if z G k\l—l], 

then the point M on the line AU such that MA -f zMU = 0 has coordinates 

a-\- zu b -{- zv 
x= , y= . 

1 + z ' 1 + z 
Assume that A and U do not lie on the curve F, and that AU meets F in n distinct points 
M l , . . . , M„ of parameters z\,... ,Zn-

Show that 

1̂ . . . „̂ = (-1)" '•—, a quotient to be noted carefully (-1)" 7—77- • 

F(w, v) F{U) 

Deduce that 

JUA AhA ^ ^ F{A) ^AU 
MiU M2U MnU F(U) 

(5) Let Ai, A2 , . . . , A;-, r be distinct points of k^ not lying on the curve F. Set 

^ 1 = ^A]A2' ^ 2 = COAjA^, • • • , ^r = ^ArAi • 

Show that o) = 0)1 "• (br is Ml invariant of perspective and check that co = I (result dating 
back to 1806). 

(6) Give details in the special case where n = 1 (Menelaiis, + 100), n = 2 and « = 3. Give a 
generalisation of this result in k^ with m >2. 

(7) Assume that the cubic C intersects the transversals Ai and A2 as follows (distinct points): 

A i n C = {Mi,i, Mi,2, Mi,3} 

A2 n C = {M2,i, M2,2, M2,3}, 

and for / = 1, 2, 3, let M3 / denote the third point of intersection of Mi / M2,/ with C. 
Deduce from the results of (5) and (6) that the points M3 1, M3 2 and M3 3 are collinear. 
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(8) Using (5) and (6), show that if six of the nine intersection points of a (plane) cubic with 
three transversals lie on a conic, then the three others are collinear. 

(9) Suppose that a transversal A meets a cubic F in three distinct points F,G,H, and that the 
tangents to T at F and G cut T atA and B (Fig. 4.1). Let C denote the point where the line 
AB meets F. Show that the tangent to F at / / passes C through C when none of the points 
occurring here are singular on F. 

Figure 4.1. 

(10) Let A be a given point on F (Fig. 4.2), and let AF, AG be tangents to F at F, G. If we join 
F to G, this line meets F at / / and the tangent at H meets F at C. Show that the tangent to 
F at A passes through C when F is smooth (pass to the limit in (9)). 

(11) Let A be a given point on F (Fig. 4.2), and let AF, AG, Af be tangents to F at F, G,f. 

Figure 4.2. 

If we join G t o / , this line meets F at Â , and NF meets F at g. Show (using (9) and 
(10)) that the tangent to F at Â  passes through C and that the tangent at g passes through A. 

(12) From (11), deduce a construction of a fourth tangent coming out of A, given three of them. 
Show that it is the last one when F is smooth. 

(13) Show that if A is an inflection point of F, the point C is equal to A. Show that the points 
F, G, / are collinear. In the case where F is smooth, take A as the origin of the group of points 
ofF(i^). 
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II. (1) Consider the statement of theorem II of Article 13 of the text by CoHn Maclaurin reproduced 
below. What is the geometric framework of this statement, projective or affine geometry? 
and over what field? What is meant by a "geometric line"? Is it possible to give a similar 
statement in characteristic pi 

(2) In theorem I of Article 8 of the same text, what is meant by the "dimensions" of a line? Can 
we give a similar statement in characteristic pi 

(3) Explain the Lemma of Article 8. 
(4) When the line is defined over a field k of positive characteristic, how can we adapt the 

computation of the fluxions in Article 8? (One could consider studying T in the space 
k[£]^k[s] where k[s} denotes the ring k[X]/{X^)). 

(5) Check the assertion of line 6 of Article 13: "the point M will be in a right line". 
(6) Recall (I, (13)) that if A is an inflexion point of a plane cubic F, the points of contact F,G,H 

of the tangents to T coming out of A are collinear, i.e. lie on a line L (Fig. 4.3). Let A be a 
transversal passing through A, which meets F at fi and C, and L at P. 

Figure 4.3. 

Show that the division (A, P, B, C) is harmonic (one can show Descartes' relation 
(l/AB)^(\/AC) = (2/AP)). 
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CONCERNrNG THE GENERAL PROPERTIES OF 
GEOMETRICAL LINES (BY COLIN MACLAURIN [ML]) 

Concerning the lines of the second order, or the conic sections, the ancient and modem geometers 
have written very fully, concerning the figures which are referred to the superior orders of lines, 
little has been delivered before Newton. That most illustrious man, in his tract concerning the 
Enumeration of Lines of the Third Order, has revived this subject, which had long lain neglected, 
and has shown it to be worthy of the geometer's notice. For the general properties of these lines, 
which he has laid down, are so consonant to the known properties of the conic sections, that they 
seem to be conformable to the same law, and from his example many others have since been induced 
to make this subject their study, and have clearly comprehended and explained the analogy which 
there is between figures of such very different kinds. The pains which they have been at in the 
illustration and further investigation of these matters, have deservedly met with applause, since 
there is nothing in pure mathematics which can be called more beautiful, or that is more apt to 
delight a mind desirous of investigating truth than the agreement and harmony of different things, 
and the admirable connection of the succeeding with the preceding, where the more simple always 
open the way to those which are more difficult. 

Most of the general properties of lines of the third order, delivered by Newton, relate to 
segments of parallels and asymptotes. Some other of their properties, of a different kind, I have 
briefly pointed out in my Treatise of Fluxions, lately published, Art. 324, and 401. The famous 
Cotes formerly discovered a most beautiful property of geometrical lines, hitherto unpublished, 
which has been communicated to me by the Rev. Dr. Robert Smith, Master of Trinity College, 
Cambridge, a gentleman not less remarkable for his learning and works, than for his fidelity and 
regard for his friends. While I had these under consideration, some other general theorems offered 
themselves; which, as they seem to conduce to the augmentation and illustration of this difficult 
part of geometry, I have thought fit to throw together, and briefly expound and demonstrate in order. 

SECTION I 

Of Geometrical Lines in General 
(1) Lines of the second order are defined by the section of a geometrical solid, viz. a cone, 

where their properties are best derived by common geometry. But the nature of the figures which are 
referred to the superior order of lines, is different. To define and draw out their properties, general 
equations must be apphed, expressing the relation of the coordinates (Fig. 4.4). Let ̂  represent the 
abscissa AP, y the ordinate PM of the figure PMH, and let a, b, c, d, e, etc. denote any invariable 
coefficients; and having the angle APM given, if the relation of the coordinates x and y are defined 
by an equation which, besides the coordinates themselves, involves only invariable coefficients, 
the line FMH is called a geometrical one which indeed by some authors is called an algebraical 

Figure 4.4. 
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Figure 4.5. 

line, by others a rational line. But the order of the line depends upon the highest index of x or y in 
the terms of the equation freed from fractions and surds, or upon the sum of the indices of both in 
a term where that sum is the greatest. For the terms y?, xy, y^ are equally referred to the second 
order; the termsx^,x^y,xy^,y^ to the third. Therefore the equationy = ax-\-h,oxy — ax — b = ^, 
is of the first order, and denotes a line or the locus of the first order, which indeed is always a right 
line (Fig. 4.5). For let there be taken in the ordinate PM the right line PN, so that PN is to AP as +a 
is to unity; let AD, parallel to PM, be made equal to +/?, and DM, drawn parallel to AÂ , will be the 
locus to which the proposed equation will answer. For PM = PN-i-NM = (a-AP-hAD) = ax-\-h. 
But if the equation be of the form y = ax — b,oxy = —ax + b, the right line AD, or PN, is to be 
taken on the other side of the abscissa AP for the contrary situation of right lines answers to the 
contrary signs of the coefficients. If the affirmative values of x denote right lines drawn from A, 
the beginning of the abscissa, to the right hand, the negative values will denote right lines drawn 
from the same beginning to the left; and in like manner if the affirmative values of y represent 
the ordinates constituted above the abscissa, the negative ones will denote the ordinates below the 
abscissa, drawn the opposite way. 

The general equation for a line of the second order is of this form, 

yy — axy + cx^ 1 
-by-dx\=0 

and the general equation for lines of the third order is 

y^ - {ax + Z?)/ + {cx^ -dx^- e)y -fx^ ^-gx^ -bx+ k = 0. 

And by similar equations geometrical lines of superior orders are defined. 
(2) A geometrical line may meet a right line in as many points as there are units in the number 

which denotes the order of the equation or line, and never in more. The number of times that any 
curve will meet its abscissa AP is determined by putting j = 0, in which case there remains only 
the last term of the equation into which y does not enter. For example, a line of the third order 
meets the abscissa AP in three points, when the equation/x^ — gx^ -\- hx — k = 0, has three real 
roots. In like manner in the general equation of any order, the highest index of the abscissa x is 
equal to the number which denotes the order of the line, but never greater, and of course expresses 
the number of times that the curve will meet the abscissa or any other right line. But since one root 
of a cubic equation is always real, and the same is true of an equation of the fifth or any odd order 
(because every imaginary root has necessarily its fellow) it follows that a line of the third or any 
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other odd order cuts any right Hne, not parallel to the asymptote drawn in the same plane, in one 
point at least. But if the right line is parallel to the asymptote, in this case it is commonly said 
to meet the curve at an infinite distance. A line therefore of any odd order has necessarily two 
branches which may be produced in infinitum. But of a quadratic, or any other equation of an even 
number of roots, all the roots may be sometimes imaginary, therefore it may be that a right line 
drawn in the plane of a curve of an even order may never meet it. 

(3) An equation of the second, or of any higher order is sometimes compounded of so many 
simple ones, freed from surds and fractions, multiplied into each other as often as the proposed 
dimensions of that equation express, in which case the figure FMH is not curvilinear, but is made up 
of so many right fines as described by the simple equations this determined as in (1). In like manner 
if a cubic equation be compounded of two equations multiplied into each other, one of which is 
a quadratic and the other a simple one, the locus will not be a line of the third order, properly 
so called, but a conic section joined with a right line. Now the properties which are generally 
demonstrated of geometrical lines of higher orders are to be affirmed also of geometrical lines of 
inferior orders, if the numbers denoting their orders, taken together, make up the number which 
denotes the order of the said superior line. Those which, for example, are generally demonstrated 
by lines of the third order, are also to be affirmed of three right lines drawn in the same plane, or of 
a conic section together with one right line described in the same plane. On the other hand, there 
can scarce be any property of a line of an inferior order be assigned sufficiently general to which 
some property of lines of superior orders do not correspond. But to derive these from those, not 
everyone can take the trouble to derive the latter from the former. This doctrine in a great measure 
depends upon the properties of general equations; which it is here only proper to mention. 

(4) In every equation the coefficient of the second term is equal to the excess of the sum of the 
affirmative roots above the sum of the negative ones; and if that term is wanting, it is an indication 
that the sums of the affirmative and negative roots, or the sums of the ordinates constituted on 
different sides of the abscissa, are equal. Let the general equation be for a line of the order /i, 

/ - (ax + b) • / " ^ + (cxx -dx + e)' / " ^ - etc. = 0, 

suppose u = y — {ax-\- b)/n, for y let us substitute its value u-\-{ax-\-b)/n\ and in the transformed 
equation the second term M"~ ̂  will be wanting; as appears from the calculation, or from the doctrine 
of equations, everywhere delivered: and from hence it also appears, that by hypothesis every value 
of u is less than the corresponding value of >̂  by {ax + b)/n\ whence it follows that the sum of the 
values of u (whose number is n) falls short of the sum of the values of y (whose sum is ax + b) 
by the difference [{ax + b)/n]n = ax -\- b, so that the first sum vanishes, and the second term is 
wanting in the equation by which u is determined, or that the affirmative and negative values of u 
make equal sums. If therefore PQ be taken = {ax + b)/n, so that QM may = u, right lines on both 
sides of the point Q, terminated at the curve, will make the same sum (Fig. 4.6). Now the locus of 

Figure 4.6. 
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the point Q is the right Une BD which cuts the abscissa, produced beyond its beginning A, in B, so 
that A5 = b/a, and the ordinate AD, parallel to PM, in Z), so that AD = l/n - b: for if this right 
line meets the ordinate PM in the point Q, PQ will be to PB (or b/a + jc) as AD to AB, or aio n; 
so that PQ = (ax + b)/n as it ought to do. And hence it appears, that a right line may always be 
drawn which shall cut any number of parallels, meeting a geometrical line in as many points as 
the dimensions of the figure express, that the sum of the segments of every parallel, terminated at 
the curve on one side of the cutting line, may always be equal to the sum of the segments of the 
same on the other side of the cutting line. Now it is manifest that a right line which cuts any two 
parallels in this manner is necessarily that which will cut all other parallels in the same manner. 
And hence appears the truth of the Newtonian theorem, in which is contained the general property 
of geometrical lines, analogous to that well-known property of the conic sections. For in these a 
right line which bisects any two parallels, terminated at the section, is a diameter, and bisects all 
others parallel to these, and terminated at the section. And in like manner a right line, which cuts 
any two parallels, meeting a geometrical line in as many points as it has dimensions, so that the 
sum of the parts standing on one side of the cutting line and terminated at the curve may be equal 
to the sum of the parts of the same parallel standing on the other side of the cutting line terminated 
at the curve, will in the same manner cut all other right lines parallel to these. 

(5) In every equation the last term, or that into which the root y does not enter, is equal to the 
product of all the roots multiplied into each other; from whence we are led to another property of 
geometrical lines, not less general than that above. Let the right line PM meet a line of the third 
order in M, m and /x, and it will be PM • Pm Pfi =fx^— gx^ -\-hx — k. Let the abscissa AP cut the 
curve in the three points /, K, L; and A/, AK, AL will be the values of the abscissa x, the ordinate 
being put = 0, in which case the general equation gives/x^ — gx^ -h hx — k = Ofor determining 
these values. Therefore of the equation 

3 _ | X ^ / « _ ^ ^ 

/ / / 

the three roots are A/, AK, AL; and so this equation is compounded of the three x — A/, x — AK, 
X — AL multiplied into each other; and 

x^-y-^ — - - = (x-AI)-(x-AK)- ix-AL) 

= {AP - AI) . {AP - AK) . {AP - Al) 
1 

= IP KP LP = - ' PM ' Pm ' Pfi. 
f 

Therefore the product of the ordinates PM, Pm, Pfi, terminated by the point P and the curve, is 
to the product of the segments IP, KP, IP, of the right line AP, terminated by the same point and 
the curve, in the invariable ratio of the coefficient/ to unity. In like manner it is demonstrated, that 
having given the angle APM, if the right lines AP, PM, cut a geometrical line of any order in as 
many points as it has dimensions, the product of the segments of the first, terminated by P and the 
curve, will always be to the product of the segments of the latter, terminated by the same point and 
the curve, in an invariable ratio. 

(6) In the preceding article we have supposed, with Newton, that the right line AP cuts a line of 
the third order in three points /, K, L; but that this famous theorem may be rendered more general, 
let us suppose that the abscissa AP cuts the curve in only one point, and let that be A (Fig. 4.7). 
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Figure 4.8. 
Therefore because y vanishes, let x vanish also, the last term of the equation, in this case, will be 

/̂ 3 _ ̂ 2̂ ^ ;̂^ ^ ̂ ^ ĵ ^^ _ ^ ^ I ^ ^ ̂ ^ U ̂  _ A ̂  
+ / 4# 

(if Aa be taken towards P equal g/2/, and at the point a be erected a perpendicular ab = 
y/'^fli - gg/V) = f AP - {aP^ + ab^) = f AP • bP^\ when PM Pm - P^i is equal to the 
last term/c^ — gx^ + hx, as in the preceding article, PM PmPii will be to AP • bP^ in the constant 
ratio of the coefficient / to unity. Now the value of the right line perpendicular to ab is always 
real, as often as the right line AP cuts the curve in one point only, for in this case the roots of the 
quadratic equation/x^ — gx + h are necessarily imaginary, so that Afh is greater than gg, and the 
quantity y/Afh — gg real. When therefore any right line cuts a line of the third order in one point A 
only, the solid under the ordinates PM, Pm, P/x will be to the solid under the abscissa AP and the 
square of the distance of the point P from a given point ^ in a constant ratio. Ab, being joined is to 
Aa, as radius to the consine of the angle MP, as y/Afh to g, and Ab = yjhjf. But the same point b 
always agrees to the same right line AP, whatever be the angle which is contained by the abscissa 
and ordinate. 

(7)Letthefigurebeaconicsection, whose general equation is yy—(ax — b)'y-\-cxx—dx-\-e = 0 
as above; and if the roots of the equation cxx — dx -\- e — Obe imaginary, the right line AP will 
not meet the section (Fig. 4.8). Now, in this case the quantity 4ec always exceeds dd; when 
cxx — dx + e = cix — d/2c)^-\-e — dd/Ac (if Aa be taken = d/lc, and ab be erected perpendicular 
to the abscissa at a, so that ab = y/4ec - dd/2c) = c • (aP^ + ab^) = c • bP-^, and PM • Pm = 
cxx — dx-\- e, then PM • Pm is to bP^ as c to unity. Therefore in any conic section, if the right line 
AP does not meet the section, the angle APM being given, the rectangle contained under right lines 
standing at the point b and terminated at the curve, is to the square of the distance of the point P 
from the given point b, in a constant ratio, which in a circle is that of equality. Now it is manifest 
that the same method may be apphed to a line of the fourth order which the abscissa cuts in two 
points only, or to a line of any order which the abscissa cuts in points less by two than the number 
which denotes the order of the figure. 
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Figure 4.9. 

(8) This being premised, I proceed to explain the less obvious properties of geometrical lines 
almost in the same order in which they occurred to me. Now I used the following lemma, derived 
from the doctrine of fluxions, and which I have demonstrated in my treatise on that subject; yet I 
have since observed that some of them may be demonstrated by common algebra. 

Lemma If, of the quantities x,y,z,u,..., flowing together, and also the quantities X, Y, 
Z, y , . . . , the product of the former be to the product of the latter in any constant ratio, then 

X y z u X Y Z V 

I + .- + z + « + - = x + ? + z + K + - -
Moreover, for brevity's sake, I call those quantities mutually reciprocal, when being multiplied 
into each other, the product is unity, so 1/jc I call the reciprocal of jc, and l/y ofy. 

Theorem I Let any right line, drawn through a given point, meet a geometrical line of any order 
in as many points as it has dimensions; and let right lines, touching the figure in these points, cut 
off from another right line, given in position and drawn through the same given point, as many 
segments terminated by this point; the reciprocals of these segments will always make the same 
sum, if the segments lying on the contrary side of the given point be affected with the contrary 
signs. 

Let P be the given point, PA and Pa any two right lines drawn from P, of which both meet the 
curve in as many points A, B, C, and a, /?, c , . . . , as it has dimensions (Fig. 4.9). Let the tangents 
AK, BL, CM,..., and a/c, /?/, cm, . . . , cut off from the right line EP, drawn through the point P, 
the segments PK, PL, PM,... and Pk, PI, Pm, . . . ; I say that 

J _ 1 1 _ 1 1 1 

'PK^7L'^W^"~"Pk^7l^^^"' 
and that this sum always remains the same, the point P remaining, and the right line PE being 
given in position. 

For let us suppose the right lines ABC, abc to be carried by motions parallel to themselves, so 
that their concourse P proceeds in the right line PE given in position; since AP - PB CP..., is 
always toaP bP cp... in a constant ratio, (5), let AP represent the fluxion of AP, BP the fluxion 
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of BP, and CP, EP,..., the fluxions of the right lines CP, EP,..., respectively, that a useless 
multiplication of symbols may be avoided, then (8) 

AP BP CP 
Jp^Jp^'cp'^ 

aP bP cP 
'^^'bP^dP'^' 

But when the right line AP is carried by a motion parallel to itself, it is well-known that AP, the 
fluxion of the right line AP, is to EP, the fluxion of the right line EP, as AP to the subtangent PK, 
and so 

In like 

where 

and 

manner 

BP 
IBP ~ 

EP 
'PL' 

CP EP 

~CP ~ PM' 

EP EP EP 

1 1 1 

AP 
JP 

aP 
aP ' 

+ •• 

+ ••• 

EP 

~ JK' 

EP 
~ Jk' 

EP 

1 

~ Tk 

+ 

+ 

bP EP 
— = — and 
bP PI 

EP EP 

1 1 

cP 
~cP ~ 

EP 
~ Pm 

Things are so whenever the points K,L,M,..., and A:, /, m , . . . , are all on the same side of the 
point P, and so the fluxions of the right lines AP, BP, CP,..., aP, bP, cP,..., all have the same 
sign (Fig. 4.10). But if, other things remaining the same, some points M and m fall on the contrary 
side of P, then while the rest of the ordinates AP, BP,..., increase, the ordinates CP and cP are 
necessarily diminished, and their fluxions are to be accounted subtractive, or negative; and so in 
this case 

1 1 1 
JK'^'PL~ TM^ 

1 1 1 
Pm 

L \ 
/ / E 

l/K .-^^ 

\c 

Jc 

Figure 4.10. 
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Figure 4.12. 

and in general, in collecting these sums, the terms are to be affected with the same or contrary 
signs, as the segments fall on the same or contrary side of the given point P. 

(9) If a right line PE meets a curve in as many points D, £ , / , . . . , as its dimensions express; 
the sum 

1 1 1 

'PK^TL^TM^'" ' 

which we have shown to be constant or invariable, will be equal to the sum or aggregate 

PD PE^ PI^ 

i.e. to the sum of the reciprocals to the segments of the right line PE, given in position, and 
determined by the given point P and the curve; in which, if any segment is on the other side of the 
point P, its reciprocal is to be subtracted. 

(10) If the figure (Fig. 4.11) be a conic section, which the right line PE nowhere meets, let the 
point b be found as in (7), and Pb joined, and at right angles to this let bd be drawn, cutting the 
right fine PE in d; then will \/PK -h \/PL = 2/Pd. For PA • PB is to bP^ in a constant ratio, and 
so (8) 

AP BP _ 2bP I 
~AP^~BP~ ~bP' 

whence (because AP is to EP as AP to PAT, BP to EP as BP to PL, and bP to EP as bP to dP) 
\/PK+\/PL = 2/Pd. 

(11) In like manner if the right line EP meets a line of the third order in only one point D, let 
the point b be found as in (6), and let the right line bd, perpendicular to bP, meet the right line EP 
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in d, and because AP BP • CP is to DP • bP^ in a constant ratio (ibid.) 

1 1 1 
\ 1 = 

PK PL PM 

1 2 
- — - I - — 

PD Pd 

But '\iPb be perpendicular to the right Une EP, 2/Pd will vanish (Fig. 4.12). 
(12) The asymptotes of geometrical lines are determined from the given direction of their 

infinite branches, or legs, by this proposition; for they may be considered as tangents to the legs 
produced in infinitum (Fig. 4.13). Let the right line PA, parallel to the asymptote, meet the curve 
in the points A, 5 , . . . and the right line PE cut the curve inD, E,I, Let PM be taken in this 
so that \/PM may be equal to the excess by which the sum \/PD + \/PE + \/PI -\ exceeds 
the sum \/PK + I/PL -\ , and the asymptote will pass through M; but if these sums are equal, 
the curve will be a parabola, the asymptote going off in infinitum. 

Figure 4.13. 

(13) Theorem II About the given point P let the right line PD revolve which meets a geomet­
rical line of any order in as many points D,E,I,..., as it has dimensions, and if in the same right 
line be always taken PM so that 

1 1 1 1 
PD^ PE"^ Pl"^ 

(where we suppose the signs of the terms to keep the rule repeatedly given) the locus of the point 
M will be a right line (Fig. 4.14). 

For let there be drawn from the pole P any right line given in position PA, which let meet the 
curve in as many points A, 5, C , . . . , as it has dimensions. Let there be also drawn the right lines 
AK, BL, CN touching the curve in these points, which meet PD in as many points K, L, N,...; 
and by (9) 

1 1 1 
PD"^ PE^ PI^ 

1 1 1 
'PK^TL'^JN'^ 
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Figure 4.14. 

Where 1/PM is equal to this sum, and when the hne PA is given in position, and the right Hnes 
AK, BL, CN,..., remain fixed, while the right line PD revolves about the pole P, the point M will 
be in a right line, by the preceding Article; which may be determined by what has been shown 
above from the given tangents AK, BL, 

(14) As the right line Pm is a mean harmonical between the two lines PD and PE, when 
2/Pm = \/PD + l/PE; in like manner Pm may be called a mean harmonical between any right 
lines PD, PE, PI,..., whose number is n, when 

1 1 1 
Pm PD^ PE^ Pl"^ ' 

And if any right line drawn from a given point P cuts a geometrical line in as many points as it has 
dimensions, in which let Pm be always taken an harmonical mean between all the segments of the 
drawn line terminated by the point and the curve, the point m will be in a right line. For 1/PM will 
=n/Pm, and therefore Pm is to PM as n to unity; and since the point M is in a right line, by the 
preceding, the point m will also be in a right line. And this is Cotes's theorem, or nearly related to it. 

(15) Let a,b,c,d,..., be the roots of an equation of the order n, v its last term into which 
the ordinate y does not enter, P the coefficient of the last term but one, M the harmonical mean 
between all the roots, or 

n \ \ \ \ 

M a b c d 

Therefore since v is the product of all the roots a,b,c,..., multiplied into each other, and P is 
the sum of the products when all the roots, one expected, are multiplied into each other, P will 
= v|a-\-v/b-\-v|c+v/d^ = «v/M, and therefore M = nv/P. So, if the equation be a quadratic, 
whose two roots are a and b, M will = lab/{a -\- b) (having assumed the general equation for 
conic sections given in (1)) ={2cxx — Idx -\- 2e)/{ax — Z?). In a cubic equation, whose three roots 
are a, b, c, M will = 3abc/(ab -\- ac -\- be) (if there be assumed the general equation for lines of 
the third order there given) 

_ 3fx^ - 3gx^ + 3hx - 3k 

cxx — dx -\- e 



EXERCISES AND PROBLEMS FOR CHAPTER 4 251 

Figure 4.15. 

(16) Let any two lines Pm and P/JL (Fig. 4.15), drawn from the point P, meet a geometrical line 
in the points D,E,I,..., and d,e,i,...; and let Pm be an harmonical mean between the segments 
of the former terminated by the point P and the curve, and Pfi an harmonical mean between the like 
segments of the latter line; let /xm, being joined, meet the abscissa AP in // , then will PH = nvx/v 
or PH is to Pm as P to v/x. For let the abscissa cut the curve in as many points 5, C, F , . . . , as it 
has dimensions; and since the last term of the equation (i.e. v) is to BP • CP • FP • . . . , in a constant 
ratio, as we have shown above (5) it will be (by 8) 

V X X X 

v~ ^'^'CP^Jp'^"' ' 

and therefore 

n _ \ 1 1 _ V 

JH~^'^'Cp'^Jp^"~vk' 
and PH = nvx/v (because the line PM = nv/P)= PM • (PJC/V). In conic sections it is PH to Pm 
Sisax — b to 2cx — d; and in lines of the third order as cxx — dx -\- eio 3fxx — 2gx + h. 

(17) If a demonstration of the preceding proposition be desired from principles purely alge­
braical, it may be had with the help of the following. 

Lemma Let the abscissa AP = x, the ordinate PD — y,V the last term of the equation defining 
the geometrical line = Ax" + PJC"~^ + Cx"~^ + • • •, P the coefficient of the last term but one 
= «;c"-l +^jc"-2 + cjc"-3 + '-,andletQ = nAx""'^ + (n - 1) •PJC"-^ + (« - 2) • CJC"-^ + • • • 
(which is the quantity we call V/x). Let there be drawn the ordinate Dp which makes any given 
angle ApD with the abscissa, and let the right lines PD, pD, and Pp be as the given ones I, r and 
k; let pD = u, Ap = z; and let the proposed equation be transformed into another expressing 
the relation between the ordinate u and abscissa z; and since z = AP, the last term V of the new 
equation will be equal V, butp the coefficient of the last term but one, will be equal to {-^Qk-\-Pl)/r. 

For since PD {= y) is to pD {= u) as / to r, y = lu/r\ but let Pp be to pD{= u) as k to r, then 
Pp = ku/r, and AP = x=Ap±Pp = z^ ku/r. Now these values being substituted for y and 
X in the proposed equation of the geometrical line, there will come out an equation determining 
the relation of the coordinates z and u. To determine the last term of this v and the last but one pu, 
it is sufficient to substitute these values in the last V, and in the last but one Py, of the proposed 
equation, and to collect the resulting terms in which the ordinate u is either not found, or of one 
dimension only; for the sum of these gives pu, and of those v. Let for x be substituted its value 
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Z ± ku/r in the quantity V or AJC" + Bx"~^ + Cx"~^ -\ ; and the resulting terms 

Az"" ± + 5z"~^ ±(n-\) + a"-^ ±{n-2) + • • • , 
r r r 

will alone serve the purpose we are about. Then let be substituted for x the same value, and for y 
its value lu/r, in the quantity 

Py = (fljc'̂ -i + bx"-^ + cjc"-^ + • • ")y; 

and the resulting terms alone 

^n—\ , L^Ai—2 I ^^n—3 lu 
r 

are to be retained. Let it be supposed now that z = JC, and the sum of the first be equal V ± Qku/r, 
and of the latter the sum = plu/r. From where it is manifest that the last term of the new equation 
V = V, and the last but one/7M = [{PI ± Qk)/r] • u. 

(18) Let Pm be an harmonical mean between the segments PD, PE,PI,..., and P/JL an har-
monical mean between the segments Pd, Pe, Pi,..., as in (16), let /xm, being joined, cut the 
abscissa in //; and let us suppose P/x to be parallel to the ordinate pD. Let /JLS be drawn parallel to 
the abscissa, which meet the right line Pm in s; and Ps will be to Pfi as PD to pD or as / to r, and 
lis to P/JL as k to r. And since F/x = nN/p (by 17) = nvr/Pl ± Qk, ms will equal 

nv nQl nv vni nvQk 
Pm — Ps = = — lb P pr P Pl±Qk P(Pl±Qk) 

Now ms is to sfM as Pm to PH, i.e. nvQk/[P{Pl ± Qk)] to nvk/(Pl ± Qk) as Pm to PH\ and so Q is 
to P as Pm to P// , or P/ / = Pm • P / g or nv/Q. Since therefore the value of the right line PH does 
not depend upon the quantities /, k, and r; but these being changed, is always the same, the point 
/x will be at a right line given in position, as we have otherwise shown in Theorem IL Moreover 
also the value of the line PH is that which in (15) we have determined by another method; and 
the right line Hm cuts all right lines drawn through P harmonically, according to the definition of 
harmonical section given in general in (14). 

Problem 3 

Consider an integer a > 2 not divisible by the cube of an integer > 1, and let (Q) be the affine cubic 

x^+y'^=a. {Co) 

(1) Let P = (a, P) be a rational point of (Q) , and show that a^ ^0 and oc ^ p. 
(2) Show that the abscissa y of the third intersection point of (C«) with its tangent at P is given by 

one of the equations 

la -\-y = 

2 
^ 3 - Q f 3 ' 

(3) Show that we cannot have a = y. 
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(4) Without computing, give the ordinate 8 of the third point of intersection of (C^) with its tangent 
at P. 

(5) Assume that a and fi are written as irreducible fractions 

Z2 

with (xi, zi) = 1 = Cvi, Z2), z\ > 0, Z2> 0. 
Show thatzi = zi-

(6) Show that 

^1 a = — 
^1 

Xl 

y = — 
z\ 

Zl 

3 3 
^1 - > ^ 1 

y\ + 2x] 
3 3 ' 

(7) Let A be the positive greatest common divisor of the numbers x\{xl + 2^^), y\(y\ + 2xj), 
zi(xl-yl). 

Show that A G {1,3}. 

XI {xl + 2y\) yi {y\ + Ix^) I zi (x^ - y]) I 

(8) Set 

X2 y2 = Z2 

Show that (X2/Z2, y2/z2) is a rational point of (Ca), and that we have Z2 > z\ (there are two 
cases to consider: A = \ and A = 3). 

(9) Deduce that the number of rational points of the cubic (Q) is equal to zero or infinity. 
(10) Give an example of a cubic (Ca) which has an infinity of rational points (i.e. give a). 
(11) Show that (C3) contains no rational points. 

Problem 4 

(Congruent Numbers) 

We say that an integer n > 1 is a congruent number if there exists a right triangle whose sides have 
rational lengths and whose area is equal to n. 

(1) Show that if the sides of the above triangle are a, b, c, then there exists X e Q^ such that 

a __\-X^ b _ 2X 
~c" m ^ ' c ~ 1+A.2' 

Show that the point {—nk, /2 (̂1 + A^)/c) lies on the cubic 

(C„): y^=x{x^-r?), 

(2) Conversely, let (jc, y) e C„(Q) be a rational point of the curve (C„) such that y ^ 0, Show that 
a = \{n^ - x^)/y\, b = \2nx/y\ and c = |(n^ + x^)/y\ are the sides of the right angle and the 
hypotenuse of a right triangle. 

(3) Given an arbitrary n > 1, we know that the curve (C„) can be parametrised using Weierstrass 
functions (P(M), \/2p'(u)). Consider the group law on C„(C), and determine all the points 
(jc, y) e Cn(Q such that (x, y) © (jc, y) = O, where O denotes the identity element of the group 
(the point at infinity of C„(C)). 
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Let C„[2] denote this set, and show that C„[2] is a group. What is its order? Is it cyclic? 
What can we say about y if (x, y) e C„[2]? 

(4) We propose to determine the torsion subgroup T of the group C„(Q), i.e. the set of points of 
finite order of the group C„(Q). For this, we will use the following result of Nagell: if a point 
P = (x,y) :^ Oisa. point of finite order of C„(Q), then x and y are integers and y'^ is zero or 
divides 4n^. 

Show that r is a finite group whose order m is divisible by 4. 
(5) Let/7 be a prime number congruent to 3 modulo 4. 

Show that —1 is not a square in F^. 
Set 

P(X) = XiX^ - h^), 

where h denotes the class of n modulo p. 
Show that for every x e F^, either P(x) or P{-x) is a square of F^. 

(6) Using (5) and not forgetting the point at infinity, show that the curve 

y2 ^ x(X^ - h^) iCn) 

hasp + 1 points in P2(F^). 
(7) Let Z(p) denote the ring ZQ,) := {c/d e Q;p does not divide d]. 

For (jc, y) G C„(Q) \ {0}, prove the relation 

{XGZ(^)} ^ ^ [yeZ^^]. 

(8) Let us define a map (p : C„(Q) -^ C„(Fp) as follows. If P = (x, y) e (Z(p)f, set 

<p(P) = (x,y)e(¥pf, 

where x and y are the classes of jc and y modulo p. 
Otherwise, set (p(P) = O where O denotes the point at infinity of homogeneous coordinates 

(b, 1,0) of Cn(¥p). 
Assume the fact that (pis a group homomorphism when Cn(¥p) is equipped with an "Abel-

style" group structure, which is possible if/? does not divide 2n. 
Show that if/7 is sufficiently large, the restriction of <̂  to T is injective, and show that #C„(Fp) 

is divisible by 4. 
(9) Assume that m = y - m' with r > 0 and (3, m') = \. Recall that there exists an infinity of 

prime numbers in the arithmetic progression 3 -h m"L. Show that if/? is a prime belonging to 
this progression and not dividing In, then 

p = —\ mod m' 

p = 3 mod m^ 

and deduce that m' = 4. 
Use questions (4), (6) and (8). 

(10) Show that r > 0 is impossible, by considering the arithmetic progression 7 -h mZ, which also 
contains an infinity of prime numbers. Conclude. 

(11) Show that ifn> 1 is a congruent number, then there exists an infinity of right triangles whose 
sides have rational lengths and whose area is equal to n. 

(12) Do you know a congruent number? 



5 
MODULAR FORMS 

Tyger ! Tyger ! burning bright 
In the forests of the night. 

What immortal hand or eye 
Could frame thy fearful symmetry? 

(William Blake) 

The originator of the famous wisecrack about the five operations in arithmetic - addition, 
subtraction, multiplication, division and . . . modular functions - would appear to have 
been the mathematician M. Eichler. As we will see, the fifth and last "operations" are 
actually functions, which have so incredibly many symmetries that one may really wonder 
how they can possibly exist! 

5.1 BRIEF HISTORICAL OVERVIEW 

The first publication of fragments of theta functions appeared in 1713, with the posthumous 
appearance of the Ars Conjectandi by Jakob Bernoulli, a book in which one encounters 
expressions such as 

OO 00 00 

y ^ ^(l/2)n(n+3) ^ V ^ ^(l/2)n(n+l) ^ Y^ m''\ 

n=0 n=0 n=0 

Thirty-five years later, theta functions reappeared in another form in the Introductio in 
Analysin Infinitorum by L. Euler (1748, Volume I, Section 304). In Chapter XVI of his book, 
Euler considered the problem of partitions of the integers, i.e. the problem of expressing 
every number n eN using integers belonging to a certain set A = {a, jS, y , . . . } . 

Euler noted that when we take the infinite product 

(1 + x"z)(l + jc^z)(l + x^z) • • • = 1 + Pz + G^̂  + • • • , (1) 

P is the sum of the powers jc", x^, JĈ  , . . . 2 is the sum of the powers x"'^^, JC""̂ ^ , . . . , x^~^^, 
. . . and so on. Thus, the coefficient of z^ is a polynomial in x in which the term Nx^ has a 

255 
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coefficient N equal to the number of times that we can write AI as a sum of m distinct terms 
of A. 

Rule 5.1.1 If the term Nx^z^ appears in (1), this means that there are N different ways to 
represent n as sum ofm distinct terms of A. 

Next, Euler noted that when we take the infinite product 

1 

{\-x^z){\-xh){\-xyz)-'-
= 1 + Pz + G r + • • • , (2) 

P is the sum of the powers jc", x^, x^ , . . . g is the sum of the powers jc"^", x^^^,... and so 
on. Thus the coefficient of z'̂  is a polynomial in x in which the term Nx^ has a coefficient N 
equal to the number of times that n can be written as a sum ofm equal or distinct terms of A. 

Rule 5.1.2 If the term Nx^z^ appears in (2), this means that there are N different ways of 
representing n as sum ofm equal or distinct terms of A. 

Finally, Euler passed from theory to practice, by taking the sequence a, ^, y , . . . to be 
the sequence N* of the natural integers, and using a simple but efficient trick to establish 
the following result. 

Euler's Theorem 5.1.1 The following identities hold in the ring of formal series Z[[x, z]]: 

oo OQ {\/2)n{n+\) 

n(i-«-.)-'=E„_^,^..„_,.,.-. (4) 

Proof Euler's trick consists in obtaining a functional equation for the infinite products by 
substituting xz for z. 

(1) Let F(x, z) denote the first product. Then 

F(jc,xz) = f[(l+x-^'z) = j ^ ' ' ' ' ^ 

SO we obtain the functional equation 

F(x, z) = (1 4- xz)F{x, xz). 

If we set 

F(x,z) = ^c ,Wz'^G(Z[W])[[z]] , 
n=Q 
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we obtain the induction relations 

co(x) = 1 

(1 -jc")c„(x) =x''cn-\(x) ifn> 1, 

which give the result. 
(2) Let G(x, z) denote the second product. Then 

00 

Gix.xz) = Y\il -x'^^'z)-^ = (1 -xz)G{x,z), 

which gives the functional equation 

G(x, xz) = (I - xz)G(x, z). 

If we set 

G(x,z) = J2'^n(x)z' e (Z[[xm[z]l 
=0 

we obtain the induction relations 

do(x) = 1 

^{l-X^)dn{x)=xdn-lix), 

which give the result. 
(3) Convergence questions. 
Until now, we used exactly the same reasoning as Euler. But in order for infinite products 

and the series to make sense, we need to define the topology of Z[[x, y]]. 
For this, we note that if m denotes the ideal of Z[[x, y]] generated by x and y (which is 

a prime ideal), then 

oo 

flm'' = {0}. 
V=l 

By taking the {m l̂veN for a fundamental system of neighbourhoods of zero, we put the 
structure of a topological ring on Z[[jc, y]]. We say that a sequence (5„)„eN of elements of 
Z[[jc, y]] is a Cauchy sequence if for every y e N, there exists Â  such that m and n > N 
implies s^n — Sn e m^. Then one of the essential features of this topology is that it makes 
the topological ring Z[[x, y]] complete, i.e. every Cauchy sequence of elements of Z[[x, y]] 
is convergent (see [Bou 3]). 

Since in the identities of the statement of the Euler's theorem, the partial products of the 
infinite products (on the left) and the partial sums of the series (on the right) form Cauchy 
sequences, both sides are meaningful, both in (3) and in (4). 

Moreover, points (1) and (2) of the proof show that these two sides are congruent modulo 
m^ for every v G N. Thus, they are equal. D 
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Remark 5.1.1 The reader familiar with the topology of the complete local ring Q[[x, y]] 
will recognise that the topology of Z[[x, y]] is induced by that of Q[[x, y]]. 

Corollary (Euler) 5.1.1 

(i) The number of different ways of expressing n eN as a sum of integers between 1 and 
m (inclusive) is equal to the number of different ways of expressing n-\-(m(m-\-l))/2 
as a sum ofm unequal numbers > 1. 

(ii) The number of different ways of expressing n e N as a sum ofm integers between 1 
and m (inclusive) is equal to the number of different ways of expressing n -\- m as a 
sum ofm numbers > 1. 

(iii) The number of different ways of writing nasa sum ofm numbers is equal to the number 
of different ways of writing n-\- (m(m — l))/2 as a sum ofm unequal numbers > 1. 

Proof 
(1) Assertion (iii) follows formally from assertions (i) and (ii). 
(2) In formula (3), the coefficient Â  of the term Nx^z"^ is equal to the number of different 

ways of expressing ^ as a sum of unequal numbers > 1. But if e = n -\- {m(m -\-1))/2, 
we see that this term comes from the expansion of 

^(l/2)m(m+l) 

( l - j c ) . - - ( l -x^) 

Consequendy, Â  is also equal to the coefficient of x^ in the expansion of 
! / ( ( ! —x)'-'(l— x^)), so to the number of ways of expressing n as sum of numbers 
between 1 and m (inclusive). 

(3) In formula (4), the coefficient Â  of the term Nx^z"^ is equal to the number of different 
ways of expressing ^ as a sum of m numbers > 1. But if ^ = « + m, we see that this 
term comes from the expansion of 

(1 - j c ) . - - ( l - x ^ ) 

Consequently, Â  is also equal to the coefficient of x^ in the expansion of 
l / ( ( l - j c ) - - - ( l -jc'")). D 

Remark 5.1.2 When z is replaced by 1 in the second identity of the preceding theorem, 
we obtain 

O O OO Aj O O 

m=\ n=0 ^^ ^^ ^^ ^ ^ n=0 

Thus p{n) represents the number of ways of writing w as a sum of integers > 1, with no 
restrictions on these integers. 
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Definition 5.1.1 The function n \-^ p{n) is called the partition function, and its 
generating series Yl^oP(^)^^ ^^ written P(JC). Thus we have 

00 

Pix) = Y[il -x^r' eZ[[x]l 

The partition function satisfies strange congruences called Ramanujan congruences^^. 
For example, we have 

'p(5n + 4) = 0 mod 5 

p{ln + 5) = 0 mod 7 

/7(lln + 5 ) = 0 m o d 11 

(see exercises). 
Euler's true follower was Carl Gustav Jacobi ^̂ , who in his Fundamenta Nova Theoriae 

Functionum Ellipticarum (1829), gave a modem theory of the theta functions. On April 24, 
1828, Jacobi discovered the surprising formula 

/ oo \ 4 00 / \ 

[En =I+8^(E4'" ' ^'^ 
^ - o o / w=l ^ d\m ^ 

A\d 

from which he deduced the equally surprising following corollary (which is equivalent to 
formula (5)). 

Jacobi's Theorem 5.1.2 The number of representations of an integer n > 0 as a sum of 
four squares is eight times the sum of its divisors ifn is odd and twenty-four times the sum 
of its odd divisors ifn is even. 

Proof The left-hand side of (5) can be written 

J2 z"'̂ "̂ +"3+«J = Y.^4(n)z\ 
rti,n2,n3,n4Gi 

where A4(n) denotes the number of representations of n as a sum of four squares (taking 
the order and sign of the nt into account). 

If « > 0, then by (5), we have 

A4(n) = 8 ^ J . 
d\n 
A\d 

^^ S. Ramanujan 1887-1920. 
6̂ C.G. Jacobi 1804-1851. 
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Thus, if n is odd, the theorem is proved. But if n is even, we have 

d\n d\n d\n d\n 
A\d d odd d odd d odd 

which concludes the proof. • 

It remains only to prove formula (5), which is done below. 
Modular forms also appear in the writings of Abel^^, Gauss^^, Hermite^^ and many 

others. However, it was above all F. Klein^^ who, beginning in 1877, originated the study 
of the field of modular functions, considered as a function field of a Riemann surface, 
providing fundamental domains for the different levels n (see Section 5.3). Then, in 1881-82, 
Poincare^^ developed the general study of the discrete subgroups of 5'L2(M). 

5.2 THE THETA FUNCTIONS 

We saw in Chapter 2 that every entire function which is doubly periodic for a period lattice 
A is constant. Thus, if we want to obtain non-constant, entire functions, we must weaken 
the requirement of periodicity. 

(a) Definition of the theta functions 
We would like to define functions which are entire (i.e. holomorphic on all of C) and 
semi-periodic for the period lattice 

A = Z + Zr, 

where r denotes a complex number in the Poincare upper half-plane 7Y = {z G C; Sz > 
0}. 

The properties of "semi-periodicity" we take here are 

fe(z + i) = 0(z) 

[ 0 ( ^ 4 - r ) = F(z)e(z), 

where F{z) is a factor to be determined. 

Remark 5.2.1 If the function 0 is not identically zero, then clearly F{z + 1) = F{z). The 
usual choice of F is 

F{z) = ^ — , c e C*, 

and this is the choice we adopt from now on. • 

57 N.H. Abel (1802-1829). 

58 K.F. Gauss (1777-1855). 

59 C.Hermite (1822-1901). 

60 F.Klein (1849-1925). 

6̂  J.H. Poincare (1854-1912). 
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Since 0 is holomorphic of period 1, it can be developed as a Fourier series^^and we have 

0(z) = ^ a „ e 2 
— 00 

where the an are the Fourier coefficients of 0 . 
The expansion of 0 as a Fourier series expresses the first condition of (1). 
The second condition leads to 

00 OO 

- 0 0 —00 

With the above choice of F{z), and by the uniqueness of the Fourier coefficients of 0 , we 
obtain the relation 

an^x = ce^^'^'^'an, (2) 

hence the expression 
00 

@(z) = flo X ! c"e''̂ "'"-'>^+ '̂'̂ "~. (3) 
— 00 

It is traditional here to set 

q = e^''\ (4) 

and to note that since r G W, we have 

0 < | ^ | < 1 . 

Thus, we see that 
00 

@{z) = aoJ2 c"q"^"-^^e'^'''"' (3') 
— 00 

and in particular, 
OO 

0(O)=aoX!^V*"""- (3") 
— 00 

Conversely, if we take ao = 1 and c = q, we see that the right-hand side of (30 converges 
uniformly on every compact subset C, so it defines an entire function. 

Definition 5.2.1 Let q e Cbe such that 0 < |^| < 1. The function O3 is defined by 

00 

6>3(z) = J2 Z^^''''^' = 1 + 2 ̂  ^"' cos(27r«z). (5) 
n>l 

62 J. Fourier (1768-1830). 
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Thus, we also have the following result. 

Proposition 5.2.1 ^3 is an entire function satisfying the properties 

e^iz + D^Oiiz) 

e3{z + T)^q-^e-^"'%(z). 

Another classical choice of OQ and c is given by 

flo = 1, c - -q, 

which gives 

00 / 1 \ 

e^iz) = } ^ ( - i r / e ^ " " ' = 1 + 2 ^ ( - 1 ) " / cos(27rnz) = ^3(2 + ^ j - (5') 

Jacobi also introduced the functions di and 62 defined by 

1 + T̂  
e,(z)=-iq'/'e''%{z+^) 

Thus, we have the expansions 

9liz) = -,^(-l)«g(«+'/2)^e(2«+l)''^z 
— 00 

= 2^(-l)V"^^^^^' sin(2n -f l)7tz 
n>0 

00 

—00 

= 2^? ' "+ ' /2 ' ' cos (2n+l ) ; r z . 

(5") 

n>0 

Naturally, the functions Oi and O2 do not have the same multipliers as O3 and O4. Let us 
summarise the elementary properties of these functions. 



Relations 5.2.1 Set X = q-

O4 
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-l/4g-niz 

eiiz) 
-Biiz) 

04iz) 
diiz) 

then we obtain the table: 

iXOiiz) 

iMyiz) 

^O^iz) 
-iXOiiz) 

iXOiiz) 
^02iz) 

Multipliers 5.2.1 Set /x = q'^e''^'''^ then 

z + 1 z + r z + l + r 
ex 
02 
03 
04 

-ei(z) 
-Oziz) 

Oiiz) 
04iz) 

-fiOdz) 
(^diiz) 
f^Oiiz) 

-M^4(Z) 

M îCz) 
-M^2(Z) 

f^03{z) 
-l^04iz) 
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(6) 

(60 

Remark 5,2.2 
(1) Oi and O2 actually belong to the lattice Z2 + Zr, but the squares of the theta functions 

all belong to the lattice Z + Zr, and all have the same multipliers. 
(2) It follows that the quotients of squares of theta functions are elliptic functions for the 

lattice Z + Zr. We will see below that these functions are of order 2. It follows that 
three functions of this type are linearly dependent (see Chapter 2). 

(3) The notation adopted here goes back to Jacobi, except that he wrote 0 instead of 
O4. This notation appears to have become universal now, although it is not optimal. 
Indeed, the symmetries of the set of four theta functions are those of the Klein group 
Z/2Z X Z/2Z, and not those of the cyclic group Z/4Z. Hermite and Weber used the 
(preferable) notation: 

ê .„(z) = ^(-irV/2)(2„. +M)2 /7r(2n+/x)z 

for (/x, v) G {0, 1}^, which leads to the multipliers 

O^Az + r) = (-\yq-'e-^^-'O^Az)^ 

(b) Relations between theta functions 
We noted earlier that the squares of three theta functions must be linearly dependent. 
There exists a marvellously simple method to prove these relations: it consists in noting 

that the series which define these functions are absolutely convergent and that the terms of 
a product can be rearranged according to the powers of q. 

So we need to prove the relation 

Oiix, q)Oi(y, q) = Osix-^y, q^)02(x - y q') 02(x + y,q^)03(x-y,q^), (7) 
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where x and y are two arbitrary elements of the field of complex numbers, and where we 
need to make the "mute variable" q appear. 

Using (5̂ 0» we have 

Oiix, q)Oi(y, q) = -Y^ ^(_i)m+n^(m+l/2)2+(„+l/2)2^/(2m+l)x;r+/(2«+l)y;r^ 

m n 

Set m -\- n = r and m — n = s; then (r, s) runs through the pairs of integers of the same 
parity. We have 

(m + i ) ' + ( n + i y = l(r+l)2 + 
2 

and 

(2m + l)x + (2n + l)y = (r + l)(x + y) + s(x - y), 

so 

where J2' denotes the sum extended to the (r, s) of same parity. We deduce that 

Ol(x, q)Oi(y, q) = - ^ ^^2(r+l/2)^+2.2^/[(2.+ l)(.+,)+2.(.-,)];r 

r s 

j ^ y ^ y ^ 2r2+2(5+l/2)2^/[2rU+v)+(25+l)(x-v)]7r 

r s 
2{r+\/2fi{2r+\)ix+y)7t \ ^ ls\i2s{x-y)7i ^ _ y ^ 2(r+l/2)2^/(2r+l)U+j)7r V ^ 

^ ^ 

_^ y ^ 2r2^/2rU+y);r V ^ 2(5+1/2)2 ̂ /(25+l)(x-v)7r 

= -02(x + }', ? )̂03(Ĵ  - y, q^) +ei{x + y, q^)92{x - y, q^). U 

Making the translations by 1/2, r /2 and (1 + r) /2 on x and y, we obtain a complete 
system of relations deduced from (7): 

\ex{x, q)e,{y, q) = O^ix+y, q^)e2{x - y, q") - 02(^+3', q^)9i{x-y, q^) 

Oi(x, q)92(y, q) ^ Oiix + y, q^)04(x - y, q^) + 04(Ĵ  + y, q^Wi(x - y, q^) 

I eiix, q)e2(y, q) = e2(x + y, q^)e^{x - y, q") + 03(^ + >", q'Wiix - y, q^) 

I e^{x, q)e^(y, q) = O^ix + y, q^yO^ix - y, q") +e2(x + y, q^)e2{x - y, q^) 

Oiix, q)e4(y, q) = O^ix + y, q^)0A{x - y, q^) - 0, (x + y, q^)ei(x - y, q^) 

[e^ix, q)e4(y, q) = 03(x + y, ^')^3(x - y, q^) -e2{x + y, q^)02{x - y, q^). 

If we take y = 0 in this last identity, we have 

0A{X, 9)04(0, q) = 9^{x, q^) - 0^(x, q"). (7") 

(70 
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If we subtract the square of the first identity of (70 from the square of the last one, we 
obtain 

el(x, qWliy, q) - 0^(x, q)0^(y, q) 
{T') 

= [oU^ + y^ ^ ') - Oiix + y, q^)][0^{x - y, q^) - 0^(x - y, q^)], 

and taking (7^0 into account (omitting the argument q), we have 

04(x + y)04(x-y)0l(0) = 0l(x)0l(y)-0^(x)e^(y), (8) 

which is the prototype of a series of relations which we obtain by making the canonical 
translations on x and y 

Odx + yWdx - y)0^(0) = 0^(x)Oi(y) - Oi(x)0^(y) = O^ixW^iy) - Ol(x)ef(y) 

Oiix + y)02(x - y)0^(0) = 0^(x)Oi(y) - Of(x)0^(y) = 0^(x)0^(y) - O^^W^iy) 

Osix + y)03(x - y)0^iO) = Oi(x)0^(y) - 0^(x)0^(y) = O^ixW^iy) - Oi(x)0^(y) 

[04(x + y)04(x - y)0^(0) = Ol(x)0^(y) - 0^ix)Of(y) = 0^(x)0^(y) - Ol(x)0^(y). 

(80 

Other relations analogous to (80 can be deduced, by the same procedure, from another 
choice of the equations. We leave this as an exercise. 

Replacing j by 0 in these relations, we obtain the predicted linear relations between the 
squares of the theta functions. For example, (80 yields 

0^(x)Ol(0) = 0^(x)0^iO) - 0^(x)0^(0) 

Oi(x)0^(0) = Oi(x)0^{0) - 0^(x)0^(0) 
(8^0 

OtixWiiO) = 0^(x)0^(0) - 0^(x)0^(0). 

9^(x)0^(0) = 0^(x)0^(0) - 0^(x)0^(0) 

The order three minors of this system of linear equations with respect to the Of(x) with 
/ = 1, 2, 3, 4 must all be zero. In fact, if we replace x by 0 in the last relation of (8̂ 0̂  
we find a fundamental relation between the constants (which implies that the determinant 
vanishes). This famous Jacobi relation is 

^4(0) =^2^(0)+ ^4(0)- (8") 

It follows from (8̂ 0̂ that the system (8'0 is of rank two; every relation is a linear combination 
of two others. 

Remark 5.2.3 It follows from (8''0 that we have 



266 INVITATION TO THE MATHEMATICS OF FERMAT-WILES 

for every q e C* such that \q\ < 1. If we now set ^ = z"̂ , we see that the holomorphic 
functions in the interior of the unit disk defined by 

oo 

X{z) = 2zJ2^"-"'^"^=^2iO,z') 
— 00 

Y{z) = 1 + 2 ^ ( - l ) " ^ ^ " ^ = 04(0, z") 

form a non-trivial solution of Fermat's equation 

X^ + Y^ = Z\ 

Nevanlinna theory (see the problems of Chapter 6) shows that these three functions cannot 
be extended to C, because if « > 4, there exist no solutions in non-trivial entire functions 
to the equation 

X" -F- r = z". 

(c) The identity (9'i(0) = n:»2 (0)^3 (0)^4(0). 
Differentiating the second equation of (7') witli respect to x, and replacing x and y by zero, 
we have 

^((0, ^)02(O, q) = 20;(0, ^2)^4(0, q^). 

But the relations (7') also give 

ej(0,q)^ 202(0, q^)ei(0,q'') 

0^(0, q))9^{0,q)= 6^(0, q^). 

0[iO,q^) 

From (9) and (9'), we deduce the relation 

0[(0,q) 
02(0, q)e3(0, q)94{0, q) 02(0, q')6i{0, ?2)04(O, q^Y 

and by induction on n, we obtain 

e[(0,q) _ ^|'(0,g2") 

02(0, 9)^3(0, ^)04(O, q) 02(0, ?2")03(O, ̂ 2")04(O, q^') ' 

Since |^| < 1, the limit ofq^" as n tends to infinity is 0, so we have 

e[{0,q) ^ j . ^ e[{Q,q) 
02(0, ^)03(O, ^)04(O, q) 9 ™o 02(0, ̂ )03(O, ̂ )04(O, q) ' 

(9) 

(9') 

(9") 
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The series expansions of part (a) give 
r 00 

e2iO,q)^Yll' 
(«+1/2)2 2q 1/4 

03(0,^) = ^ / - ! 
—oo 
00 

as q tends to zero. 
The right-hand side of (9^0 thus tends to n, and we deduce the relation 

^((0, q) = 71^2(0, qWsiO, q)e^{0. q). (10) 

(d) Expression of the theta functions as infinite products 
ForO < \q\ < 1 and ^ G C*, set 

00 

We see easily that if |^| < p < 1 and if ^ belongs to a compact ^ of C*, then 

(1 + q^'^-'Oi^ + q^^'-'r') = 1 + "n(0, 

with 

\UniO\ . 2 « - l M(p), 

(11) 

which shows that the infinite product (11) converges uniformly on K, to a holomorphic 
function in ^ (see Chapter 2, Section 2.4). Since K is arbitrary, we obtain a holomorphic 
function on C*. 

The obvious "symmetries" of the function z t-̂  0(^^'^^, q) are the following: 

cI>(r^^) = ^(?,^) 

<t>(qH,q) = —<t>(^,q). 
q^ 

(12) 

If we set ^ = e^^^^ and q = ^'^^, we see that 0(z) = 0(^^'^^ ^'^^) satisfies equations (1), 
with 

1 
F{z) = 

qe 
linz ' 

It follows from the computation of part (a) that 0 = aoO^,, hence 
oo 

aoei{z,q)^Y\{\+q^"-'0{\+q'"-'r'), 
n=\ 
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and making the translations 

Z+-, z 
r Z + ' 

1 + r 
2 ' 

we obtain 

aoe^{z.q) = <^{e''^\q) 

[aQe^{z.q) = <^{-e^'''\q) 

with V = q^l^e""'"-. 
To determine ao, we will use the formula (10): 

^;(0) = 7r^2(0)^3(0)^4(0) 

which was proved earlier. 
Taking z = 0 in (13), we obtain 

r oo 

Uô 2(0) = 2^i/^f](l+^^")^ 
n=l 

oo 

^̂ 0̂ 3(0) = [7^1+^'""')' 

oo 
ao^4(0) = []( l-^2«-l)2 

[ «=1 

Furthermore, the first equation of (13) can be written 

00 

ao(9i(z) = 2^^/'^sin7rzJ~[(l - 2^^"cos27rz + ^^'^), 
n=\ 

hence 

flo^i^ = Iq^l^ 11(1 - Iq^^ cos Inz + ^^'^). 
Sm TTZ ^ \ 

Letting z tend to zero, we obtain 

oo 

(13) 

(13') 

(13") 
«=i 
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Plugging (13') and (13") into (10), we obtain 

On = 

Hd+?'")(!+<?'""')(!-?'"-') 
n=l 

V 
0(1-^'") 
n=l / 

/ 00 \ 

n=l 

Y\(^-q'"f 

/ 00 \ 

W{\+q'"){\-q"'y 
m=\ 

oo 

/ \ 

1 

Since ao is positive when q is real, we deduce from (130 that 

1 
ao = — , 

11(1-̂ '") 
n=\ 

and finally, 

(14) 

(15) 

6>i(z) = 2^1/4 sinTTz P | ( l - ^2«)(i _ 2̂ 2n ̂ Qg27rz + q"^"") 
n=\ 

oo 

^2(Z) = 2^1/4 ]~[(1 - ^2n)(l + 2̂ 2̂ ^ COS 27rz + ^^") 
n=\ 

oo 

^3(jc) = ]~[(1 - ^2«)(1 + 2^^«-i cos27rz + q^""'^) 
n=l 
oo 

^4(z) = [ ] ( 1 - ^2")(1 - 2^2n-i cos2;rz + ^4"-'). 

Corollary 5.2.1 
(i) All the zeros of the theta functions in C are simple. 

(ii) The zeros ofO\ (resp. O2, O3, O4) are congruent to 0 (resp. 1/2,(1 + r)/2,r/2) modulo 
A = Z + Zr. 

Proof It suffices to give the proof for Oi. 
By (13), we see that these zeros are those of e'^^^^ — q^^ = 0, for n e Z. 
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These zeros are obviously simple and equal to zero modulo A, so we see that 

z = 0 mod A. ° 

Remark 5.2.4 Naturally we can recover this result by the methods of Chapter 2, taking 
the integral of 0-(z)/Oi(z) dz along the boundary of a (translation of a) period parallelogram. 

(e) The heat equation 
One of the important roles that theta functions play in physics comes from the fact that they 
provide solutions of a partial differential equation called the heat equation. Indeed, we saw 
in (a) that our functions are of the form 

0 ( 7 r ) = \~^(_n^"^("+/^/2)^^'^+2/7r(«+M/2)z 

with (/x, v) G {0, If. 
This series is infinitely differentiable in z and r on every compact subset, and we can 

differentiate it term by term. Thus, we see that the functions 0\, O2, O3 and O4 satisfy the 
heat equation 

— y = 4 7 r ; - - . (16) 
dz^ dz 

Application 5.2.1 Set for a e {2, 3, 4}, 0^, := ^a(O), 0[ = 0[(0) and 

fa(z,r) = 
0[OM,r) 
OaOi(z,T) 

The function z i-> /^(z, r) is a meromorphic function on C which admits a simple pole of 
residue equal to 1 at every point of the lattice A = Z + Zr. By Chapter 2, it cannot be 
doubly periodic, and in fact we have the table 

z z + 1 z+r z + 1 + r 
fl 

h 
/ 4 

fl 
-h 
-u 

-fl 
-fi 

/ 4 

-fl 
/ 3 

- / 4 -

It follows, nonetheless, that the functions/2^,/3^,/4^ are elliptic of lattice A, and as their 
Laurent expansions at z starts with 1/z ,̂ we have 

f^(z.T)-f^{z.T) = CafieC. (17) 

The computation of the Laurent expansion of these functions begins with 

'I 

where the values of the derivatives are taken at the origin, and thus we see that 

Ca^ = — • (A8j 
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Now, the equations (8") imply that 

e^ix) 

ejix) 
ef{x) 

eho) 

2̂ (0) -

Î(O) 

9i(x) 

'I(O) ^4(0) 

^^^.,^(0) = . | (0 ) 

9Hx) elm - ^2(0), 

and taking (10) into account, we see that 

C3,2 = n^etiO), C4,2 = Tt^e^iO), C4,3 = Tt^O^iO), 

I.e. 

' O4 ^3 
(19) 

Remark 5.2.5 Adding the last two equations, we recover {%'")! 
Plugging the heat equation (16) into equations (19) gi--̂ '̂  2ives 

^3^0) = 

^2'(0) = 

nA^fw 

= - — l o g - i ( O ) 

Ai d 64^ 
. - - - l o g - i ( O ) 

71 dr O3 

Ai d ^ 6>3 ^ 

7t dr '02 

(20) 

Now, d/dr = d/dq • dq/dx = Ttiq{d/dq), so 

8 

Vq 
e^iO) ^-Aq—\og'-^m 

02 
64, 

.,^0) = - 4 , - l o g - ( 0 ) 

.,^(0) = - 4 , A l o g | ( 0 ) . 

(21) 
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Using the infinite products of the preceding part, we obtain from the first relation of (21) that 

which gives the identity (5) of Section 5.1 (see Exercise 5.8). 

(f) The Jacob! Transform 
This transform establishes a fundamental link between ̂ ^̂  (z/ r, — 1 / r) and ̂ ^ (z, r) for of = 1 
and 3. That such a link can exist is not too difficult to see, if we consider the quotient 

6>i(z/r ,- l /r) 

Indeed, this quotient has multipliers for the lattice A, as follows: 

z z + 1 

Hx{z) vHdz) M//i(z) 

with fi = qe^'''^ v = ^ '̂/̂ +2/;rz/T 3-ĵ ĝ ^^it zeros of 6>i(z, r) and of 6>i(z/r, - 1 / r ) belong 
to the lattice A and are simple, we see that H\ has no poles (or zeros) in C, and one can 
easily check that //*(z) := e~^^^ ^^H\{z) is an entire elliptic function of lattice A, so a 
constant C by Liouville's theorem 2.4.3 of Chapter 2. 

Thus, we have 

1 

(f-7) Ce .(mz')/T 0l{Z,T) 

We will use relation (10) for ^(z, — l / r ) : 

dz Vr T/\z=o r *V ' zJ 

(22) 

hence 

and by (22), 

i,(„,_i).^,(o,_i)«,(o._i),.(„,_i), 

in 
C0[(0, r) = C'^4(0, r)6>3(0, r)6>2(0, r) . 

Still using (10), but for ^(z, r) , we have 

C' = iz. 

It remains only to give the determination of the square root of iz. 

(23) 
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For this, we assume that r e /R+ and we set r = it with t > 0, 
The third equation of (22) for z = 0 gives 

03(0, it) 
J2e'-'^ 

so we see that C(it) is equal to —iy/t. 
Let y r / i denote the determination of the square root which is positive on /E+. We have 

Vr r / V « 

Vr T / V i 

Vr r / V i 

(24) 

and in particular, 

^2(0,—) =7-^4(0, r) 
V r / V ^ 

^ 4 ( 0 , - - ) = , & 2 ( 0 , r ) . 
V x/ \ I 

(25) 

Remark 5.2.6 The Jacobi formulae (formula (24)) can also be obtained using the theory 
of Fourier series. 

Theorem 5.2.1 For r eH, we define the function (fix) by the relation 

(p(x) = e^(0,x)0^(0,x)0^(0,x). 

Then, we have 
00 

\24 

and 

n=l 

<p(T + l) = (p{T), ^ ( - ; ^ ) = r ' V ( r ) . 

(26) 
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Proof. By relation (10), we have 

;(0) 
(p{T) 

( ^ 

By the first formula of (15), we have 

= Aq' 2q'^'Y\{l-q'")\ 

which gives equation (26). 
It follows from (26) that (pit -\-I) = (pit). 
It follows from (25) that (p{-l/r) = r^V(^)- ^ 

5.3 MODULAR FORMS FOR THE MODULAR GROUP 5L2(Z)/{/, -/} 

From now on, we will make use of a new parameter q which will be the square of that of 
the preceding section: 

q:=e^'''\ 

In this way, we can write ^(r) := ^3(0, r) in the form 

^(r) = ^ / / 2 , ^ = ^2/.r (1) 

—n 

Similarly, the function (p of theorem 5.2.1 can now be written 

(p{T) = 2^qn{l-q''f\ ( O 

Thus, we have 

U?(r + 1) = (p(r) 
(2) 

We now propose to establish properties analogous to (T) and (2) for the Eisenstein series 
of the lattice A = Z + Zr. 

5.3.1 Modular Properties of the Eisenstein Series 

We saw that the elliptic functions of the lattice A are attached to the cubic 

Y^ = 4X' - g4X - ge, (E) 

where g4 = g4{A) = 60G4(A),g6 = geiA) = 140G6(A) (see Chapter 2, Sections 2.6 
and 2.7). 
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The fonnulae of Chapter 4, Section 4.13, give 

A(A) = g 4 ( A ) ' - 27g6(A)' 

7-(A) = 1728: 
A(A) 

When we scale the lattice A by a factor of a € C*, we obtain the homogeneity relations 

|G2t(aA)=a-2*G2t(A) 

A(aA) = a-'2A(A) 

[JictA) =7(A). 

The relations (3) enable us to always use a lattice A of the type 

Aj =: Z + Zr = ZT + Z, 

with T e H = [z e C;^z > 0], and the true Eisenstein series are the functions T 

(3) 

Definition 5.3.1 From now on, for an integer k > 2, set 

< 
'G2k{r) := G2k{Ar) 

A(T) := A(A, ) 

j{T) •.= j{Ar). 

Suppose we now make the change of basis 

(:)=(:2)0) 
in A7, keeping the orientation of the basis. Then we have 

' , (i>2 ax -\-b 

(i)\ CT -\- d 

ad — be = 1, 

and we see (by conservation of the orientation) that x' eH. Moreover, we have 

Ar = 2,0)2 + ^< 1̂ = <̂ 1 A^s 

and we deduce from the homogeneity formulae (3) that 

[Giki^^^) = G2k(x') = (cx+df'G2k(r) 

A ( ^ ) = A(r') = (cr+J)'^A(T) 

I /ax-^b\ 

(4) 
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In particular, we have 

\G2U{T + 1) = G2,(T), G2k[ - \ ) = r'-'G2k{x) 

A(T + l) = A(r), A ( - ^ ) = r ' 2 A ( r ) 

Let us summarise the results above in a statement. 

(4') 

Proposition 5.3.1 Let H denote the Poincare upper half-plane and SL2(J^) the group 
[(''/,)eM2x2(^);ad-bc^l}. 

(i) SL2(Z) acts on H via the formula 

(: 5) 
fa <^\ _ ^'^ +t> 

(ii) The functions G2k, A,j are holomorphic on H of period 1. 
(iii) These functions satisfy the functional equations 

\CT -\-d/ 

^ = {CT + d)'^ ^{X) 

CT -\- d 

\cr -\-d 
/ax + ^ \ 
\CT -\- d/ 

Remark 5.3.1 For the proof of (ii), we refer to Chapter 2 (uniform convergence on every 
compact subset of TC). 

To complete our study of the resemblance between the function cp and Eisenstein series, 
it remains to find the ^-expansions of the latter. 

Lemma 5.3.1 Letf be a function defined in 7i, holomorphic and periodic of period 1. 
Then there exists a unique holomorphic function g, defined in C = { z € C ; 0 < \z\ < 1}, 

such that 

g{e''-') = / ( r ) . 

Proof (1) Note that the map 

m-^c ̂
UTIT 

is holomorphic, locally invertible, and that its image (piTi) is contained in C. 
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Thus, it suffices to complete the diagram 

'K ^C 

by a holomorphic function g. 
(2) To construct g, we use two "charts" which cover C, and we construct local 

inverses ofcp. 
The charts are given by 

\Oi = {zeC;z^]-hO[} 

[ O 2 - { Z G C ; Z ^ ] 0 , 1 [ } . 

In Oi, we choose as the inverse of cp the function 

TAI 1 

with logi(z) := log \z\ + iaig^iz), where we take argi(z) e]- n, 7T[. 
In O2 we choose as the inverse of (p the function 

^2 1 

with log2(z) := log |z| + /arg2(z), where we take arg2(z) e [0, 27t[. 
Thus, we see that x/fiiz) = ^/liz) when z G 7Y 0 C, but that 1/̂ 2U) = ^i(z) + 1 when 

^z < 0 . 
But since/ is periodic of period 1, we have 

foxjfiiz) =f 0^2{Z) 

for every z € C, s o / o'lj/x = / o 1/̂2 is the desired function g, holomorphic on D. D 

Theorem 5.3.1 
(1) Letf be a complex-valued function defined over H, holomorphic, periodic of period 

1, and having a uniform limit ao when St tends to +cx). Thenf admits a q-expansion 
of the type 

f{x)=g{e''^') = Y,cinq\ q^e-
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(2) Ifk > 2, then 

\2k 00 

G2k(T) = 2f (2/:) + ^i^^^y2^2k-i(n)q\ 
( 2 / : - ! ) ! ^ 

where crh(n) = \_] d^• 
d>0 
d\n 

Proof. (1) We know by the lemma that 

where g is holomorphic in C. 
Since/(r) tends uniformly to GQ as Sr tends to infinity, we see that g{q) tends to a^ 

as 1̂1 tends to zero. The function g is thus holomorphic in the open ball of centre 0 and 
radius 1. 

The function g admits a Taylor expansion at the origin whose radius of convergence is 
greater than or equal to one. Thus, 

/(r)=^(^^'-) = X]a„̂ ". 
A2=0 

(2) Starting from Euler's identity (see Chapter 1, formula (7) of Section 1.8), we have 

1 ^ / 1 1 \ 
ncoignx = - -\- } \ , 

r , Vr -\-m r — m/ 

where the right-hand series converges uniformly on every compact subset of C. 
If^ = ^2'^^ withr G W, then 

. q-\- I . 2i7t . ^. Y ^ J 
TTCOtg 7TT = ITT =171 = m — 2l7t > q , 

so 

- + > ( \ )=m-2i7T} q"^. 
X ^\r-\-m T-m/ ^ 

m=l d=0 

Differentiating this equation (2k — 1) times, we have 

OO 1 1 CO 

T —, = (liTtfTd^'-'q". (5) 
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Furthermore, we have 

G2k{r) = J2 
(€,m)/(0,0)(^^+^)'' 

1 ^ 1 
"" Z^ Z^Ik "•" Z-̂  Z^ (IT -\- mV^ 

OO OO 1 

=,«.=-oo(^^+'«)' 

G2.(r)=2 (̂2 )̂ + ^ ^ i : E ^ " - ' ^ ' 

Replacing r by £r in (5), we easily obtain 

2 (2/7r ) y ^ y ^ ^2k-1 Ĵ€ 

and setting dl = n,-we obtain 

( 2 / : - ! ) ! ^ 

Remark 5.3.2 (1) If we define £"2 (̂7) by 

D 

GikiT) = ^ ^ ^ £ 2 . ( r ) , (6) 
(2k- 1)! 

then, using the expression of f (2/:) in terms of TT̂ ^ and the Bernoulli numbers (cf. Chapter 1, 
formula (8) of Section 1.8.4), we easily see that E2k{T) e Q[[^]]. 

Here are the series expansions of the first Eisenstein forms. 

£4(1) = - L + ^ + 9^2 ^ 2Sq' + 13q' + 126^^ + 252^^ + • • • 

Eeir) = - ^ + ^ + 33^2 + 24 V + 1057^^ + • • • 

Es(r) = ^ + ^ + 129^2 + 2188^^ + • • • 

Eio{r) = -—+q-\-5l3q^ + "-

En(r) = -^-+q + 2049q^ + ^--
65520 

£i4(r) = - — + ^ + 8193^' + -.. 

The constant term of E^ is equal to —Bk/2k. 
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(2) Recall that in Chapter 2, formula (27), we gave a proof of Jacobi's formula 

A(r) = {2n)''qY[(l-q'f\ (8) 

Definition 5.3.2 If we set 

00 OO 

n=l n=l 

the function n\-^ T(n) is called the Ramanujan function. 

A computation shows that 

1 2 3 ^ 

T(n)\l - 2 4 252 -1472 4830 -6048 -16744 84880 

We can show that T(n) = 0(n^) and 

I T(mn) = r(m)r(n) if (m, n) = I 

T{p^^^) = T(p)T{p^) ~ p^^T{p^~^) for/? prime and/: > 1. 
We express the property of r (m/i) by saying that the function r is multiplicative. 
The T{n) satisfy remarkable congruences modulo 2^ ,̂ 3^, 5^, 7, 23 and 691. For exam­

ple, we have 

r(«) = n^a-jin) mod 3̂^ 

T(n) = n G^in) mod 7 

T(n) = aii(n) mod 691. 

The Ramanujan-Petersson conjecture states that 

This conjecture was proved by Deligne in 1974. 

5.3.2 The Modular Group 

We saw earlier that SL2{Z) acts on the Poincare upper half-plane H, but this action is not 
"faithful" since the matrix (Q ^_ )̂ acts trivially. One can check (exercise) that conversely, 
if (^ ^) acts trivially on H, then it belongs to the subgroup {/, - / } of SL2(Z). 

Definition 5.3.3 The group G = SL2(Z)/{I, —1} is called the modular group. 

Remark 5.3.3 
(1) The modular group G can be seen as the group of homographies r \-> 

(az +b)/(cT -\-d), with C^) e SL2(Z). The group SL2(Z) is sometimes called 
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the homogeneous modular group. We use Greek letters to denote the homogeneous 
groups (e.g. r = 5L2(Z)), and Latin letters to denote the non-homogeneous groups 
(e.g.G = 5L2(Z)/{/,-/}). 

(2) One can show ([J,S]) that the group P5L2(R)/{/, - / } , which acts faithfully and 
transitively onH, is the group of analytic automorphisms of H. Thus the group G is 
a subgroup of P5L2(M). 

Definition 5.3.4 Let H be a subgroup of G, and let k be an integer. 
A weakly modular form of weight kfor the group F is a me romorphic function f defined 
over H which satisfies the functional equation: 

\CT -\- d/ 

for every automorphism r h^ (ax + b)/{cx -\- d) ofH belonging to H. A function is 
said to be weakly modular if it is a weakly modular form of weight zero. 

Example 5.3.1 
(1) If A: is odd, t h e n / = 0. 
(2) The formulae (4) show that G2k is a weakly modular form of weight 2k for G. Similarly, 

A andy are weakly modular forms of respective weights 12 and 0 for G. 
(3) The formulae (2) show that (̂  is a weakly modular form of weight 12 for G. Similarly, 

we see that ^^ is a weakly modular form for the group H generated by r i-> r + 2 and 
r h-> - 1 / r in G (see formulae (24) of Section 5.2). 

Thus, we see that if/ is weakly modular for G, it is periodic of period 1; thus it is given 
by its restriction to a vertical band of width 1. In fact, we can do much better. 

Definition 5.3.5 A fundamental domain of H for the group H is an open subset D of 
H which meets every orbit ofH at exactly one point and whose closure D contains at 
least one point of each orbit. 

The first condition means that if ii and r2 are two points contained in D which are 
equivalent under the action of//, then ii = r2. 

Lemma 5.3.2 Let r = x -^ iy e H, with x and y eR and y > 0. In the orbit ofr under 
the action ofH, there are only a finite number of points "above'' x. 

Proof Let x' = x' ^ iy' = (ax -h b)/(cx + <i) be a point of the orbit of x. An easy 
computation gives 

y'= y . 

Thus, the condition y' > y is equivalent to 

\cz + d\^ < 1, 
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so c^y^ < \cz-\- df < 1, which gives a finite number of c e Z such that \c\ < 1/y. Then 
the condition (ex -\-d)^ -\- cy^ < 1 gives a finite number ofd. D 

Theorem 5.3.2 
(1) The subset D ofH defined by 

D = {T en\\ReT\ < \, |r | > 1} 

is a fundamental domain for G. 
(2) Two distinct elements of D cannot be equivalent unless they both lie on the 

boundary ofD. 

Here is a representation of D; it is in the interior of the "triangle" marked D. 

Proof (1) We will begin by showing that D is the same set as 

Di = {r G W; \Rez\ < \ and \cx + J | > 1 if (c, d) ^ (0, 0) and (c, d) ^ (0, 1)}. 

Clearly, Dj c Z) (take (c, J) = (1, 0)). 
Conversely, if r e D, then 

\CT+d\^ = {cX + df+cY 
= c^(x^ + y^) + 2cdx -\-d^ >c^ - \cd\ -\-d^>l. 

(2) Set 5 := (^ ~Q). By lemma 5.3.2, there exists r eH having ordinate maximal in its 
orbit; we can translate it into {r G H, \Re{T)\ < j] and we must have |r | > 1, otherwise 
S ( 5 ( T ) ) > ^ r !Thus r e D. 

(3) Let r and r̂  G D be such that r ' = (az + b)/(cr + d). Since r and r̂  G /)i, we 
must have ^r^ < Sr and Sr < ^9r^ so ^sz = Sr^ This gives 

1 = (cr + df = (ex + J)2 + c V > ĉ  - |cJ| -h J2 > 1. 
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But c^ - \cd\ +d^ = 1 implies that (c, d) = (0, ±1) or (c, d) = (±1, 0), hence 

If, in the first case, n^Q, then r and r ' must belong to the vertical boundaries of D. 
If z' = S{r), then |r ' | > 1, and |r | > 1 implies that |T| = |r^| = 1, so r and r ' belong 

to the unit circle. 
If r or T' is not on the boundary of D, then we have r̂  = r° ( r ) = r. D 

Corollary 5.3.1 The map D -^ H/G is surjective and its restriction to D is injective. 

Corollary 5.3.2 When a runs through G, the set of subsets o {D) forms a tiling ofH. 

Corollary 5.3.3 Let Hbea subgroup of finite index ofG, and letHgi,..., Hgn be a system 
of left cosets ofG modulo H. Then A \= giD\J g2D U • • • U gnD is a fundamental domain 
forH. 

Proof 
(1) Let r e H. Then there exists a e G such that a(T) e D. As Ha is a left coset, 

thereexists / e {!,...,«} and y e H such that a = ygj. Thus, we have a ( r ) e 
y(giD) c y(A). 

(2) Now, if r and r̂  are two //-equivalent points of A, we can say that r G giD and 
r' e gjD, so g;\r) = g /^rO- Thus / =j and r = r^ D 

Theorem 5.3.3 LetneN be such that I < n < 4, and let V be the subgroup ofSL2(R) 
generated by (Q j) and (^ ~Q). Then T consists of all the matrices ofSL2(R) of the form 

( V ^f") or f"^ / ^ \c^/n d J \ c dyjn 

To prove the theorem, we will need the following lemma (exercise). 

Lemma 5.3.3 
(1) If a eW andif I <n< 3, then we have R = {j^^j^ait - l/Vn), a(t + l /v^)[ . 
(2) If a is odd and ifn = 4, then Z is contained in this union of intervals. 

Note that this lemma is false when n> 5. 

Proof (1) Let V be the set consisting of the matrices described in the statement. We easily 
see that V is a subgroup of 5'L2(M) and that the generators of F belong to this subgroup. 

Thus, r c ^^ 
(2) We will now prove that T' c T. Since 

fa^ b \ _ ( -b flv^\ /O - 1 \ 
V c d^J ~ \-d^ c ) \ \ 0 7 ' 
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it suffices to consider a matrix of the type f ̂  V ^ ^^) • 
We use the method of infinite descent on |fl|. Assume that \a\ is minimal for the matrices 

of r ' \ r . 
We cannot have « = 0, otherwise « = 1 and ±{\ "j) = di( f̂  "Q) ( ^ \)^T. 
Nor can we have Z? = 0, otherwise a — d = ±\ and 

±1 

Now, if r e Z, we have 

G:. ?)-(? -̂ )(i -'f% -^)-

( a ^ v ^ \ / l ^V^\ _ ( ci h' y/n\ 
c^ d )\p \ ) ~ \c^ d' ) 

with b' = b-\- at,d' = d + ctn. 
We apply the lemma with a = \a\, and we see that there exists t e Z such that 

W^\ < \a\. Since ( ^ ^ ^ ) ^ T, we know that b' ^ 0. Now, if 5 e Z, we have 

/O - A / a ^^v^\ /O - 1 \ A 5v^ \ _ / -d' c'y/Ji\ 

\i 0 J \c^ ^ / V 0 y Vo 1 y v^^v^ -«' / 

with ĉ  = c — J^5, a' = a — nb's. 
Taking a = \nb^\,v/Q see that there exists s e Z such that \a'\ < \b^\^. Thus we obtain 

/ a^ b^^\ _ (0 -1\ (-d' d^\ (0 -l\ , 
Vv^ d' )~\i 0 J \b^^ -«V V ^ J 

and we have W\ < \b'\^/n < \a\, which contradicts the minimality of |fl|. D 

Corollary 5.3.4 The modular group G is generated by S := (^~Q) and T := (^ ^). 

Proof. This is just the special case « = 1 of the theorem. D 

We saw that the symmetries of the function ^^ are generated by S and T^. Let VQ denote 
the group generated by S and T^. 

Corollary 5.3.5 Let 7T2 be the homomorphism 

where x denotes the reduction ofx modulo 2. Then TTI passes to the quotient modulo {/, —/} 
and defines a homomorphism 

(P2 : G-^SL2(¥2). 

Moreover, To is the inverse image of the subgroup ofSL2(¥2) generated by 7T2(S) = S. 
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Proof. This is just the case n = 4 of theorem 5.3.3. D 

The construction of corollary 5.3.5 can be generalised so as to construct subgroups, 
called "congruence subgroups" of G; these groups were considered by F. Klein starting in 
1877. 

Let Â  be an integer > 1, which we call the level (German "Stufe") of the groups we will 
construct. As above, we associate to N a. reduction homomorphism of the homogeneous 
modular group: 

5L2(Z) ^ SL2(Z/NZ) 

(a b\ (a h\ 

\c d) ^~^ \d dl 

Definition 5.3.6 
(1) The kernel of TCM is called the principal congruence subgroup of level N; it is 

written T{N), Thus 

r,«,:={(̂  ^).5Mz.-.(: s)=(; ?)™ «̂ 

(2) The Hecke subgroups^^ of level N are given by 

r o ( A f ) : = j r J j e5L2(Z); c = OmodA?}, 

T^{N) :=\r ^Ae SLsCZ); b = Q modN 

(3) Generally speaking, a subgroup T ofSLjiZ) is called a congruence subgroup if 
there exists N > I such that F D r(N). 

Example 5.3.2 We easily check that if T = (^ | ) , then 

TFeT'^ = r^(2), 

which shows in particular that TQ is not a normal subgroup of G. 

Remark 5.3.4 Since all the Hecke groups contain {/, —/}, we allow ourselves to use the 
same notation for a homogeneous group and the non-homogeneous group which corre­
sponds to it by passing to the quotient modulo {/, —/}. This is no longer possible for r(A^) 
when N > 2. 

3̂ E. Hecke (1887-1947). 
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Proposition 5.3.2 LetN > I be an integer. Then r{N) is a normal subgroup ofSL2{'L), 
and the quotient group SL2(L)/ T{N) is isomorphic to SL2(L/N'L). 

Proof. It suffices to prove the surjectivity of TT^. Let M = (^ J) e M2(Z) be such that 
det M = 1 mod Â . We want to modify a,b,c,d'm such a way that (^ ̂ ) = (̂ ^ ̂ /) ^^^ ^ 
and a'd' - b'c' = 1. We know that there exist [/ and V G SLziZ) such that UMV is 
diagonal, i.e. 

UMV 

Set 

W 

VO a2j 

then we have WUMVX = M (mod Â ) since a\a2 = I mod Â . If we take M' = 
{WU)-^M(VX)-\ then M' = M mod Â  and M' e 5L2(Z). D 

Remark 5.3.5 We will see in Exercise 5.5 that the index of r(A^) in 5L2(Z) is equal to 

n('-?> p\N 

Theorem 5.3.4 Let p be a prime. 
A system of representatives of the left cosets o/5L2(Z) modulo T^ip) is given by 

I,T,...,TP-^andS. 

Proof. 
(1) Clearly, the cosets r^(p)P are disjoint. Moreover, they are also disjoint from r^(p)S 

sincePS'^ = 0^l)^r^(p). 
(2) Let us show that every matrix (^^) e r ( l ) belongs to one of these classes. 

(2.1) Up divides a, then C^ p G V^ip) and we have 

(2.2) Ifp does not divide a, we can apply Bachet-Bezout to (a, p)\ there exists7 and 
jc € N such thaty'a -\-xp = b, and we can take 0 <j <p — \. We then have 

and 
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Corollary 5.3.6 Letp be a prime. A system of representatives of the left cosets ofSL2{T) 
modulo TQ(P) is given by 

S,ST,..., STP- •-(i 0-
Proof Since Foin) = Sr^{n)S-^, we have 

SL2(Z) = {S-'ro(p)S)Ai U . . . U {S-'ro(p)S)Ap^u 

where the system A i , . . . , Ap^i is the system of theorem 5.3.4. Multiplying by S on the left, 
we have 

SL2(Z) = ro(p)5Ai U •.. U ro{p)SAp^i. D 

Corollary 5.3.7 A system of representatives of the left cosets SL2iZ) modulo VQ is given 
by the three matrices I,T~^, T~^S. 

Proof We have 

SL2(Z) = r ^ 2 ) U r^{2)T U r ^ 2 ) 5 , 

and as r^i2) = TFoT-^ we have 

SL2(Z) = TVeT-^ U TVel U TVeiT-^S). 

Multiplying the two terms on the left by ^ " ^ we obtain the result. D 

Example 5.3.3 We deduce from corollary 5.3.7 that a fundamental domain for Vg is given 
by DUT-\D)UT-^S(D). 

5.3.3 Definition of Modular Forms and Functions 

We give the definition of modular functions only in the case where these functions are 
associated to a congruence subgroup of level Â , i.e. functions which possess invariance 
properties relative to a subgroup H of 5L2(Z) containing r(A^). In this definition, the cusps 
are the different orbits of Q U {ioo} modulo H. 

Definition 5.3.7 A meromorphic function f : H ^^ Cis called a modular form which 
is meromorphic of weight k relative to H if the following conditions hold. 

(i) Modularity condition.- For every x eH and every C^) e H,we have 

(ax -\-b\ 
/ ( ^ ) = (cr+̂ )V(r). (8) 

\cx -\- d/ 
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(ii) Condition of meromorphy at the cusps; For every (^ ^) e SL2(Z), the function 

\cr -\-d/ 

admits an expansion in powers ofq^^^, convergent in C = {q e C;0 < \q\ < 1}, 
in which there is only a finite number of terms with strictly negative exponents. 

Remark 5.3.6 We have proved the existence of an expansion in q only when N = I. 
However, the proof of theorem 5.3.1 (and that of lemma 5.3.1) generahse easily to 
arbitrary Â . 

Definition 5.3.8 
(i) A modular form is a meromorphic modular form which is holomorphic every­

where, including at infinity. 
(ii) A parabolic form, more usually called a cusp form, is a modular form which 

vanishes at the cusps. 
(iii) A modular function is a meromorphic modular form of weight zero. 

Examples 5.3.4 
(1) Theorem 5.3.1 shows that G2k(j) is a modular form of weight 2k for SL2(Z). 
(2) Theorem 5.2.1 shows that (pit) is a cusp form of weight 12 for SLi^L). 
(3) Relations (1) of Section 5.3 and (24) of Section 5.2 show that ^^(r) is a modular form 

of weight 4 for F^, a group which contains r(2). D 

Let / / be a congruence subgroup of 5'L2(Z), and let Mk(H) (resp. Sk(H)) denote the 
complex vector space of the forms (resp. the cusp forms) of weight k relative to H. 

Notation 5.3.1 The following notation is often useful. 
Let / G Mk(H) and y = (^^) e GL2(M), and set 

f\k YiT) = dety^/2(cr + J)-Y(K(r)). (9) 

The modularity condition o n / can be written: 

f\ky=f for every y e / / . (80 
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The map y \-^ f \k Y has the following formal property: 

f\k YxYi = {f \k Y\) \k 72, (10) 

which can easily be checked by direct computation. 

5.4 THE SPACE OF MODULAR FORMS OF WEIGHT k FOR SL2(Z) 

The quotient space H/G, which isH/G compactified and which is equipped with an analytic 
structure, is a Riemann surface on which the functions are modular functions. However, 
we will not develop this aspect of the theory here, as it would lead us too far afield (see 
[Gu] and [Sh]); we restrict ourselves to giving a traditional presentation, using the theory of 
residues. 

Let/ be a meromorphic modular form on 7Y, not identically zero and of weight ^. If TQ is 
a point of H, the order off at TQ is by definition the unique integer n such that/ /(r — ro)"̂  
is an invertible holomorphic function in the neighbourhood of TQ; we denote this order 
byv,,(f). 

The modularity condition satisfied b y / shows that if / G G, then 

^ro(/") = '^y{To)(f)-

Denote this number by vp(f), where P denotes the projection of TQ (or / (TQ)) to H/G. 
Finally, if TQ G Q U {/oo}, then we call Vzoif) the degree in q of the expansion of the 

function g of theorem 5.2.1 Section 5.2, and theorem 5.3.1 Section 5.3. 

Theorem 5.4.1 Letf be a non-null meromorphic modular form of weight k relative to 
the group SL2 (Z). Then 

Voo(f) + ^V,(f) + iv,(f)+ J2*Vp(f) = ^ 
12 

Pen/G ^^ 

where the asterisk indicates that we limit this sum to the points of H/G different from i and p. 

Remark 5.4.1 
(i) In this formula, / (resp. p) denotes the projection of e^^^^ (resp. e^^^^^) to H/G. The 

reason for which we divide the order of/ at / (resp. p) by 2 (resp. 3) is that the order 
of the stabiliser of / (resp. p) in G is equal to 2 (resp. 3). 

(ii) Note that vp(f) is almost always zero. 
Indeed, the fundamental domain D of G is contained in {r G H; ST > V3/2}. 

Thus, the image inverse of D in {̂  G C; |^| < 1} is contained in the compact set 
K = {q e C; \q\ < e'"^^}. As / ( r ) = g(e^'^^), where g is meromorphic in K, we 
see that g can have only a finite number of zeros or poles in A'; a fortiori/ has only a 
finite number of zeros or poles in D. 
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Proof. (1) Assume that all the zeros and poles of/ in D lie strictly below of the line of 
ordinate a (we can always assume this), and let Da denote the compact set 

{r € D\ Imr < a]. 

Assume furthermore (in the first part) that/ has neither poles nor zeros on the boundary of 
Da. We apply Cauchy's theorem, integrating df /f on this boundary: 

JL f ^ 
Pen/G PeH/G 

It remains only to evaluate the integral on the left. 
Since/ has the period 1, the integrals over AB and DE vanish. 
The integral over EA can be computed simply by writing 

fir) = g(q). 

We obtain 

I f^df If dg 

2m JE f 2in Jc- g 
There still remains the segment BD, which we divide into BC and CD. We have 

/ 7 = / 7^/ T 
JBD J JBC J J CD J 

The functional equation of/ gives 
1 

hence 

J CD f JcB f ^ r/ JcB T^'^fir) 

Finally, we have 

1 f df _ I f dr _ k 
^iTT JBD f 2i7t JcB r 12* 

(2) If/ has poles or zeros on AB (and DE), we deform D by making a little detour to 
avoid them, following a classical procedure in complex analysis. 
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The same holds if/ has several poles or zeros on BC (and CD). 
(3) If the pole or zero is at ^̂ '̂̂ Z ,̂ ̂ ( '̂)/3 QJ. ^(2ni)/3^ ^^ ^^^ j ^ ^ ^^ ̂ Yie decomposition 

+ ia = E 

When CC tends to the point /, we see that 

2in 
J_ / ^ _L / rn— - --
UTT JC f 2m Jc ' r 2 ' ' 

When BB^ (resp. DD') tends to the point p (resp. —p), we see that 

1 f^'df 1 /•«' _ ^ T 1 

2in 

Corollary 5.4.1 
(i) r/ẑ  modular invariant 

in JD f 2in Jo ' 
pif)— = -\v,{f). 

3 3 

i := 1728^ = 1 7 2 8 - r - ^ -

U 

defined in Section 5.3.1 is a modular function. 
(ii) It is holomorphic in H and admits a simple pole at ioo, of residue equal to 1. 

(iii) It induces a bijection H/G-^ Pi (C) = C U {CXD}. 

Proof (i) This assertion comes from the fact that gl and gl are both modular forms of 
weight 12. 

(ii) We saw in formula (8) that A(r) does not vanish when z eH. 
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Furthermore, we saw in Section 5.3.1 that 

g4 = 6OG4 = -7T\1 + 240(7 + • • •) 

g6 = 140G6 = - 7 r ^ ( l - 5 0 4 ^ + • • • ) , 

hence 

26 

2^ 

which gives the result. 

(iii) Let X e C The equationy(r) = X is equivalent to 

Mr) = ll2Sgl(T) - AA(r) = (1728 - A)g^(r) + 27Xgl(T) = 0. 

Since/A is of weight 12, theorem 5.4.1 leads to solving the equation 

^ pen/8 

with n,n\n" >0, which gives the solution 

(n, n', n") e {(1, 0, 0), (0, 2, 0), (0, 0, 3), (0, 0, 0)}. 

Thus/x of H/G vanishes at one and only one point of H/G, in the sense of the analytic 
structure. • 

Remark 5.4.2 ^ ^ 
(1) This result shows that if we want to construct a suitable analytic structure on H/G 

(i.e. such thaty induces an isomorphism of analytic varieties), we are led to choose 
(r — i)^ as a local parameter at /, and (r — p)^ as a local parameter at p. 

(2) The coefficient 1728 is chosen on purpose in order for the residue of 7 at infinity to be 
equal to 1. 

Corollary 5.4.2 H/G is a Riemann surface of genus zero. 

Proof Indeed, it is isomorphic to Pi (C) by corollary 5.4.1. D 

Now, we are ready to prove the important result which we have already used several 
times. 

Theorem 5.4.2 Every smooth Weierstrass cubic defined over the field of complex numbers 
is parametrisable by elliptic functions. 
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Proof. Let C = Y^ = AX^ - AX - Bht our cubic. Assume that A^ -11B^ # 0. Then the 
modular invariant yV of this cubic is not infinite, and there exists r eH such that 

j(r)=jc. 

Let AT be the lattice Z + Zr. Then the Weierstrass function p of the lattice A^ satisfies the 
equation 

W: p\zf=4p{z?-g4Piz)'g6-

Since the cubics C and W are isomorphic, there exists X e C* such that A = k'^g4 and 
B = X^ge. As 

g4(XA,) = AV(Ar) and ge(XA,) = X^geiA,), 

we see that if p denotes the Weierstrass function of A,~̂  A :̂, then 

p\zf = 4p\z)-Ap{z)-B. D 

When we now consider a subgroup H of finite index /JL in G, the space H/H is H/H 
compactified and equipped with an analytic structure; it is a Riemann surface, whose genus 
g can be computed in any of several different ways (see [Gu] Chapter I, Section 4). In 
particular, this genus is the dimension over C of the vector space S2(H) of modular cusp 
forms of weight 2 relative to H. When H = ro(A^)/{/, —/}, the genus g is given by the 
formula (see [Sh] p. 23-25) 

= 1 + 
M 
12 

y2 

4 3 
(1) 

where 

M 

y 2 = ] [ ^ ( l + ( — ) ) if 4 does not divide Â , zero otherwise. 

£prime 

^-3> 

T V3 = r r (1 + ( — ) ) if 9 does not divide Â , zero otherwise, 

£ prime 

Voo = y ^ ^ l (^' ~ ) ) where cp is the Euler function. 
d\N a / / 
d>0 

The Legendre symbols (—1/1) and (—3/1) can be defined as follows: 

(2) 

— 1 
( T ) = 

0 if€ = 2 

1 if£ = l m o d 4 

-1 if£ = 3mod4 

^-3 

( T ) = 
0 if£ = 3 

1 if€ = l m o d 3 

- 1 if£ = 2mod3. 
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Example 5.4.1 (1) If Â  < 11, we find that ^ = 0. 
(2) When Â  is an odd prime /?, the dimension of S2(ro(p)) is given by 

g = ^ ^ i f / 7 = - l m o d l 2 
12 

12 
p-2 

12 
p- 13 

12 

if p = 5 mod 12 

ifp = 7 mod 12 

ifp = 1 mod 12. 

5.5 THE FIFTH OPERATION OF ARITHMETIC 

In this section, we will show how the results of the preceding section provide remarkable 
arithmetic identities, such as for example Jacobi's identity (Section 5.1, formula (5)). 

Let Mk (resp. Sk) denote the complex vector space of modular forms (resp. of cusp 
forms) of weight k for the group G = PSL2(Z). Clearly, the map Mk ^^ C which associates 
to a modular form its value at infinity is a linear form on Mk, whose kernel is Sk. Thus, 

Mk = Ske CGk 

where k is even and > 4, and where Gk denotes the Eisenstein series of weight k; indeed 
G2h{ioo) = 2^{2h) 7̂  0 by theorem 5.3.1. 

Proposition 5.5.1 
(1) Mk is zero ifk is odd, negative or equal to 2. 
(2) Ifk = 0, 4, 6, 8, 10, then Mk is a vector space of dimension 1 which has basis (respec­

tively) 1, G4, G6, Gg, Gio. Moreover, under these conditions, Sk = {0}. 
(3) Multiplication by A defines an isomorphism Mk -^ Sk-^-u-

Proof All this follows from theorem 5.4.1 and the fact that A e 1̂2 does not vanish on 

Corollary 5.5.1 We have 

.̂ _ f[^/12] ifk = 2modl2, k>0 
dimMk = { 

[[^/12] + 1 //•/:# 2 mod 12, A: > 0. 

Proof It suffices to check these formulae for 0 < /: < 12, and then to see that both sides 
increase by 1 when k increases by 12. D 

Corollary 5.5.2 A basis of the space Mk is given by the family of monomials G" G^, where 
a and P are integers > 0 and Aa -\-6p = k. 



MODULAR FORMS 295 

Proof. We use induction on k, checking first that the property holds for k <6. 
If ^ > 8, then we see that that there exists a pair {ot, P) eW such that 4a + 6^ = /:. As 

the modular form G^GI is non-zero at infinity, a l l / € Mk can be written/ = 'kGIGl + g 
with g e Sk and A. G C. 

By (3) of Proposition 5.5.1, there exists h e M^-n such that g = Ah. Applying the 
induction hypothesis to Mk-n, we see that the monomials G^^G^ generate M^. 

It remains to see that they are linearly independent; if we assumed the contrary, GI/G\ 
would satisfy a non-trivial algebraic equation with coefficients in C, so it would be constant. 
But this is absurd. Indeed, G4 G M4 implies n + {n'/I) + {n"/?>) = 1/3, so (/i, n\ n") = 
(0, 0, 1), and G4 vanishes only at p. Similarly, Ge G Me implies n + (n^l) + in^'/3) = 1/2, 
so («, n\ n") = (0, 1, 0), and Ge vanishes only at /. Thus we have a contradiction by 
considering the values of GI/GI in H. • 

Some applications 

(1) Since dimAfg = 1 and E^ and E^ belong to Mg, we have 

Eg = ^Ej with keC. 

Considering the expansions of Section 5.3.1 (Remark 5.3.2), we obtain 

^ ~ 120 
for the coefficients of ^, hence A, = 120. 

Now considering the coefficients of ^", we obtain the identity 

n-\ 

a-i{n) = cfsin) -h 120y^a3(m)a3(/2 — m). 

(2) Since dimMio = 1 and £4^6 and £10 belong to Mio, we have 

£10 = XE^Ee. 

Similarly, we obtain X = 5040/11 and the identity 

n-\ 

Wo^in) = 2\Gs{n) - lOasCw) + 5 0 4 0 ^ 0-3(m)a5(n - m). D 
m=\ 

Let us now turn our attention to the magnitude of the coefficients of a cusp form. 

Theorem 5.5.1 Iff is a cusp form of weight k, then 

an = 0{n"^). 

Proof (1) Since ̂ 0 = 0, wehave/(r) = qh{z) with |/z(r)| bounded in the neighbourhood 
of infinity. Thus, 

l/(r)| = 0(^) = 0(^-2"^) 

when ^ ^^ 0. 
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(2) Now consider the function (P(T) = |/(r)|_y^/^. We have 

(piyT) = \cr+d\'{f(T)\y'^' 

= \cr+d\'\f{T)\ \ =cp{T)^ 
\cT -\-dr 

where we set j = ^(r) a n d / = 3(yr) . 
Thus cp is invariant under G. 
As cp is continuous in the fundamental domain D and tends to zero at infinity by the first 

part, we see that (p is bounded in D, so that 

(piT) = \fiT)\/^^<M 

for a certain constant M. 
Since (p is invariant under G, this inequaUty holds in all of H. 
By lemma 5.3.1, we have 

where g is holomorphic in 5 = {z e C; |z| < 1}. We have 

taking for C the circle of radius e~^^y described in a counterclockwise direction, and making 
the variable change z = e^^^^ = ^(r). Noting that | / ( r ) | < My'^^^, we obtain 

\an\ <My-^'^e^''^y 

for every j > 0. 
Taking y = \/n (to make the exponential disappear), we obtain 

\an\ <M'n^l^, 

with W = e^^'M. D 

Corollary 5.5.3 Iff e Mk\Sk, then we have 

Proof We can write/ = XGk + h with X e C* and h e Sk. 
Since the Fourier coefficient of Gk is 0(a^_i (AZ)), and furthermore we have 

we see that theorem 5.5.1 implies that 
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Remark 5.5.1 Deligne proved in 1969 that for cusp forms, we have 

\a{n)\ = 0{n^^-^^'^-^'). 

In particular, for the coefficients r(«) of A (the Ramanujan function), we find the result 

\T{n)\ = 0{n^^'^^'). 

But Deligne did much more since he succeeded in proving the famous Ramanujan-Petersson 
conjecture: if/? is prime, then 

11/2 | r ( p ) |<2p 

5.6 THE PETERSSON HERMITIAN PRODUCT 

The space of cusp forms of a given weight for a given group is equipped with a Hermitian 
product which is of major importance in Hecke theory. Let / / be a congruence subgroup of 
G, and let DH be a fundamental domain of H for the action of H. Recall (definition 5.3.2 
of Section 5.3) that a cusp form for / / is a modular form for H which vanishes at the cusps 
of DH. Let SjkiH) be the space of cusp forms for the group H of weight 2k > 0, and let d/j. 
denote the invariant measure on H defined by 

-2 y~^ — 
dfi(r) :=y dx Ady = (dr A dz). 

—li 
For/ and g e S2k{H), we define a new measure by 

(f,g)(T):==f(r)g(T)(^Tf'dn(r). 

Proposition 5.6.1 The exterior form (/", g) satisfies the relations 

(f.g) = (gj) (1) 
(/",/)> 0 and (fj) = 0 implies / = 0 (2) 

(f.g)(yr) = (f,g){T) for every yeH. (3) 

Proof (1) and (2) are obvious, so let us prove (3). 
We know that if / ( r ) = (ar + b)/icT + d), then 

\CT -i- d\^ 
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and we easily see that 

dixiyx) = djiix) (invariance of J/x). 

Furthermore, we know that if y € //, then 

j / ( y r ) = (c r+J )2V(r ) 

so 

Theorem 5.6.1 The space S2k(H) of modular forms of weight 2k > Ofor H is a Hilbert 
space of finite dimension for the Petersson Hermitian product; 

(f,g)= [ (f.g)(r)= I f(T)'^y^^'-'UxAdy. (4) 
JDH JDH 

Proof We want to show that the integral converges. 
(1) Since H is of finite index in G, the fundamental domain DH can be taken to be a 

union of finite copies of the fundamental domain D of G which we studied earlier (at least 
up to a set of measure zero). 

Let T(T) = r + A'̂  be the "smallest" translation of H; we can also choose DH in the 
vertical band 0 < jc < Â . We cut DH into two pieces in such a way that DH =D'fj\J D^; 

D'fj := [x e D\ 0 < X < N\ y > \} 

DH:=[X eD\ Q<x<N\ y< 1}. 

(2) We know (definition 5.3.7 of Section 5.3.3) that we have 

and that these series converge uniformly in D^. It follows that 

(5) 

V{r)W)f"'-''\ < E E l««.̂ «̂ "'"" /̂''-'''̂ "'̂ V<*-"l (6) 
m=\ n=\ 
00 OO 

m=\ n=\ 

= Y^c^e - - - ' y -Invy/N 2{k-\) 

v=2 

with Cy = Ylm+n=v \^mt>n\y and this last series converges uniformly on Z)^. 
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It follows that 

\JD' I Jy=\ \„-j / 

Now, if y > 1, we have 

[ ^-2izvy/N^2{k~\) jy ^ ^-27Tv/N f 

Jy=\ Jo 

oo 
-27ry(j-l)/A^^.2(A:-l) 'y'^'-'Uy 

Jy=: 
poo 

^-27TV/N / ^-2n(y-\)/Ny2(k-l) ^^ ^ ^^-2;ry/7V = e 

for a certain constant K. 
Thus, the integral is bounded above term by term by 

NJ^KC, ^ 271V/N 

v=2 

which is a convergent series since it is essentially the right-hand side of (6) with y = \. 
(3) It remains to study the convergence of the integral in DĴ . 
Outside of the cusps of D^, there is no problem of convergence since if we remove the 

cusps by removing small neighbourhoods containing them, we are dealing with the integral 
of a continuous function in a compact set. 

Because there is only a finite number of cusps, we are reduced to studying the integral in 
a neighbourhood V of a single cusp P. Let 5 e G be such that S{P) = oo, and let/o =f\s 
and go = g I5. We have 

y(S-\r)) = icT+d)^%(r) 

g(S-Hr)) = (cT+d)^'go(r) 

if ^ - ^ T ) = (at + b)/(cT + d), hence 

f f(r)Jij)y^^'-'^ dxAdy= [ /oCr)^^/^^"^^ dx A dy, 
Jv Jsv 

A s / and g vanish at P,/o and go vanish at infinity and we are reduced to the case of part (2). 
D 

5.7 HECKE FORMS 

It was noted long ago that the modular forms found in nature have a certain curious property: 
the Fourier coefficients a{n) of their expansion in powers of q are either multiplicative 
functions or simple linear combinations of multiplicative functions. 

For example the Ramanujan tau function is such that T(mn) = r (m)r («) if m and n are 
relatively prime (multiplicative function). 
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Consider an integer m > 0 and a modular form of weight k for the group ro(A/^),/(r) = 
oo 

^ a ( n ) ^ " . S e t 
n=0 

V„f{T) = m~'^l^f\k r J j (r) =f{mr) = X]«(«)^" 

7=1 \0 '"Z «=o 

/ 1 7 \ 

Then V^ and Um are Hnear maps from M^(ro(A^)) toM^(ro(mA^)). But if m divides Â , then 
Um is a linear endomorphism ofMk{TQ{N)). 

Supposing that Um were an endomorphism of S\2{SL2{IJ)) for every m > 0 (which is 
not the case!), we would have 

Um^ = A.̂ A 

with Xm e C. 

It would follow from this that 

r(m) = kmT{l) = km 

for every m > 0, and 

T{mn) = A;„r(n) = r(m)T{n). 

This would prove that r is multiplicative! 
This idea can be made to work by replacing Um and Vm by a sort of average of these 

operators, so as to obtain endomorphisms of the Mk and of the Sk^ 

5.7.1 Hecke Operators for 5L2(Z) 

Let n be an integer > 1. 
Let M„ denote the set of matrices (^ ^) G M2(Z) such that ad -be = n. 
Clearly, Fi = 5L2(Z) acts on M„ on the left, so it is possible to decompose M„ into 

orbits; let Fi \M„ denote a system of representatives for these orbits. The system is obviously 
finite. 

Then, the sum X!/x€ri\M„/l^ M does not depend on the choice of this system of repre­
sentatives, since if y G Fi, then 

f\k KM = (f\k y)\k M =f\k /^, 

because/U y = / • 
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We now set 

rj(z)^„*/2-' J2 f\ki^- (1) 
MGri\M„ 

Clearly, if/ is holomorphic on H, then TJ^ is also holomorphic. Moreover, if y e Fi, then 

Tnf\ky = n'^^-' Yl (f\k^^^\ky 

lier[\M„ 

since the fiy form another system of orbits of M„ modulo the left action of Fi. Thus, it 
appears that r„, which is known as the Hecke operator of index n, is an endormorphism 
of Mk and Sk! 

Theorem 5.7.1 
(i) Let n be an integer > 1 andf(z) = YlT=o ^(h)Q^ ^ ^k- Then we have 

_i (nh^ 
I 

h=0 \d\(n,h) 
^^w=i: ,!:/*-'» G^U' (2) 

Thus, we see that Mk and Sk are stable for Tn. 
(ii) Ifm and n are two integers > 1, then 

TnTm = 2^ ^ Tnm/d^ = T^Tn. (3) 
d\{n,m) 

In particular, TnTm = Tnm ifn and mare relatively prime. 

Proof. (1) Every matrix / X = ( ^ M G M „ can be made upper triangular (i.e. such that 
c = 0) by multiplying it on the left by y e Fi. 

Then, multiplying it on the left by ± f ^ ^ j with r e Z, we transform it to i f ^ ^^f^ \ . 
As ad = n, we can assume that a > 0 and 0 < b < d. With this choice of representatives, 
we have 

d-l 

a,d>0 b=0 
ad=n 

Taking into account the relation 

^=0 ^ ^ m=0 

and changing the notation, we find formula (2). Note that the constant term in q is equal to 
ak-i(n)a(0), so Sk is stable under r„. 

(2) Formula (3) can be deduced from formula (2) by computation. D 
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Special case of formula (2) 
If n is a prime number/?, then 

OO 00 

h=Q h=0 

i.e. (over M^) 

Special case of formula (3) 
Knowing Tp for/? prime enables us to obtain a formal expression for Tn for every n. Indeed, 

(i) If/? divides n exactly once, then 

Tn = Tn/p Tp. (3 ) 

(ii) If p^ divides n, then 

Tn = Tn/pTp — p ~ Tn/p2. (3^0 

Remark 5.7.1 It can sometimes be useful to define To.lf h > 0, then formula (2) gives 
us the coefficient of q^; it is ak-\(h)a(0). Thus, we can say that Tofir) should resemble 
Ekix). But in order for 7o/(r) to lie in M^, we have no choice for the constant term, which 
must be that of <3(0)£^(z), so -{Bk/2k)a{0)\ Thus, we set 

T^{T)=a{0)Ek{x). (10 
D 

We saw that if /: = 4, 6, 8, 10 and 14 the space Mk is a line over C; then every non-zero 
form ofMk is an eigenvector of every r„, so by (2) we must have 

a{n) = A„fl(l) 

where A.„ is the eigenvalue corresponding to r„ (i.e. Tnf = A„/). 
lfa(l) = 0, then/ = 0, which is absurd. Thus, we see that a(l) ^ 0. 

Definition 5.7.1 A Hecke form ofM^ (for k > 0) is an eigenfunction of all the Hecke 
operators Tn, such that a{\) = 1 (normalisation). 

The Fourier coefficients a(n) off are then eigenvalues of the r„, and equation (3) 
implies that 

a{n)a{m) = ^ ' ^ ' " ' « ( ^ ) - (3'") 
d\(m,n) 

In particular, we see that the function n \-^ a(n) is multiplicative. 
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Remark 5.7.2 The same considerations apply to the space Sk when it is a line, i.e. for 
k= 12,16, 18, 20, 22 and 26. 

Lemma 5.7.1 The Eisenstein series of even index 

B ^ 

are eigenvectors of all the Hecke operators. 

Proof Taking (2) into account, it suffices to satisfy {?>'") when « or m > 0. 
This is obvious if « or m is zero. 
It is also obvious if n or m = 1. 
When nm > 0, we use the multiplicativity of a^-i to reduce to the case ofm=p^ and 

n=p\ 
We have 

(k-\)ifx+l) _ I {k-l)(v+l) _ I 

a(m)a(n) = Ok-i{p^)ok-\(p'') = ^1 \ T l ^—• 
p'^~^ — 1 p'^~^ — 1 

Moreover, if /x < v, then 

d\(p^,P^) 

Finally, setting p^"^ = r, we easily check that 

(^M+l _ l ) ( r ^ + l _ 1) (^M+v-f 1 _ 1) 4 . ^(^M+v-1 _ 1) _^ . . . + ^/x(^v-/x+l _ 1) 

(r - 1)2 r - 1 

Theorem 5.7.2 (Hecke) For k > 0, the Hecke forms form a basis ofM^. 

D 

Proof 
(1) We saw that the E2k are eigenvectors of r„. Conversely, if a(0) ^ 0 and if/ is an 

eigenvector of To, then/ is a multiple of £2^-
(2) We know that M2k = {Eik) 0 S2k. so it suffices to show that the Hecke forms form a 

basis ofSik-
For this, we use the Petersson Hermitian product and note (Exercise 5.12) that the 

Tn are self-adjoint, i.e. 

iTnf.g) = if.Tng) 

for a l l / and g e 2̂̂ ^ and for every « > 0. As they commute among themselves, a 
theorem of hnear algebra asserts that they are simultaneously diagonalisable. 
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(3) Let us show that the coefficients a(n) of the eigenvectors are real; indeed, we have 

a(n)(fj) = {a{n)fj) = {Tn(f)J) = (/, r„(/)) 

= (f,a(n)f)=^(fj). 

(4) Let us show that iff^g, then (/ , g) = 0. Indeed, there exists n e N such that 
a(n) ^ b(n). But we have 

a(n)if, g) = (TJ, g) = ( / , Tng) = ( / , b(n)g) = b(n)(f, g) = Hn){f, g), 

D 
since b(n) e R. Thus (f, g) = 0. 

Theorem 5.7.3 The Fourier coefficients of the Hecke forms f e Sk are real algebraic 
integers, whose degree is < dim Sk. 

Proof 
(1) By propositon 5.5.1 and corollary 5.5.2 of Section 5.5, the Sk are generated by forms 

whose Fourier coefficients are integers; thus, by (2), the Z-module generated by these 
forms is stable under the r„. 

(2) Thus the matrices of the r„ in a basis of this module are matrices with integral coeffi­
cients. The eigenvalues of the r„ are thus algebraic integers, and we saw above that they 
are real. D 

5.8 HECKE'S THEORY 

Since the function n \-^ a(n) studied above has a strong tendency to be multiplicative, it is 
natural (at least since Euler) to associate to it the Dirichlet series^ Y^T=i ^M^'^-

Definition 5.8.1 Let fir) = J^'^^Q a(m)q"' e Mk be a modular form for SL2(Z). 
The L-function off(z) is by definition 

^ m^ 
m=l 

Because a(n) = 0{Tr ^), we see that L(/, s) converges in the half-plane Re(^) > k. 

Remark 5.8.1 (1) A Dirichlet series cannot have a term for m = 0, so a(0) disappears 
in L(/", s). But since/ G Mk, «(0) is determined by the other coefficients if ^ > 0. 

^ P.G. Lejeune-Dirichlet (1805-1859). 
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(2) If/ is a Hecke form, then a(n) is multiplicative (by theorem 5.7.1 of Section 5.7), 
and L(f, s) has an Euler product 

Clip) ci(P^) 

P' P^ p prime 

But each factor of this product can be simpUfied using the relation 

a(p''^')=a(p)aip')-p'-'a(p'-'). 

It follows that if we set 

then 

Apix) = 1 'ha(p)xAp{x) -p^~^x^Ap{x), 

so 

1 — a{p)x +/7^ ^x^ 

finally, we obtain the following theorem. 

Theorem 5.8.1 Iff is a Hecke form, then L(f, s) is equal to the Euler product 

1 

1 -a(p)p-' ^p^-^-^'' ^̂ '̂-) = n.-.r„j^n^-.-2.- (4) 

Example 5.8.1 (1) If/ = Ek, then 

^{r+\){k-\) _ 1 

a(p^) = 1 + / - ' + ... + /(*-» = ^ , , ' 
P'^~^ — 1 

and 

1 1 
Ap{x) = 

1 _ {pk-\ + l);c+/7^-ljc2 (1 -pk-\x){\ -XY 

giving 

L(£,, s)^Y\ j - ^ = f (5 - ^ + 1)^.). 
y (1 -/?^ 1 0(1 - p 0 

(2) I f / = A, then 

1 
L(A,.) = n - — 

\ . 1 — T ^ . -(/7)/7-+/7^ 

which summarises the multiplicative properties of r discovered by Ramanujan. 
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When/ is modular only for the level Â , we need to modify the definition of the L-
functions of Hecke forms as follows. 

Definition 5.8.2 Letf be a Hecke form of weight kfor VoiN), we set 

L ( / , 5 ) = n — ^ — n ^ 
A, A 1 - a(p)p-' A l l - a(p)p-^ 
^1^ . ^(p)p-^ y 1 - a(p)p-^ ^pk-i-2s' 

(40 

5.8.1 The Mellin Transform 

The map (p(t) = JZ^i <̂ «̂ ~"̂  *-̂  ^i^) = J1T=\ ^n/n^ is essentially what we call the Mellin 
transform. 

Definition 5.8.3 Let cp be a function M^ -^ C which is rapidly decreasing at infinity (L e. 
such that (p(t) = 0(t~^) when t -^ oo, for every A e R) and such that (pit) = 0(t~^) 
when t -^ Ofor some constant c. Then M(p{s) = f^ (p{t)t^~^ dt converges absolutely 
and uniformly in Re(s) > c + 6 for every e > O.We call this the Mellin transform ofcp. 

Example 5.8.2 
(1) If (pit) = e-\ ihtn 

-L M(pis)= / t'~'e-'dt = ris) 

which is the known as Euler's F function: it interpolates n h-> (AZ — 1)! on M and 
can be meromorphically continued to C with simple poles of residue (—l)"/n! when 
s = —n, with n eN. 

(2) If (Pit) = e-''\ then 

r»oo 

M(p{s) = / f-'e-"'dt = n-'V{s). 
Jo 

(3) If (Pit) = Y:ZiCne-"', then 

°° c 
Mip{s) = T{s)Y-^. 

n=l 

(4) If c„ = 1, we find the Riemann zeta function multiplied by r(^). 
In 1859, B. Riemann used this transform to deduce the functional equation of the function 

^is) from that of the function ^(r). Let us present this principle of the functional equation 
which was amply used by Hecke. 
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Theorem 5.8.2 Ifcp is sufficiently small at infinity and satisfies the equation 

(pi-\ = Y^Ajt^^ + et^(p{t) for t > 0, (5) 
7 = 1 

where h,Aj, Xj are inC^e = ±1 , then Mcp can be meromorphically continued to all ofC, 
and it is holomorphic everywhere except at s = Xj (forj = ! , . . . , £ ) , where it has a simple 
pole with residue Aj. Moreover, we have the functional equation 

M(p{h — s) = sM(p{s). (6) 

A proof and applications of this result can be found in Problem 1, and further interesting 
developments can be found in [Car]. 

5.8.2 Functional Equations for the Functions L ( / , s) 

Using the principle of the functional equation, we deduce a functional equation for L( / , s) 
from the modularity of a form/ e M .̂ 

Theorem 5.8.3 Letf e M^be a modular form for SLiilj). Then L{f, s) can be mero­
morphically continued to the whole complex plane, and L{f,s) is even holomorphic if 
f e Sjc. Otherwise L{f,s) has a simple pole of residue {2K i)'^ a{0) / (k — l)\ at s = k and is 
holomorphic everywhere else. 

The meromorphic continuation ofL(f, s) satisfies the functional equation 

(27r)-T(5)L(/, s) = {-\ff\27Tr-'T{k - s)L(f, k - s). (7) 

Proof Set 

oo 

(Pit) =f(it) - a(0) = ^ ^ ( n ) ^ - 2 - " ^ 
n=\ 

Then (p is sufficiently small at infinity and satisfies the equation 

(p{^) = / ( ^ ) - «(0) = Wfiit) - a(0) 

= (-l)^/^rV(0 + (-lf^^a(0)t^ - a(0), 

and its Mellin transform is (27t)~^r(s)L(f, s). From relation (6), we obtain relation (7). 
Since k > 0 and Mcp admits a simple pole at s = k, L(f,s) admits a simple pole at k. 

For 5 = 0, r(s) already has a simple pole, so L( / , s) is holomorphic at 5 = 0. 
The coefficient of /̂  in (p{\/t) is (—l)^/^a(0), so we see that the residue of L( / , s) at 

s = ki^{2nifa{0)/T{k). D 
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Important remark: When/ G MkiVoiN)), the modified L-function of formula (40 
always converges absolutely and uniformly for Re(5-) > k-\-6, for every s > 0, and always 
has a meromorphic continuation to C with at most a simple pole ais = k. 

However, in general, it does not have a functional equation since when we change t to 
\/t,f{it) no longer has symmetry. 

Instead of the symmetry, we have the Fricke involution 

: / ( t ) ^ w^fix) := 7V-^/2r-V(—), 

which acts on MkiVoiN)) because (jj ~Q ) normalises ToiN). 
Via this involution, we can decompose MkiVoiN)) into a direct sum of two eigensub-

spaces: 

M,(ro(A^)) = M+(ro(A^)) ©M-(ro(^) ) . 

If/ e M^"(ro(A )̂) with ^ = ±1 , then 

i27Tr'N'/^ris)L(f, s) = 6(-l)''^\27ry--^N^''-'^/^r(k - s)L(f, k - 5). (T) 

Special case: If Â  = 1, then WM = id, so M^ = {0} and we recover (7). 
In the general case, WN stabilises the subspace MA:(ro(A )̂)"̂ ^ of new forms (those which 

do not come from a lower level dividing Â , see Chapter 6, Section 6.6 and [Z] p. 262) and 
commutes with all the (suitably modified) Hecke operators on this space. 

In particular, every Hecke form^^ of level Â  is an eigenvector of WN, and consequently, 
its L-function has a functional equation. The results of Section 5.7 extend to the new forms 
of level Â  > 1. 

5.9 WILES' THEOREM 

Let E be an elliptic curve defined over Q, and let 

y^ + aixy -f asy = x^ -\- aix^ + a^x + a^ 

be a minimal Weierstrass model for E over Z. If E has good reduction at a prime p, set 

ap\=p-^\ -Np, 

where Np denotes the number of points of the curve reduced modulo p in P2(Fp). 

^̂  A Hecke form of level N is a form of M^ (ro(A^))"^^ which is an eigenvector of Tn for every n prime to Â , 
and which is normalised. 
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If E has bad reduction at /?, set 

ci{p) = \ 

1 if £" admits two tangents at the double rational point on F^ 

— 1 if £• admits an isolated double point in F^. 

0 if E has additive reduction. 

Recall that for Rc{s) > 3/2, we defined (Section 4.15, Chapter 4) the L-function of E by 
the infinite product 

p p 

Recall also that if sip) 7̂  0 for all the bad primes, the curve E is said to be semi-stable. In 
this case, we call the product of all the bad primes the conductor of £", and denote it by NE-

Conjecture (Hasse) 5.9.1 The function L(E, s) can be analytic continued to all of C 
Moreover^ there exists an integer N (the conductor ofE) such that if we set 

AE(s)=Nf(2nms)LE{s), 

then we have the functional equation 

AE{2-S) = ±AE(S). 

The following theorem shows that we can associate an elliptic curve to certain Hecke 
forms. 

Theorem 5.9.1 (Eichler, Shimura) Let N be an integer > 1 and letf e 52(ro(A^))" '̂̂  be 
a Hecke form. 

Then there exists an elliptic curve E defined over Q such that the Mellin transform off is 

(27r)-T(5)L^(5) = N-''^KE{S). (2) 

Remark 5.9.1 This theorem is not at all obvious: one constructs £" as a natural quotient 
of the Jacobian of the curve Zo(A )̂ = H[T^N), see [Kn]. 

Definition 5.9.1 An elliptic curve constructed as above is called a Weil curve. 

Corollary 5.9.1 Let E be a Weil curve and letf = J2m>\ ^(^"^^^ ^ S2(roiN))''^'^ be the 
Hecke form which generates it. Then we havef(—\/NT) = eN^fix), with £ = ± 1 . 

Moreover^ E satisfies the Hasse conjecture, and the functional equation of AE(S) is 
given by 

AE(2-S) = -SAE(S). 
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As long ago as 1958, Taniyama posed the converse question; here is a slightly modified 
version of what he asked: 

"Let C be an elliptic curve defined over a field of numbers k, and let Lc(s) denote the 
L-function from C to ^, so that 

^c{s) = -r-— 

is the zeta function from Ciok. 
If a conjecture of Hasse is true for ^cis), then the Fourier series obtained from Lc(s) 

by the inverse Mellin transform must be a modular form of weight —2 and of a special type 
(Hecke). If so, it is very plausible that this form is an elHptic differential for that modular 
function field. 

The problem consists in asking whether it is possible to prove Hasse's conjecture for 
C going in the other direction, finding a suitable modular form from which Lc(s) may be 
obtained". 

This conjecture became much more precise following a result of Weil which is formu­
lated in [Kn] and [Ogl]. 

Theorem 5.9.2 (Weil) LetN be an integer > 1 and letfir) = Xl^>i ^i^)^"^ be an entire 
series which converges for \q\ < 1. For every primitive Dirichlet character x of conductor 
n, set 

A(/ ,X,^) = \Nn^\^^\2n)-^r(s)Lif,x.s). 

Assume that we have the functional equations 

Aif,X,2~s) = w{x)A{f,x,s), 

where w(x) denotes a complex number of module I satisfying certain compatibility condi­
tions. Thenf is a modular form of weight 2 for FQCA^). 

We can now give a rather precise formulation of the Shimura-Taniyama-Weil conjec­
ture. 

Conjecture 5.9.2 Let E be an elliptic curve defined over Q, and let LE(S) = 
J2n>i ^(f^)^~^ denote its L-series andfEir) = J2n>\ ^(f^)^" ^he inverse Mellin transform 
of{2Kr'r(s)LE(s). 

Thenf is in S2(ro(N)), where N denotes the conductor ofE andf is a Hecke form. 

Results by Shimura showed that curves with complex multiplication were Weil curves, 
however this gave the answer for only a very small number of curves. 

On September 19, 1994, Andrew Wiles obtained a complete proof of the Taniyama-
Weil conjecture for semi-stable elliptic curves defined over Q. We will see below that that 
result leads to a proof of Fermat's last theorem. 
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Anything more than a simple statement of Wiles' result would be well beyond the scope 
of this book, so here it is: 

Wiles' Theorem 5.9.3 Let E be the semi-stable elliptic curve of minimal equation over 
Z given by 

y^ + a\xy + a^y = JĈ  + a2X^ + a^x -f a^. 

Let N denote the conductor of E (the product of the prime numbers for which E has bad 
reduction), and letL(E, s) denote the L-function ofE: 

^^^'^ " JlJ l-aip)p-^ y i_«(p)p-.+pi-2. 

where Re{s) > 3/2 and where the a(p) are given by 

1 + a(p) = #{solution ofX^ + fliX - ^2 = 0 mod p} if p \ N 

\p+l-a(p)=#E(¥p) if p\N. 

Set 

^ n^ 

Then if fix) = ^fl(n)^^'^^V^^^(T^) > 0, we have 

/aT+b\ 
\CT -\-d) 

for every (^ j ) e VoiN), and for every matrix (^ j ) ^ SLi^L), the function 

admits an expansion as an integral series in the powers of c^^^ = ^imx/N^ 

Remark 5.9.2 
(1) Given that LE{S) is defined by an Euler product,/(r) is an eigenfunction of the Hecke 

operators of FQCA^). 
(2) Since September 19, 1994, Wiles' proof has been extended to all elliptic curves, by 

work of C. Breuil, B. Conrad, F. Diamond and R. Taylor [D]. 

Example 5.9.1 (1) The curve y'^ —y = x^ — x^ has conductor 11, and if we consider 

n>\ 

= q-2q^-q^ + Iq" + ^̂  + Iq^ - Iq^ - 2q^ - Iq^"" + ^" - 2^'^ + • • • 

we see that the a(p) satisfy the relations of the above statement when p is prime. 



312 INVITATION TO THE MATHEMATICS OF FERMAT-WILES 

(2) Recall that the dimension g of S2(ro(N)) is given by 

/X V2 V3 Voo 
= 1 + 

12 2 ' 

so we obtain the following table. 

N 
/x 
^2 

V3 

Voo 

8 

1 
1 
1 
1 
1 
0 

2 
3 
1 
0 
2 
0 

3 
4 
0 
1 
2 
0 

4 
6 
0 
0 
3 
0 

5 
6 
2 
0 
2 
0 

6 
12 
0 
0 
4 
0 

7 
8 
0 
2 
2 
0 

8 
12 
0 
0 
4 
0 

9 
12 
0 
0 
4 
0 

10 
18 
2 
0 
4 
0 

11 
12 
0 
0 
2 
1 

12 
24 
0 
0 
6 
0 

13 
14 
2 
2 
2 
0 

So there exists no elliptic curve of conductor 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13 which is 
defined over Q. 

COMMENTARY 

The Introductio in Analysin Infinitorum can easily be located in an English translation 
[Eu], and contains (apart from reasonings in non-standard analysis) a host of identities 
and other fascinating results. 
For more modem expositions of the theory of theta functions, see the book by 
Rademacher [Ra], Volume III of the Lehrbuch der Algebra by Weber [Web] and Igusa's 
book [I]. 
The little book A Course in Arithmetic by Serre contains, among other subjects, an 
excellent introduction to modular forms. On this topic, it is useful to note that there 
exists no standard vocabulary in the literature, and that, for Serre, a modular function is 
not necessarily of weight zero and a modular form is always holomorphic. Here, we have 
adopted the vocabulary of [Sh], [Ra] and [Kn], because it appears important to us that 
a modular function be a function on a Riemann surface. However, we wanted to avoid 
the introduction of this notion explicitly; to explore this aspect of the theory, the reader 
may consult the books by Gunning [Gu], Shimura [Sh], Reyssat [Re] and the article by 
Bost [Bos]. 
For everything concerning Hecke theory, the reader can consult the complete works of 
that author [Hec 2], as well as the book by Ogg [Og 1]. The Eichler-Shimura theorem, 
as well as a host of other subjects, are given an admirable treatment in the book by 
Knapp [Kn]. 
Naturally, the reader is invited to carefully read the foundational articles by Wiles [Wi] 
and [W-T], but he should not be surprised by their degree of sophistication and difficulty. 
Several books on this question have been published ([D-D-T] and [Co]). However, the 
lectures by Oesterle and Serre ([Oe] and [Se 6]) remain valuable sources. 
Finally, the works of Klein [Kl] are more historically interesting than ever, and the books 
by Koblitz [Ko] and Miyake [Mi] are excellent additions to the existing literature. 
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Exercises and Problems for Chapter 5 

5.1 The goal of this exercise is to give a formal proof of Jacobi's triple product formula 

(X) OO 

n=\ m=\ 

a formula whose left-hand side is often written 

E "̂-"'-
n=—oo 

We will work in the ring A[[x]] of the formal series with coefficients in A = Z[z, z~^]. 

(a) For every integer Â  > 1, set 

m=\ 

and let 0oo(-̂ ; z) denote the limit of 0A^(X; Z) in A[[x]] as Â  tends to infinity. Show that 

0Ar(x; z) = 000 (-̂ ; z) mod x^^. 

(b) Show by induction on Â  that 

07v(x; z) = CO,N{X) + (Z + Z-^)CUN(X) + • • • + (Z^ + Z~^)CN,N(X), 

where the CI^NM e Z[x] are polynomials depending on / and Â . Deduce that 0A^(X; Z) 
belongs to Z[jc] [z + z~M. 

(c) Show that 

fo + jc^^)0yv(jc; zpc^) - (1 + ^x2^+^)0yv(jc; z). 

Deduce (eliminating the index Â  in the notation C/,A^(JC)) that forO < k < N, we have 

(d) Show that Cyv(x) = x^^ Hm^i (1 " •̂ '̂") and deduce that 

CoW = (1 - x2^+2)(l - x2^+^) •.. (1 - / ^ ) . 

(e) To establish the triple product formula, we propose to show that for every Â  > 1, we have 

0A (̂jc; z) ^ 1 + Yl^z'' + z'V^ mod n^ z -r z M iiiuu r 

Deduce from (c) and (d) that we have 

Coix) ^ 1 
Q ( ; , ) ^ ; , l + 3 + .- + (2^-l) modjC^^ 

and conclude. 
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5.2 We propose to deduce two classical identities involving Jacobi's triple product (Exercise 5.1). 

(a) Replacing x by y^ and z by —y, show that we have 

OO 00 

^ ( _ l ) « / ( 3 « + l ) ^ ] - [ ( l _ / ^ ) . 
-OO r=\ 

(b) Replacing z by —zx, show that we have Ruler's formula 

OO OO 

^ ( - i r z V ^ ' ^ ' ^ ^ ) =Y\{\ -Jc2'^)(l -^x^^Wl - z - V ^ " ^ ) . 
-OO m=\ 

(c) Regrouping the terms which give the same exponent for x in the left-hand side and sim-
pHfying by 1 - z~^ show that 

£ ( - l ) V ^ " + i ) z " ( l + z-^ + . . . + z-2") 

OO 

m=\ 

(d) Replacing z by 1, show Jacobi's formula: 

OO 

^(-l)"(2n+l)x<"<«+">/2 
n=0 

0(1-*'") 

5.3 Using the results of Exercise 5.2, we propose to show the first of the Ramanujan congruences: 
p(5n + 4) = 0 (mod 5). 

Letting (p(x) denote the infinite product 0^=1 (' ~ ^"">' *^ have 

<p(x} = Y,{-\)"x^"^^"-l))/2 (1) 

tpixf = Y^(-l)"(2n + 1)A:<«<"+'»''^ (2) 

and we propose to show that 

For 5 6 {0,1,2, 3,4), set 

\Gs(x): 

<pix^)^ 
J2p(5n + 4)x''=5'^ 
to Vix)^ 

^ (-1)V<3"-
n ( 3 n - l ) / 2 s j mod 5 

l)/2 

Hs{x):= Y, (-l)«(2n+l)x"<"+'>/^ 
n{n-\-\)/2=s mod 5 

OO 

P , ( j c ) : = : ^ p ( 5 « + 5)jc5"+^ 
n=0 

(3) 
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We have 

(̂  = Go + Gi + G2 + G3 + G4 

^^=Ho-\-Hi^H2+H3+ H4 

P = Po + Pi -\-P2-^ P3-\-P4, 

where P denotes the generating series of the function p. 
Using a result of Section 5.1, show that 

(Go + Gi + G2 + G3 + G4)(Po + Pi + P2 + "̂3 + ^̂ 4) = 1. 

Deduce the system of equations 

GoPo + G4F1 + G3P2 + G2F3 + G1P4 = 1 

GiPo + GoFi + G4P2 + G3P3 + G2P4 = 0 

G2P0 + GiPi + G0P2 + G4P3 + G3P4 = 0 

G3P0 + G2P1 + G1P2 + G0P3 + G4P4 = 0 

G4P0 + G3P1 + G2P2 + G1P3 + G0P4 = 0. 

(4) 

Show that the determinant D of the system (4), considered as a system of linear equations in 
Po» Pi, P2, P3, P4, is (p(x)(p(^x)(p(^'^x)(p(^^x)(p(^'^x), where f denotes a primitive fifth root 
of unity (we will work in (Z[f ])[[jc]]). 
Since P4 = D4/D by Cramer's formulae, it remains to compute 

D4 = 

G\ Go G4 G3 
G2 Gi Go G4 
G3 G2 Gi Go 
G4 G3 G2 Gi 

Prove that G3 = G4 = 0 = H2 = H4,by showing that these series do not contain any terms. 
Deduce from (2) that we have H2 = 3Go(GoG2 + Gj), and show that then 

G0G2 = -Gl 
Prove that Gi (jc) = —x(p(x^^) and deduce (3) from this. 

5.4 We now propose to prove the second of the Ramanujan congruences: 

p{ln + 5) = 0 mod 7. 

(a) Let ^ttnx'^^, J2^nX^ and J^Cnx" be three series in F7[[jc]]. Assume that ao = \ and 
that (^a„jc'7«)(^/7„jc^) = J^^^nx"". Show that 

{b-jn = 0 for every n} ^<^=^ [c-jn = 0 for every n). 

(b) Using the result (d) of Exercise 5.2, show that in F7[[x]], we have 

00 

m>0 n=2 h>0 
k>0 
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(c) Letting J2 ^nX^ denote the right-hand side of this equation, show that cjn = 0 for every 
n. Conclude. 

5.5 Let n be an integer > 1 and let n be the canonical homomorphism Z ^- Z„ := Z/nZ. Let TT 
denote the homomorphism 5L(2, Z) -> 5L(2, Z^) defined by 

^ \c d) '~ \T!:(C) Tt(d)) " Vc dj' 

where x denotes the element 7T{X). 
Recall that the kernel of it is the principal congruence subgroup r{n) of level n. 

(i) Recall that it is surjective. Deduce that if F := 31(2, Z), then 

[r : Fin)] = #5L(2, Z„). 

(ii) A pair of integers (x, y) is called primitive modulo n if the greatest common divisor 
(«, X, y) is equal to 1. Let X(n) denote the number of pairs {7v(x), niy)) such that (x, y) 
is primitive modulo n. 

Show that the function X is multiplicative, i.e. that if n\ and n2 are relatively prime, 
then 

X{n\n2) = X{n\)X{n2). 

(iii) Show that if v > 0, then 

xo.^)=.-(i-l). 

(iv) Show that if (c, d) is a pair of primitive integers modulo w, there exist n pairs (a, Z?) G 

Z^ such that 
(v) Deduce that 

such that ( ? | ) €SL(2 ,Z„ ) . 

[r:r,»„ = »>n('-;i) 

5.6 Let (̂  be a complex number such that 0 < \q\ < 1. As in Section 1.6.3 (Chapter 1), we let r(n) 
denote the number of different ways of writing « as a sum of two squares. 

(a) Show that r(2n) = r(n). 
(b) Show that 

n=0 
oo 

0i(c,) = J2(-irr(n)q". 
«=0 
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(c) Show that 

oo 

n=0 
00 

0^(q) - Ol(q^) = Y, r{2n + 1)^^"+^ 

5.7 Let h €]0, 1 [, and let q be the unique solution in ]0, 1 [ of the equation 

k = 0^(q)e-\q). 

(a) Show that k' = y/\-k^ = Oliq)/e^iq). 
(b) Show that 

\{OUq)^Oi{q)) = 0^{q^) 

y0i(q)0^{q) = 0^(q^). 

(c) Deduce that the arithmetico-geometric mean M(\,k^) of I and k^ is equal to 6^ (q) (see 
Exercise 2.2 of Chapter 2). 

5.8 Recall from Section 5.2 the formula 

^—00 ^ ^ ^ m=\ ^ m = l ^ ^ 

(a) Show that 

mq^ 

^—00 ^ w > l m>l ^ 
m#0 mod 4 

(b) Deduce that the right-hand side is equal to 

1+8 E (E-^*'")-
m>\ H=\ 

m^O mod 4 

(c) Deduce formula (5) of Section 5.1. 

5.9 Set 

oo oo 

(a) Show that g i 2263 = 1-
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(b) Prove the relations 

GoGi = eo(^^), Q0Q3 = Qoiq"^). 

Q2Q3 = Q3iq^), QxQl = Ql{q^'^)-

5.10 Let ^ be a complex number such that 0 < \q\ < 1. 

(a) Show that 92{q), 0^{q) and 0^{q) are never zero. 
(b) Show that if q €]0, 1[, then ^4 is a strictly decreasing function of q and O2 and ^3 are 

strictly increasing functions of q. 

5.11 Let n > 0 be an integer, and let T eT{n) C 5^2(Z) be a matrix. We write 

az + b 

• = e 2)- Tz = T{z) = 
cz + d 

(i) Show that 

dT(z) . ^ ,,_2 

dz 

(ii) Setting Jji^z) = {cz + ^)~^, show that 

whenever S is another matrix of Tiri). 
(iii) For every T € V{n), take a function /xr(z) which is holomorphic on Ji and never 

vanishes. Assume that these functions satisfy the formula 

M5r(z) = [IS{TZ)[IT{Z). 

We propose to construct a function/(z), holomorphic on 7Y, such that 

fijz) = iiT(z)f{z), for every T € r(n). (1) 

Show that if h(z) is a holomorphic function on H such that the series 

h(Tz) 
f(z)-

Tmn) ^^^^^ 

converges normally on every compact subset ofH, then/ satisfies (1). 
(iv) Set To = {r € r(n)\ /xriz) = 1}. Show that TQ is a subgroup of r{n). 
(v) Let 7^ be a system of representatives of left cosets of r{n) modulo VQ, and let /i be a 

holomorphic function on 7i such that h(Sz) = h(z) for every 5 G FQ. Set 

and assume that the series is convergent on every compact subset of 7i. Show that gniz) 
does not depend on the choice of IZ. 
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(vi) Set g = g^. Show that g satisfies condition (1). 
(vii) Let k e W and /xrfe) = JT{Z)~^ = {cz + d)^^. Determine FQ and show that we can 

take h = e2/7ryz/«̂  ^j^j^ arbitrary v G N. 
The function g constructed in (vi) is called the Poincare series of weight 2k and of 

character v of the group T{n). 
(viii) By studying the behaviour of g at the cusps of H/ T{n), show that g is a modular form 

of weight 2k for T{n) (this is harder). 

5.12 Let n be an integer > 1. 
Using the definition of the Hecke operator Tn (Section 5.7, formula (1)) and the invariance of 

the exterior form d/x (see Section 5.6), show that Tn is self-adjoint for the Petersson Hermitian 
product, which means that if/ and g are in Sik^ then 

{Tnf.g) = {f.Tng). 

Problem I 

Hardy's Theorem 

Preamble: The following properties of the T function will be used without proof; they are not involved 
in the first part of the problem. 

For every complex number 5, let Re{s) denote its real part and ^(5) its imaginary part. For 
Re{s) > 0, set 

+00 

ris)= I e-U'-^dt. --L 
The function F is holomorphic in the half-plane Re{s) > 0. It extends to a meromorphic function on 
C whose poles are the negative integers and zero. These poles are simple, and the residue of F at the 
point 5 = -/?, (/? e N) is (-1)^//?!. 

If 5 is not a pole, we have F(5 + 1) = 5F(^), and F(5) ^ 0. 
Let G\, (72 be real numbers such that G\ < a2, and let m be a positive integer; we have 

lim |f^F(or + /r)| = 0 
|f|—>+oo 

uniformly, for an element a of [G\ , cr2]. 
Finally, if c and x are strictly positive real numbers, we have 

e'"" = -— I x~'ris)ds, 
2/7r jRe(s)=c 

where the line Re{s) = c is oriented by increasing ordinates. (This convention for the orientation 
holds for all the analogous integrals appearing in this problem.) 

If z is a non-zero complex number, let Arg(z) denote the unique determination of the argument 
of z which lies in [—n, 7r[, and set log(z) = log |z| + /Arg(z). Then, for every complex number a, we 
havez^ = ^ î°g(̂ >. 

Throughout this problem, V denotes the set of complex numbers with strictly positive 
imaginary part. 

Let A, be a strictly positive real number; a function/ defined in V is said to be periodic of period 
k if for every z e P , we have/(z + X) =f(z). 
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First Part 
(1) Let/ be a function defined in V, holomorphic and periodic of period X. 

(a) Prove that there exists a function g, defined and holomorphic in the open set 

{z ;zGCandO< \z\ < 1}, 

such that 

(b) Let zo = ^0 + >̂o € V. For n eZ, set 

1 fXQ+X 1 /•XQ+A 

^ Jxo 
(1) 

^^0 

Prove that a„ is independent of zo, and that 

+00 

f(z) = Y, «n̂ """'̂ '. (2) 
n=—oo 

where this series converges uniformly on every compact subset of P . The function/ is said 
to be holomorphic (resp. meromorphic) at infinity if the function g is holomorphic (resp. 
meromorphic) at zero; give the conditions on the a„ for this to hold. In what follows, we 
will say that the a„ are the Fourier coefficients of/. 

(c) Assume that there exist two positive constants c and p such that for every z = x -\- iy eV, 
with y < 1, we have 

{f{x-^iy)\<cy-^-''. (3) 

Prove that 

sup \an\ \nr^~^ < +00. (4) 

(2) (a) Let p > 0. Show that the sequence u defined, for « > 1, by 

Un = n"^ 
(p + l)(p + 2 ) . . . ( p + / i)- . . (p + «) ' 

is bounded. (Use the series of general term log(w„+i/M„).) 
(b) Let (6[n)n>o be a sequence of complex numbers. Assume that there exists a strictly positive 

real number p such that 

sup \an\n~^ < +00, (5) 

AZGN* 

and consider the map/, of P in C, defined by 

+ 00 
/ ( , ) = ^« , . 2 / : rnzA (6) 

n=0 

Show that/ is holomorphic and that (3) is satisfied for a suitable value of the positive 
constant c. 

Show that for every strictly positive real y, we have 

lim t^\f{it)-ao\ = 0 . 
t—>-+oo 
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Second Part 
Let A be a strictly positive real number and (an)n>o a sequence of complex numbers. Assume that 
there exists p > 0 such that (5) is satisfied. Define/ by (6), and for Re(s) > p + 1, set 

(p(s) = J^ann-\ 0(5) = ( — ) r{s)cp{s). 

(1) (a) Show that (p is holomorphic for Re{s) > p -\- I. 
(b) Show, carefully, that 

0(5) = / t'~^(fiit) - ao) dt, for Re{s) > p + 1, 
Jo 

and conversely, that for a > p + 1 and j > 0, we have 

f{iy) -ao = —- / y~'<t>{s)ds. 
^l^ JRe{s)=a 

(c) Show that s^^{s) is bounded on every vertical strip of the half-plane Re{s) > p + 1. 
(2) Let e and k be real numbers such that e e [\,—\] and /: > 0. Assume that ^ has the following 

properties (A) and (B): 
(A) Let 12 be the set of complex numbers not equal to 0 or /:. The function O admits a holomorphic 

continuation to ^ , and this continuation, which we also call O, satisfies (is e Q){^{s) = 
8^(k-s)). 

(B) The function s \-^ <i>{s) -\- ao{\/s -{- (s/(k - s)) extends to an entire function of s, and is 
bounded on every vertical strip. 

(a) Let o; be a real number such that a > p + 1 and a > k. Let U be the subset of C consisting 
of complex numbers s such that 

k-a<Re{s)<a and |/m(5)| > 1. 

Show that 5^0(5) is bounded on the boundary of U, and then that 5^0(5) is bounded in U. 
[Use the preceding result, and consider for every « > 0 the function s H> e^^ s^^{s)\ 

recall also the statement of the Maximum Principle: Let V be a bounded open subset of C. 
Let g be a function which is defined and continuous in the closure of V and holomorphic in 
V. If 9 V denotes the boundary of V, then sup^^y \g{z)\ — sup^^av l^fe)|]-

(b) For every strictly positive real y, set 

I(y)= y~'^(s)ds and J(y) = y~'^(s)ds. 
jRe(s)=k-a J Re{s)=a 

Show that/Cj) = sy-^J{\/y) andy(j) - I{y) = linaoisy-^ - 1). 
(c) Deduce from (b) that/ has the following property: 

(C) /(,) = ,(!)-V(-i). 
(3) With the notation of the preceding paragraph, show that if/ has the property (C), then O has the 

properties (A) and (B). (Use the expression of 0(5) obtained in (Part 2,l,b) and also make use 
of (1) in the integration interval). 



322 INVITATION TO THE MATHEMATICS OF FERMAT-WILES 

(4) For every element zofV, set 

f 
J—a 

(a) Show that, for t strictly positive real and _y real, we have 

) ^ 1 7 

-oo \ t 

(You may use the equality r ( l / 2 ) = ^ without proof). 
(b) For t strictly positive real and x real, set 

l^(x) = ^^-^^^+«) '^ 

The function i/̂  is a periodic function of the real variable x. Give its Fourier series and show 
that this series converges to \l/. Deduce the equality 6{it) = \/^tO{—\/it). 

(c) Under the hypothesis {k = l,k = 1/2, e = 1), and choosing a suitable sequence («n)n>0^ 
show that 0 has the property (C). 

(d) For every complex number s with Re(s) > 1, set 

^(s) = Y,n-\ 
n=l 

Deduce certain properties of the ^ function from the preceding question (show in particular 
that ^ admits a simple pole at 5 = 1, of residue 1). 

Third Part 
Use the following result without proof: when |r| tends to infinity (t real), we have 

l im| r (a + /OI(27r)-^/V^I'l/2>|r|^/2-^ = 1 

uniformly for a belonging to a compact subset of M. 
(1) Let (7\,a2 be real numbers satisfying a\ < 02,U (resp. V) the subset of C defined by the 

inequalities G\ < Re{s) < ai and |S(5)| > 1 (resp. G\ < Re{s) < 02 and ^{s) > 1). 
Let h (resp. £) be a function which is defined and holomorphic in the neighbourhood of U 

(resp. V). Assume that there exist real positive numbers a, P\, ^2 such that 

sup,^^ 1/1(5) k""'"! < +00 

sup|,|>i \t\-^J\h{oj + it)\ < +00 (j = 1, 2). 

/ fsup.̂ V'Î Wk""''' < + ^ 
\ ^ ' |sup,>i t-^J\l{aj + it)\ < +00 ij = 1, 2). 

Let L be the affine function such that L(ay) = ^j, (j = 1,2). 
Prove that there exists a real M such that for every a e [a\, 02], we have 

sup |rr^^^^|/i(cr + it)\ < M (resp. supr^^^^|£(cr + it)\ < M.) 
\t\>l t>\ 

(Reduce this to proving the result concerning V and i, and then, dividing i by the function 
(s/i)^^^\ reduce to the case ŷ i = ^2 = 0.) 
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Now, we return to the notation and hypotheses of the second part. 
The function/ satisfies (C) and is not constant. Let m be a strictly positive integer such that 

am ^ 0. Let Z be an integral of s^^~^^^^m^(p{s), in the quadrant 

Re(s) > 0, Im(5) > 0. 

(2) Let Gi, (72 be real numbers satisfying 0 < ai < ^2, and let V denote the subset of C defined by 
ai < Re{s) < (72 and lm(s) > 1. Show that there exists of > 0 such that Z(s)e~"^^^ is bounded 
onV. 

(3) Let (7 be a real number such that a > p + 1. For every real a, prove that sup^> j t~^ \Z{a + it) \ < 
+00 if and only if a > (A; + l)/2. 

(4) (a) For every real a, prove that there exists a > 0 such that 

sup \t\~^\(p(cr + //)! < +00. 

(Use question 1, taking G2 strictly greater than p + 1, and ai = k — a2.) 

(b) For every real <7 with a > p -\- \ and every element z EV, show that 

f{z)-ao = :^ f (-y'<t>(s)ds. 

(c) Evaluate the following integral, where z is an element of V: 

^̂ TT jRe{s)=k/2 ^ I ^ 

Assume from now on that the Fourier coefficients of/ (Part 1,1,b) are real, that there exists 
P G [0, {k + l)/2[ such that, when u tends to 0 by strictly positive values, u^\f{e^^)\ is 
bounded, and finally, that the function (p has only a finite number of zeros on the line 

{5 G C; Re{s) 

(5) (a) Prove that i^^ ̂ )/2 cj) (5) is real for Re(s) = k/2, and that when u tends to 0 by strictly positive 
values. 

is bounded, 
(b) Deduce that 

is bounded as the real number T tends to +00. 
(c) Prove that sup^>i r^\Z(k/2 + it)\ < +00. 

What conclusion can we draw from these computations? 
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(6) Let the notation be as in the last question of the second part. 
(a) For every element zofV, prove the equality 

1\ /Z\U2 + ^ 

^ n=-oo 

(b) Prove that the f function has an infinity of zeros on the line Re(s) = 1/2 (Hardy's theorem). 



6 
NEW PARADIGMS, NEW ENIGMAS 

The title of this last chapter is a reference to a book by T. Kuhn devoted to the structure of 
scientific revolutions [Kuh]. It is far too early, of course, to tell if the work of Wiles (and 
others) should be considered within the framework of a scientific revolution, but we can 
certainly note some intriguing facts which appear to confirm this hypothesis. 

The anomaly: Taniyama's original conjecture, followed by the construction, in 1969, of 
curves related to a non-trivial solution of Fermat's equation, and the "impossible" properties 
of their /7-torsion - all this appeared to be no more than an amiable joke, since the most 
common opinion twenty-five years ago was that the (second case of) Fermat's last theorem 
was probably false. Indeed, had not the logician Zinoviev "proved", in 1977, that Fermat's 
assertion was unprovable? 

Kuhn declares that "The rise of consciousness of an anomaly opens a period during which 
conceptual categories are readjusted until that which was originally anomalous actually 
become the expected result" [Kuh]. In the case we are considering here, this was the period 
from 1969 to 1985; 1985 was the year in which Frey and Serre made their conjectures 
public (Frey did so orally, while Serre did it in a course taught at the College de France and 
a famous article). 

Then came Wiles' long and sohtary voyage (1986-1994), which ensured the definitive 
success of the paradigm. The scientific landscape changed radically: "a new theory breaks a 
tradition of scientific research, and introduces a new one, constructed according to different 
rules, in the framework of a different discursive universe" continues T. Kuhn [Kuh]. One 
brief look at a book like [Rbb] is more convincing than any commentary. 

In this last chapter of the present book, we first give some necessary preliminaries, and 
then proceed to the description of those amazing "Orlando's mares"^^, the curves EA,B,C 

associated to assumed non-trivial solutions of Fermat's equation. This is the object of 
Section 6.5. In Section 6.6, we explain how the awareness of this anomaly finally occurred 
after fifteen years. As the content of Wiles' theorem and proof lies well beyond the scope 
of this book, we end the chapter (Section 6.8) with a discussion of what, exactly, the "new 
tradition of scientific research" in the domain may represent. 

^̂  In the legend of "Orlando Furioso", Orlando's mare possessed every desirable virtue except that of existence. 

325 
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6.1 A SECOND DEFINIT ION OF THE RING Z^ OF 
p-ADIC INTEGERS 

In Chapter 3, we considered the reduction of an eUiptic curve modulo a prime number. 
However, very often, such reductions do not give the desired results, and one must go 

further, and work modulo a sufficiently large power of p. 

Example 6.1.1 

(1) Assume that p = 3, or 5. Then, if we want to show that the first case of Fermat's 
equation 

jc^ + jc^ + x^ = 0, A:IX2X3 ^ 0 mod p 

is impossible, it is no use to consider the congruence modulo p, since 

jc^ + Jĉ  + jc^ = (jci + JC2 + xi,y mod /?. 

However, considering the congruence modulo p^ gives the result. 
(2) Conversely, one can check that if/? = 7, there exists no h-ih power ofp which gives 

this result working modulo/?'*. 

But how about working modulo "/7^"? Can we do this? what does it mean? and in what 
ring should we work? 

From now on, let/7 denote a fixed prime number. Let us now give a second construction 
of the ring Zp which is given in [Se 1] and uses the motion of projective limit. 

For every integer n > 1, let A„ denote the ring Z/p^Z. As every congruence mod­
ulo /?" implies a congruence modulo p^~^ (when n > 1), we see that we have canonical 
homomorphisms cpn'. 

>An - ^ An-\ >A2 - ^ Ai = Z//7Z, 

and the object we want to construct is the object "at infinity" on the left, i.e. a hypothetical 
ring equipped with hypothetical homomorphisms 

• • • o (pn^2 o (Pn+i = 7r„: X—>An 

such that the following diagram is commutative: 

X—^^^^ An 

An-1-

Thus, we want X in Y\n>i ^«' ^^^ taking into account the above arguments, we take 

n>\ 

where £n denotes the projection of Y\n>i ^« ^^^^ ^^e n-ih coordinates. 
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We easily check that X is a subring of the product ring ]"[«>! ^n- Finally, we also note 
that X is equipped with a natural topology which is the topology induced by that of Y[n>\ ^« 
where A„ is equipped with its discrete topology. 

Because each A„ is finite, A„ is compact, so lychonoff's theorem shows that n„>i ^n 
is compact. 

As X is closed in that product, X is compact. One can show (see [Se 1]) that the set of 
X such that £„(jc) = 0 is an ideal of X equal top^X, and that 

X/p^'X =An = Z//7"Z. 

Since ^i (X) = Z/pZ is a field, we see that the kernel of ^i, i.e. pX, is a maximal ideal of X. 
We show that if jc G X does not belong to this ideal, then x is invertible. It follows that 

X is a local ring whose unique maximal ideal is pX. 
Now, let JC G X. If there exists a greatest integer n > I such that Sn(x) = 0, we let the 

"p-adic valuation of x" be the number 

Vp{x) := n. 

We set Vpix) = 0 when £i(x) ^ 0, and Vp(0) = +oo when all the £„(x) are zero. 

Example 6.1.2 
(1) Let 1„ be the class of unity in A„. Then unity in X is given by the sequence 1 = 

(l i , I2, I3 , . . . ) . Thus, we have Vp(l) = 0. 
(2) It follows that 

P'.^pA = (0,pl2,ph,"-)' 

Thus, Vp(p) = 1. 
(3) Similarly, for every h eN, 

vpip"") = h. 

(4) An invertible element u of Zp can be written 

W = ( M I , W2. W3, . . . ) 

with Ufi ^0 for every n. Thus Vp(u) = 0. 

Let us summarise all these remarks in theorem 6.1.1. 

Theorem 6.1.1 
(1) X is a ring. 
(2) An element ofX is invertible if and only if it is not divisible by p. 
(3) Every non-zero element x ofX can be written in a unique way in the form p^u, with 

n eN and u invertible. Furthermore, we have Vp(x) = n. 
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(4) The p-adic Vp valuation has the following properties: 

Vp{xy) = Vp{x) 4- Vpiy) 

Vp(x-{-y) > Vp(x) + Vp(y) 

Remark 6.1.1 It can also be shown [Se 1] [p. 25] that the topology of X can be defined 
by the/?-adic distance: 

dp(x,y) — n-^/'(-^->') 

and that the ring X is a complete space in which Z is dense. 
SinceX is an integral domain (this follows from Vp(xy) = Vp(x)-\-Vp(y)), we can consider 

its fraction field K. 
Clearly, every non-zero number jc in Â  can be written uniquely in the form 

X = p"u, 

with n e Z and u e X invertible. 
Now, using the notation of Chapter 3, we can speak of the p-adic absolute value on K. 

Notation 6.1.1 

Vp(x) := n, Vp(0) = +oo 

\x\p=p-'^^''^ 

dp{x) = \x-y\p. 

Lemma 6.1.1 The field K equipped with the distance dp is locally compact (so it is 
complete), and the field Q of rational numbers is dense in K. 

Summary 6.1.1 We have defined a field K, complete for a "p-adic" distance dp, in which 
the prime subfield isomorphic to Q is dense. The field K is thus a completion of Q for its 
/?-adic distance dp, and theorem 3.2.2 of Section 3.2 (Chapter 3) shows that the field K 
and Qp are isomorphic via an isomorphism cp which respects the p-adic absolute value. It 
follows in particular that (p induces an isomorphism of local rings of X over Z^ (defined in 
theorem 3.3.3 of Section 3.3, Chapter 3). 

Remark 6.1.2 When we want to do analysis and use the (limited) analogy between Q^ 
and R, it is actually easier to consider that Q^ is obtained from Q by completion for the 
/7-adic distance dp defined over Q as in Chapter 3. 

6.2 THE TATE MODULE Ti{E) 

Assume that E is an elliptic curve defined over a field K, and let K denote an algebraic 
closure of K (think ii: = Q and ^ = Q). 
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Take a prime number I different from the characteristic of ^ (i can be an arbitrary prime 
ifK = Q), and let AZ > 1. We know that 

£[r] = z/£"z e z/rz, 
and that if [I] denotes multiplication by £, we have 

>E[r] -^ £[r-M - ^ — % E[ii 

Thus, we are in a situation which is completely analogous to the one we encountered in 
the first section, and we let Ti(E) denote the object whose presence is felt on the left at 
infinity. 

Here is a definition analogous to that of the first section (whose notation we use). 

Definition 6.2.1 Let I be a prime, and E an elliptic curve. The Tate module ofE at i, 
denoted by Ti(E), is the subgroup ofY[n>i £"[̂ "1 defined by 

TdE) = [xe Y\E[n\ VAZ > 1, [€] o s^ix) = £„-i w j , 
n>\ 

where Sn denotes the projection nm>i ^[^'"l -^ E[i^]. 

The remark above thus implies that if t is different from the characteristic of K, then 

E[e] = —z/z e ^z/z = z/rz e z/rz. 

Multiplication by I on E[i"] induces the canonical projection 

z/rz e z/rz —> z/r-^z e z/r-^z. 
Thus, by passage to the "projective limit", we see that Ti(E) is a free Z^-module of 
rank 2: 

Te(E) = Ze^Zt, 

Moreover, the action of the Galois group G := Gal(A'/A^) commutes with multiplication 
by €, so G acts on the module Ti(E), which is thus a G-module over Z^ (we also call it a 
Z£[G]-module, as in Chapter 3). 

Finally, we note that the definitions of the topologies of G and of Z^ ensure the continuity 
of the action of G on Ti(E), see Section 3.6 (Chapter 3). 

To summarise, we have the following theorem. 

Theorem 6.2.1 Let E be an elliptic curve defined over K. For every prime t different 
from the characteristic ofK, the Tate module Ti (E) is a G-module over Z^ (here G denotes 
G2il(K/K)), and it is a free Z^-module of rank 2. Furthermore, the representation pi \ G -> 
GLz^[Ti(E)] is continuous. 
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Remark 6.2.1 If ^ is a number field, and if E/K does not have complex multiplication, 
a version of Serre's theorem says that pt(G) = GLz^[Ti(E)] for all but a finite number of 
primes I (see [Se 3]). 

6.3 A MARVELLOUS RESULT 

We can use a prime TT G N in two different ways: 

(1) We can consider it as the true substance of the homomorphism [n], and call it £; then 
we construct the Tate module T^iE). 

(2) We can use it to reduce modulo JT ; then we call iip and associate to it the finite field F^. 

These two objects appear quite different: Ti{E) belongs to a category of modules 
defined over a ring of infinite characteristic, while ¥p is in the category of fields of 
characteristic p. 

If moreover we vary the prime n in N, we can expect to come upon a whole jungle of 
modules and fields, behaving in a most anarchic fashion, since we know that primes have 
extremely individualistic natures (for example, the /7-adic topologies of Q are not mutually 
comparable (see Problem 1 of Chapter 3)). 

However, the presence of an elliptic curve E defined over Q makes it possible to put a 
great deal of order in this chaos. 

This results from the fact that the modules Ti (E) are not only modules over Zi, but also, 
as we said in the preceding section, G-modules (with G = Aut Q). 

Now, to each prime/? we associate a Frobenius element (modulo an inertia group which 
is not important here) in G (see [L] p. 17). We write ap for this element, and call it the 
Frobenius at p. 

Then, ifp ^ i and if the reduction Ep ofE modulo/? is a smooth curve (i.e. has "good 
reduction"), then 

i dQi piicTp) = peZ 

trace PKO>) = ap eZ, 

where ap = p + 1 - #(Ep(¥p)), see Section 4.9 (Chapter 4). 
Thus, we see that for fixed/? and for an arbitrary prime number i outside of a finite set, 

the characteristic polynomial of Peicip) is given by 

X^-{p+l-#(Ep(¥p)))X+p. 

This means that it does not depend on £, but only on E and p. 
The different representations pe are thus closely related to each other. 
Moreover, if for fixed I we know the character of the representation pi, then for every 

p outside of a finite set, the cardinal of the group of points of the curve reduced Ep in F^ is 
known. 
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Remark 6.3.1 Hasse's theorem (see Section 4.9 of Chapter 4) shows that 

l«pl<2v^. 

This comes down to saying that the Riemann hypothesis is satisfied by the zeta function 
of the curve Ep (see Section 4.5 of Chapter 4). 

In what follows, we will use the letters I and/? interchangeably for prime numbers. 

6.4 TATE LOXODROMIC FUNCTIONS 

In this section, we will do a little /7-adic analysis, considering Q^ more as the analogue of 
the field of real numbers M than as the fraction field of the local ring Z^. 

In fact, we propose to transpose the loxodromic parametrisation of elliptic curves given 
in Section 2.10 (Chapter 2) into this context. 

Here, q denotes ap-adic number whose valuation \q\p is strictly less than 1, and {q) is 
the subgroup of Q* generated by q. 

For every z e Qp\{q) (i.e. z e Q*, z ^ (^>), the series which defines the function p 
is absolutely convergent. In fact, the elements of {q) are poles of order 2 of the "/7-adic 
meromorphic function" z i-> p(z) defined by 

As in Chapter 2, we can construct a Tate cubic: 

^q • 

with 

y^ -\-xy = x^ -{- a^x + ^6, 

.3^n 

fl4 

1 v^ {In" {Ire + 5n )̂̂ ' 3\^« 
eZ„ 

n>i ' r 

and we can parametrise it by the loxodromic functions 

(1 - ^ M ^ ^ 1 - d/"' 

The following map is an isomorphism of analytic groups: 

\z\—> (x{z),y{z)) 
(P 

Q;/{q) }py 
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The modular invariant of the cubic Eq is given by 

7 = - + 744 + 196884^ + • • • 

Thus, we see that \j\p > \ so that7 ^ Z^. Moreover, the reduction modulo/? of the curve 
Eq is given by 

which in homogeneous coordinates gives 

Z{Y'^ -h XY) - X^ = 0. 

We easily see that the reduced curve admits the double point (0, 0, 1) and that the tangents 
at this point are j = 0 and 3;+jc = 0. The curve Eq thus has semi-stable reduction at/?, with 
rational tangents to the double point. Conversely, we show that every elliptic curve defined 
over Qp whose modular invariant7 is such that \j\p > 1 and which has semi-stable reduction 
at/? with rational tangents at the double point is isomorphic over Q^ to a Tate cubic Eq. 

Remark 6.4.1 The analytic isomorphism ^ extends to "the" algebraic closure Q^ of Q ,̂: 

and furthermore, one can show that it is compatible with the action of the Galois group 

Gal(Q^/Q^) = Aut(Q^/Q^). 

For more details on all this, see [Sil] and [Ro]. 

6.5 CURVES EA,B,C 

Although the role of elliptic functions in the theory of Fermat's equation (relation ^fo+^01 — 
0^) can be traced back to Jacobi, it was only from the end of the 1960s that this role took 
on a geometric aspect, via the construction of the curves EA,B,C' 

The motivations behind this construction (Hellegouarch in 1969, taken up again by 
Kubert-Lang and Frey) are indicated in the Appendix at the end of this volume. 

Let us proceed pragmatically: to every primitive point (a,b,c) of the Fermat curve 

xP-\-f + zP = 0, 

we want to associate a cubic EA,B,C which is smooth (i.e. an elliptic curve) if and only if 
the point (a, b, c) is not a trivial solution of Fermat's equation (i.e. abc ^ 0). This simple 
condition led me to search for curves EA,B,C of the form 

y^ = (x-a)(x-P)(x-y), 
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with the following conditions (since of, 6̂, y can only be defined up to translation): 

P-y =aP, y -a = lf, oc - ^ = c^, 

in such a way that the discriminant of the right-hand side of the equation is (a, b, c)^^, 
which is 7̂  0. 

Naturally, this system of equations has an infinity of solutions, but if we take y = 0, 
we have 

EA,B,C' y^=x{x-aP)(x + bP). 

Definition 6.5.1 
(1) Let A,B,C be three relatively prime nor 

A + B + C = Oisan ABC relation. 
(2) Given an ABC relation, we set 

EA,B,C • y = 

i-zero integers. We 

x(x-A)(x + B). 

say that the equation 

Remark 6.5.1 
(1) Saying that A5C 7̂^ 0 is equivalent to saying that the cubic EA,B,C is smooth. 
(2) If we take a circular permutation of (A, B, C), the new curve EB,CA is isomorphic to 

EA,B,C over Q. 
(3) If we take an odd permutation of (A, B, C), then in general, the new curve (for instance 

EB,A,C) is only isomorphic to EA,B,C over a field containing \ / ^ . 
(4) The relation A + ^ + C = Ois equivalent to —A — B — C = 0, and the curves E^A,-B,-C 

and EA,C,B are isomorphic over Q. 
(5) If A = B, then EA,B,C = EB^A,C and the isomorphism noted in (3) is exactly a complex 

multiplication by \ / ^ . 
(6) Note that although Fermat's equation has no non-trivial solutions, there are still a great 

many ABC relations, which makes it possible to test the theory. 
(7) The curve EA,B,C is also known as a "Hellegouarch-Frey" or "Frey-Hellegouarch" 

curve associated to A + 5 + C = 0. 

6.5.1 Reduction of Certain Curves EA,B,C 

We restrict ourselves here to studying the curves EA,B,C for which (A, B, C) is a triple of 
relatively prime integers such that 

A = 3 mod 4 ^ = 0 mod 32. 

Let us begin by studying the reduction modulo a prime number I. 

Proposition 6.5.1 Let i be a prime. 

(1) Ifi does not divide ABC, the curve EA,B,C has good reduction modulo I (it remains 
smooth). 
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(2) Ift^l divides ABC, the reduction ofEA,B,c modulo I is a curve of genus zero and 
multiplicative type. 

(3) If I = 2, and if 2 divides ABC the reduction modulo iofa minimal model ofEA,B,c 
is a curve of genus zero and multiplicative type. 

Proof (1) If I does not divide ABC, the curve reduced modulo I is obviously smooth. 
(2) If an odd prime i divides A, for example, the equation of the reduced curve is 

y2 =x^(X-\-B), 

and as B ^ 0, we see that the tangents at the double point are distinct (in F^); thus the 
reduction is of multiplicative type. 

(3) For the case ^ = 2, we make the variable change 

jc = 4^, y = Sr]-\-4^, 

and the equation of EA,B,C becomes 

r ; 2 ^ § ^ = ^ 3 ^ C § ' + J $ (1) 

with 

B-l-A , -AB 
c = and d = ——-. 

4 16 

It follows that (1) has reduction modulo 2 given by 

r + §̂  = 
| § ^ ifA = 7mod8 

^ 3 + ^ ^ ifA = 3mod8, 

and we see that it has a double point at (0, 0) with tangents given by 

i r{{y]\%) = 0 , if A = 7 mod 8 

r;2 + ^ § + ^ 2 ^ 0 , ifA = 3mod8. ^ 
Vocabulary 
We saw in Chapter 4 that an elliptic curve such as EA,B,C^ which admits either good reduction 
or bad reduction of multiplicative type at each prime £, is called a semi-stable elliptic curve; 
we define the conductor of a semi-stable curve to be the product of the primes where it has 
bad reduction. 

Let ABC be a relation. 

Corollary 6.5.1 When A = 3 mod 4 and B = 0 mod 32, the conductor N of the semi-
stable curve 

EA,B,C ' y^ = x(x - A)(x + B) 

is the radical of ABC, i.e. the product of the primes dividing ABC. Thus, we have 

N = rad(ABC). 
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Remark 6.5.2 
(1) The adjective "semi-stable" comes from the fact that a semi-stable elliptic curve over 

Q remains semi-stable over a finite extension of Q. 
(2) Although equation (1) is not the most natural equation for EA,B,C, it has the advantage 

of being a globally minimal equation (up to Q-isomorphism) for this curve over 
Spec(Z), in the sense of Chapter 4, Section 4.14. 

(3) If ABC = 0 (mod 32), then one and only one of the curves E/[B,C is semi-stable at 2. To 
find it, we note that it is the curve whose equation is congruent toy^ = x^(x-\-l) mod 4. 

6.5.2 Property of the Field Kp Associated to EaP,bp,cp 

Another, more technical, motivation for the construction of the curves EaP,bp,cP related to 
a hypothetical solution of degree p Fermat's equation was the intuition that the group 
EaP,bp,cp{p] of/7-division points of the curve EaP,bp,cP should possess remarkable properties 
and - why not? - maybe properties in contradiction with what was known about elliptic 
curves. 

Let Kp be the field generated by the coordinates of all the p-division points of EaP,bP,cp-
We already saw in Chapter 4 that the field Kp is a Galois extension of Q; we show that it 
always contains a primitive p^-th root of unity ^p (see Section 4.6.3 of Chapter 4). We will 
now see that it is not "ramified" over Qi(^p) when I is an odd prime dividing abc. 

Theorem 6.5.1 (Hellegouarch 1969) Let t be a prime dividing abc. Then the field Kp 
associated to the curve EaP,bp,cP can be considered as a subfield ofQii^p, 2^/^). 

Proof. 

(1) A computation shows that they-invariant of a curve EaP,bp,cP satisfies the equation 

2-\abcf^j = (a^P - bPcPf = (b^^ - c^a^f = (C^P - a^bPf. 

Thus, we see that up to a power of 2 J is the 2/7-th power of an element of Q^ of €-adic 
absolute value >1. 

(2) By what we saw in Section 6.5, the curve EaP,bp,cP is equivalent to the curve Eg over 
the field Q^ or over an unramified quadratic extension of this field. 

(3) The field Qdl^^P, f̂ ) contains the field Kp. Indeed, if we let L denote this field, the 
group Eg(L) is isomorphic to L*/{q). Sincej is a/?-th power in L, then the same holds 
for q, and there exists q' in L such that q = {q'Y. Thus, we see that L""/{q) contains 
the group {q', ̂ p)/{q) which is isomorphic to Z/pZxZ//?Z. Thus£^(L) coniSiinEq[p]. 

D 

6.5.3 Summary of the Properties of EaP,bp,cp 

In the above, we associated to a rational point (a, b, c) of the Fermat curve given by 

Fp: x ^ + / + ^̂  = 0, / 7 > 5 , 
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the cubic EaP^bp,cP i-c. a certain algebraic function field of genus < 1, defined over Q, 
satisfying the following properties. 

(1) If the point {a, b, c) is non-trivial (i.e. abc / 0), the cubic is smooth (function field 
of genus 1). 

(2) If the point is non-trivial, the corresponding elliptic curve is semi-stable. 
(3) If the point is non-trivial, the Galois representation of Aut(Q) in the Tate module aip 

of EaP,bp,cp has very little ramification (it is unramified outside of 2p, and has little 
ramification at/?; essentially it is ramified only at 2). Indeed, if € does not divide 2p and 
if I divides abc, we saw in the theorem that Kp is unramified over Q^. If £ does not 
divide abc, this follows from the Neron-Ogg-Shafarevitch criterion ([Sil] p. 179). 

Examples of curves EA,B,C 

Since Wiles' theorem shows that Fermat's equation of degree p > 2 has no non-trivial 
solutions, we use equations which do have non-trivial solutions: 

(1) X^^Y^ -W^ = 0 
(2) XP -\-YP -\- 2ZP = 0, /? a prime > 2, which always has the solution (1 ,1 , -1 ) . 

Note that this last equation is that of the curve {Gp) of the preamble. 

First example 
We want a triple ±(a^, b^, —c^) such that b^ = 1 mod 8 and c^ = 0 mod 32. If we start 
from the relation 4^ -|- 3^ = 5^, which we write 4^ = (5 + 36)(5 - Ss) = Norm(5 + 3^) 
with e^ = 1, we are led to compute 

(5+ 36:)̂  = 2(17+156:), 

and we find that 15^ — 17^ + 8̂  = 0. Thus, the curve £"152,-172 32 is a smooth semi-stable 
cubic. 

Second example 
The curve EA,B,C associated to the obvious solution (X, 7, Z) = (1, 1, 1) can be written 

Y^ =X(X^ - 1). 

It is an elHptic curve with complex multiplication whose reduction modulo 2 is not mul­
tiplicative. A theorem of Weil and Shimura asserts that every elliptic curve with complex 
multiplication is a Weil curve. Thus, this curve is a Weil curve of conductor 32 (see [Og 2] 
for the computation of the conductor). 

6.6 THE SERRE CONJECTURES 

We saw in Chapter 5 that the coefficients of the expansion of a Hecke form/ in powers of q 
(except for ao) are algebraic integers belonging to a finite extension Kf of Q contained in C. 
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Let Z denote the ring of algebraic integers contained in C, i.e. the ring of elements z 
of C which are roots of a monic polynomial with coefficients in Z. Clearly, Z is contained 
in the algebraic closure Q of Q in C. Below, we use both Aut(Q) and Gq to denote the 
Galois group of the extension Q C Q (see Chapter 3). 

Let /? G N be a prime and let | \p be the /7-adic absolute value of Q attached iop. In 
Section 4.10 (Chapter 4), we defined the ring Z(p) '.= [x eQ\\x\p <\}, and we know that 
there exists a canonical homomorphism of reduction modulo p\ 

J '^{p) —^ ^P 

This homomorphism extends to di place of Q, i.e. a map 

(̂  : Q —> F^ U {cx)} 

defined by 

i (p{x) =xe¥p if jc G Z(p) 

ip{x) = OQ if JC G Q \ Z ( ^ ) . 

An application of Zom's lemma (see Problem 4 of Chapter 3) shows that we can extend 
every place (̂  of Q to a place (̂  : Q ^^ F^ U {CXD}. Note, however, that this extension is not 
unique, although this is not very important in what follows. 

This place induces a homomorphism Z -> F^ whose kernel p is a maximal ideal of Z; 
it is defined by 

p := {z G Z; (p{z) = 0 G F^}. 

We say that the place ip lies above ip, and that p lies above the ideal (p) generated by/? in Z. 
Thus, we see that to every Hecke cusp form 

we can associate a "form reduced modulop" (in fact p!): 

oo 

f = J2^„q"eFp[[q]]. 
n>\ 

Remark 6.6.1 Since the coefficients a^ off belong to a finite extension Kf of Q (see 
theorem 5.7.3 of Section 5.7, Chapter 5), we see that there exists an exponent h such that 

fe¥p>,[[q]l 
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Definition 6.6.1 Take a natural integer N > 1, a homomorphism e : (Z/ATZ)^ -^ C* 
and a cusp form f of weight kfor the level N :f e SkiN). We say thatf is a new form 
oftype(N,k,6)if 

(i) the series f = J2n>i ^n(f ^Ith q = e^^^^ converges inH = {r E C; Sr > 0} and 
satisfies the modular relation 

f(^^)=e(d)(cr+dff(z). (1) 
\CT -i-d/ 

(ii) / vanishes at the cusps, i.e. for every (^ ^) E SLi^L), the function 

ax + b^ . /ax + ^ \ 
r^icx+dr'fl^—) 

\cx +d/ ex -\-d> 

has a series expansion of type (1) with q replaced byq^^^ and in which the constant 
term is zero. 

(iii) / is a normalised eigenvector of all the Heche operators attached to the level N 
(in particular a\ = 1). 

(iv) / is "new", i.e. it does not come from a Hecke form of weight k whose level N' 
strictly divides N. 

Given this, we have the following result (due to Deligne), which we do not prove here. 

Tlieorem 6.6.1 Letf — X!n>i ^n^t ^^ ^ new form of type (N, k, e), and let K be the 
subfield ofC generated by the an and the image ofe. 

Then K is a finite extension ofQ, and the an are contained in OK := K HZ. 
For every prime number p e N, there exists a continuous representation Pp : Gq -^ 

GL2{OK/POK), unramified at every I prime to N and such that, for every I as above, 
we have 

WrppiFrobd = at e OK/POK 

[delpp(Frobt) = 8(l)i'-' e OK/POK. 

To give a rigorous meaning to this statement, we need to define what we mean by a 
"Galois representation unramified at €\ 

Let us admit that a Galois representation 

p : GQ —> GL(V) 

has an Artin conductor Np defined by the usual formula (see [Se 5]) even when V is defined 
over afield of characteristic p. 

The representation p is not ramified at l if and only if I does not divide Â^ (i.e. if p is 
trivial on the inertia group of €). 
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In the 1970s, J-P. Serre asked the following two fundamental questions: 

(1) Under what hypotheses does an irreducible continuous representation p : GQ -> 
GL2(¥p) come from a modular form, via the preceding theorem? 

(2) In the affirmative, how can we find the minimal type {N,k,s) of this form? 

In 1973,Serreconjecturedthattheonlyconditionforthequestion(l)isthatp(c) = —1, 
where c denotes the trace of complex conjugation on Q. In 1987, he pubHshed (see [Se 4]) 
the recipes which produce the conjectured minimal type of the form starting from the 
properties of the representation. 

Example 6.6.1 Suppose we are given an abc relation for which a curve EA,B,C is semi-
simple. Then for every odd prime p, we obtain a continuous Galois representation (see 
Chapter 4, Section 4.7): 

p : GQ —> Ea,b,c[p]^ 

and we deduce from Mazur's theorem (theorem 4.10.3, Section 4.10, Chapter 4) that it is 
irreducible ifp is sufficiently large. The Artin conductor Â^ of this representation is 

n(/•£)#0 mod p Vf (A5C/2^)#0 mod p 

it is the minimal level of the modular form/ predicted by the Serre conjectures. D 

At this time, the first Serre conjecture has been proven in the case where the image of p 
is a solvable group: this follows from works of Hecke, Langlands and Tunnell. But except 
for a finite number of special cases, it has not been proven in general. 

However, the second conjecture is practically proven in the case where p is different 
from 2 or 3. It follows from the combined work of a large number of mathematicians, among 
whom we must mention B. Mazur and K. Ribet. 

The "philosophy" which makes these conjectures so precious is based on the fact that 
the representation pp associated to a new form/ of level Â  can be much simpler than what 
one might expect; in particular, its Artin conductor Â^ can be much smaller than Â . 

The form / is then congruent modulo p to a. form whose level is a very small divisor 
of Â , which leads to astonishing consequences. This is what we now consider for Fermat's 
equation Fp (and also for its false twin Gp\). 

6.7 MAZUR-RIBET'S THEOREM 

The strategy used by Wiles in his proof of Fermat's last theorem is based on a brilliant 
intuition of G. Frey according to which the curves EaP,bp,cP»associated to non-trivial primitive 
solutions of Fermat's equation cannot be Weil curves (at least for sufficiently large/?). 

This essential point was proven by Mazur and Ribet (see [Oe]), who in fact proved the 
much more general result conjectured by J.-R Serre in 1985 [Se 4], in which the fundamental 
object is more the representation pp than the curve EaP,bp,cp-
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6.7.1 Mazur-Ribet's Theorem 

Contrarily to "Fermat's last theorem", this result has no simple statement: it states a property 
of "irreducible, modular, finite representations of level A "̂. 

As we want to apply this to representations attached to certain curves EA,B,C^ we restrict 
ourselves to giving an idea of the meaning of these hypotheses in that particular context. 

Thus, let us take a suitable curve E = EA,B,C^ which is assumed to be a Weil curve. Recall 
that this means that if AT denotes the conductor of £, there exists a new form/ G S2{TQ{N)) 

which we can write 

/(Z) = ^ a „ ^ " , ai = l, q = e^'''\ 

which is an eigenfunction of the Hecke operators, and when I does not divide A'̂ , satisfies 
the relation 

#£(F,) = £ + 1 - fl^ 

Let/7 be a fixed prime (greater than or equal to 5). As in Chapter 4, we are interested in the 
representation 

p: GQ:=Aut(Q)—>GL2(F^) 

associated to the GQ-module E\p\. 
We show that if € is a prime number not dividing pN, and if ot G GQ is a "Frobenius 

element" at £, we have 

I trace pCa^) = at mod p 

detp(a^) = I mod/?. 

We then say that the representation p is "modular", because it is attached to the modular 
form/ modulo/7. 

Mazur's theorem (theorem 4.10.3, Section 4.10, Chapter 4) allows us to see that this 
representation is irreducible. 

We now assume that {a, b, c) denotes a "primitive" solution (i.e. a, b, c are relatively 
prime) of Fermat's equation 

xP+f + z' = 0, 

and we take 

{A,B,C} = {aP,bP,cP}, 

arranging for £A,5,C to be semi-stable. 
Then, we saw (Section 6.5.1) that the conductor N of EA,B,C is md(abc). If now the 

odd prime I divides Â , then the proof of theorem 6.5.1 shows that the exponent of £ in the 
minimal discriminant of EA,B,C is always divisible by p; we will say that the representation 
p is finite at every prime number ^ 2. 
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Remark 6.7.1 Other important properties of p follow from the definitions: 

(1) The representation p is continuous, i.e. it factorises through the homomorphism 

AutQ —> AvXKp. 

(2) The determinant of p is a continuous representation of dimension 1: 

A u t ( Q ) ^ F ; , 

which is such that complex conjugation gives —1 (mod/?). We say that the represen­
tation is odd. 

Mazur-Ribet's Theorem 6.7.1 Let p : GQ -^ GL2{F) be a representation ofGq, irre­
ducible over F and modular of\e\e\ N in the linear group of a 2-dimensional vector space 
over a field F of characteristic p > 3. 

If p is finite atp and o/weight 2, then p satisfies Serre 's second conjecture, i.e. we can 
take N to be the Artin conductor of the representation. 

Corollary 6.7.1 Wiles' theorem implies Fermat's ''last theorem''. 

Proof There is no question of giving the proof of the Mazur-Ribet theorem here; it is 
extremely difficult [Ri 1], but we can easily prove the corollary. 

Let (a, Z?, c) be a non-trivial primitive solution of Fermat's equation of exponent/? > 5. 
Since the curve EaP,bp,cP is semi-stable, Wiles' theorem shows that it is a Weil curve. 
Since the representation pp : Gq -> EaP,bp,cplp] satisfies the hypotheses of the Mazur-

Ribet theorem, we can take Â  to be the Artin conductor of Pp. 
The theorem of Section 6.5.2 comes down to saying that this conductor is equal to 2; thus 

we return to a modular representation of level 2. Serre's second conjecture (now proven in 
the theorem) shows that the minimal type of the modular form that this representation comes 
from is (2,2, trivial), which implies the existence of a non-zero modular form/ e 5*2 (FQ (2)). 
But we saw (Section 5.9, Chapter 5) that 52(Fo(2)) = {0}, so we obtain a contradiction. D 

Remark 6.7.2 The identical method cannot be applied to the equation 

aP + bP-\-2cP = 0, (p>5), (Gp) 

because the curve EaP,bp,cP is not semi-stable. However, we will see below what Ribet, 
Darmon and Merel made of the method in this case. 

6.7.2 Other Applications 

One can prove the following result [Se 4, p. 202-205] by an analogous procedure. 
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Theorem 6.7.2 (Serre) Letp be a prime > 11. Let Lbea prime 7̂  p belonging to the set 

S = {3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59}, 

and let a be an integer >0. Then the equation 

aP + bP + VcP = 0 

has no solutions with a,b,c e Z, abc ^ 0. 

Proof. We easily reduce to the case where a,b,c are relatively prime. As above, we 
consider the suitable semi-stable curve EaP,b'\L"cP^ and we show that the representation pp is 
associated to a modular form/ e 5'2(ro(2L)) which is an eigenvalue of the Hecke operators 
Tp for p]2L. 

(1) Assume that L e {3, 5}. We saw that 5'2(ro(2L)) = {0}, so we have a contradiction 
as above. 

(2) If L G {7, 11, 13, 17, 19, 23, 29, 53, 59}, the situation is more difficult: we refer to 
[Se 4, p. 202-205] for details. D 

Remark 6.7.3 A limit to the possible improvements on these results is reached for € = 5 
and P = 31, since we have 

1 + 3 1 + (-2)^ = 0 . 

The equation jfi -\-yP +22P =0 
Naturally, a host of Diophantine equations remains to be studied, but the simplest case 
appears to be our countersubject, i.e. the following conjecture stated by Denes in 
1952 [Den]. 

Denes' Conjecture 6.7.1 Let p be an odd prime. If the three natural non-zero integers 
xP, yP and TF lie in an arithmetic progression, then x — y = z. 

The reader can easily check that this conjecture is equivalent to our countersubject (a 
countersubject which arises as naturally as Fermat's equation, in the study of the/7^-division 
points of elliptic curves, see the Appendix). In [Den, Satz 9] Denes proves the following 
result (which proves his conjecture for/? < 31). 

Theorem 6.7.3 (Denes) Let p be a regular odd prime such that the order of 2 in F* is 
either even or equal to (p — l)/2. Ifl^'^ ^ 1 mod p^, then the conjecture holds for p. 

Remark 6.7.4 The congruence 2^~^ = 1 mod p^ is very exceptional, but we know that it 
happens for/7 = 1093 and/? = 3511 (Wieferich numbers). However, we do not know if 
it can happen for an infinity of values of p. 

Very recently (see [Ri 2]), K. Ribet showed the following result. 
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Theorem 6.7.4 (Ribet) There exists no solution ofx^ -\-yP-\-2z^ = 0 in non-zero relatively 
prime integers when 2 divides the product xyz. 

To prove this theorem, Ribet notes, following K. Rubin and A. Silverberg, that Wiles' 
theorem extends to all the curves £'«,̂ ,c (not only the semi-simple ones), and then applies the 
method of Section 6.7 (noting that the Artin conductor Â  of pp strictly divides 32, and that 
g = dim 5'2(ro(A'̂ )) is zero when Â  divides 16). 

But what happens when xyz is odd? Using techniques due to Darmon, Ribet was able 
to prove the following result. 

Theorem 6.7.5 (Ribet) If the prime number p is congruent to 1 modulo 4, then Denes' 
conjecture holds. 

It remained to prove this conjecture for/? = 3 modulo 4, and this has just been accom­
plished by Darmon and Merel ([D-M])! 

Theorem 6.7.6 (Darmon-Merel) Denes' conjecture holds. 

Darmon and Merel's proof (for/? > 3) uses new arguments which establish the surjec-
tivity of the Galois representation pp associated to the curve EaP,bp,2cP when the non-trivial 
solution (a, b,c) is different from (1 ,1 , -1 ) . 

Remark 6.7.5 In fact, Darmon and Merel showed that this property is valid for every 
curve EA,B,C î ot equivalent to £ij,_2, when/? > 3. 

6.8 SZPIRO'S CONJECTURE A N D THE abc CONJECTURE 

We conclude this discussion by presentating two conjectures which will perhaps replace 
Fermat's last theorem for our mathematical grandchildren. 

6.8.1 Szpiro's Conjecture 

In a talk given in Hanover in 1983, Szpiro stated the following conjecture: 

Weak Conjecture 6.8.1 There exists a > 0 and fi > 0 such that for every semi-stable 
elliptic curve E over Q, we have 

where A^ is the minimal discriminant ofE and NE is its conductor 

The most optimistic form of Szpiro's conjecture (see Exercise 6.20) is given in the 
following statement. 

Strong Conjecture 6.8.2 For every e > 0, there exists a constant C(£) > 0 such that for 
every semi-stable elliptic curve E over Q, we have 

|A£|<C(£)•A^^+^ 
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Arithmetic consequence 6.8.1 For every £ > 0, there exists a constant Ci{e) > 0 such 
that for every triple (a,b, c) of relatively prime integers with sum equal to zero such that 
a = —I mod 4 andb = 0 mod 32, we have 

\abc\ < Ci{£)x2id{abcf'^'. 

Proof We saw in Section 6.5 that the discriminant A of the curve Ea^b,c is 

( abc 

l6 1 
and that Ea,b,c has a semi-stable minimal model E. We saw also that the conductor of E is 
V2id{abc). We deduce immediately from the strong version of Szpiro's conjecture that 

( ^ ) <C{2£)vdid{abcf"''^\ 
V 16 / 

hence 

\abc\ < I6y/C(2s)vad(abc)^^'. 

This gives the result with Ci (s) = 16^/C(2£). D 

Generalised Szpiro's conjecture 6.8.3 For every e > 0, there exists a constant C\ {e) 
such that for every triple (a,b,c) of relatively prime integers with sum equal to zero, 
we have 

\abc\ < Ci(£)md(abcf^'. 

6.8.2 abc Conjecture 

The abc conjecture was bom during a discussion between J. Oesterle and D.W. Masser 
in 1985. 

abc Conjecture 6.8.4 For every £ > 0, there exists a constant C2(£) such that for every 
triple (a, b, c) of relatively prime integers with sum equal to zero, we have 

sup(|«|, \b\, \c\) < C2(£)md(abcy^'. 

We saw in Exercise 1.13 (Chapter 1) that the analogue of this conjecture in C[t] holds 
("Mason's theorem"). 

6.8.3 Consequences 

These conjectures have such numerous consequences that it is impossible to list them all 
here. But before mentioning some of them, we recall the famous theorem of ^-units. 
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This result, which is due to C.L. Siegel, is valid in the larger framework of algebraic 
number fields, but we restrict ourselves to expressing it for the field of rational numbers 
(for a proof, see [Sil] p. 253). 

Given a finite set S consisting of the number — 1 and prime numbers /7i , . . . , /?„, let (5) 
denote the multiplicative subgroup of Q* generated by S, i.e. the set of rationals equal to 
±p\^ .. .Pn" for arbitrary exponents v i , . . . , y„ in Z. 

Theorem 6.8.1 (Siegel) Let a and be Q*. 

Then the equation 

ax -\- by = 1 

has only a finite number of solutions (jc, y) e {S) x (S). 

Example 6.8.1 

(1) There exists only a finite number of exponents /x, y in Z such that 2^ ib 3*" = 1. 
(2) The same property is valid for the equation 

where the set 5 = {—1,/?!,... ,pm, ^ i , . . . , ^„} is fixed and where the unknowns 

lXU...,IXm, V l , . . . , V„ 

lie in Z. 

(a) Bounds for Szpiro's quotient and the abc quotient 
By the strong Szpiro conjecture, for every £ > 0, 

\og\abc\ Cx{8) 
^ :; 77-r-T + 3 + £. log rad {abc) log rad {abc) 

By Siegel's theorem of ^-units, the radical of abc cannot remain bounded when the abc 
relations vary, hence 

—- log \abc\ 
lim < 3 + £. 

lograd(aZ?c) 

Taking £ = 1, we see that there is only a finite number of abc relations for which the Szpiro 
quotient is greater than 4. 

Conjecture (consequence of the generalised Szpiro conjecture) 6.8.5 There exists an 
absolute constant K[ such that for every abc relation, we have 

log \^bc\ ^ ^ , 
\ogmd{abc) ~ '̂ 

and the maximum is reached for a particular (and remarkable!) abc relation. 
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The present record (1994) for this proportion is held by A. Nitaj of the University of 
Caen, France. He obtained the value of 4.41901 . . . for the relation 

13- 19^4-2^°-5 = 3^^- 11^-31. 

By the same reasoning, we can also state the following conjecture. 

Conjecture (consequence ofabc) 6.8.6 There exists an absolute constant K2 such that 
for every abc relation, we have 

logsup(|fl|, 1̂ 1, |c|) 
— ^ 2 ' 

lograd(^Z7c) 

and the maximum is reached for a particular (and remarkable!) relation. 
The present record for this proportion is held by E. Reyssat of the University of Caen. 

E. Reyssat obtained the value 1.62991... for the relation 

2 + 3^^- 109 = 23^ 

(b) Generalisation of Fermat's equation 
Suppose we are given three non-zero pairwise relatively prime integers a, fi, y, such that 
we cannot have a -\- ^e -\-yr] = 0 with £,r] e [I, —I}. We consider the equation 

ax" + )6 / + yz' = 0, (1) 

where n denotes an unknown integer > 4. 

Conjecture (follows from Szpiro) 6.8.7 

(1) When n is sufficiently large, every primitive solution {a, b, c) of the equation (1) is 
such that abc = 0. 

(2) There exists only a finite number of quadruples (n, a, b, c) where a, b, c are relatively 
prime integers and n > 5 which satisfy equation (1). 

Proof (1) Assume that n is greater than all the exponents of the prime factors of a^y. 
Then every solution (a, ^, c) of (1) is proportional to a primitive solution (where a, b and c 
are relatively prime). 

(2) If we apply the consequence of Szpiro's conjecture to 

(A,5,C) = (afl^^Z?^}/c"), 

we have 
loglof^yl -\-n\og\abc\ 

< A i . 
log md{aPy abc) 

Because \abc\ > 1, we see that log \abc\ > log 2, so n must be bounded. 
(3) If w is bounded, then Fallings' theorem applied to each n>4 shows that we obtain 

only a finite number of solutions. • 
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(c) The Fermat-Catalan Conjecture 
It follows from the abc conjecture (see Exercises 6.10-6.12) that for fixed positive integers 
w, V, w, there are only a finite number of triples (abc) of the form ux^ + vy^ = wz^ with 
l / r + l / 5 + l A < 1. 

Example 6.8.2 Ifw = v = w = l , w e know ten triples, namely 

1+2^ = 32, 25+72 = 3^ 132 + 73 = 2^ 17^+2^ = 712, 3^ + 114 = 122^ 
17^+76271^ = 21063928^ 1414^2213459^ = 65^ 9262^ + 15312283^ = 113'̂  
43^ + 96222^ = 30042907^ 33^ + 1549034^ = 15613^ 

(d) Extension to surfaces 
Completing equation (1) by a symmetric equation, we obtain the system (Problem 4 of 
Chapter 1, see also [Hel 1] p. 35-36): 

ax« + )g/ + Kz'̂  = 0 

a^'x + ^""y + /"z = 0. 

Conjecture (follows from Szpiro) 6.8.8 When n > 5, the system (2) admits only a finite 
number of solutions, which are non-trivial integers in 1J such that 

(ax,Py,yz) = 1. 

Proof. By Szpiro's conjecture, for every ^ > 0, we have 

\\aPy{xyzr\ < C{8)\aPyxyz\^^' 

[\(aPyrxyz\ < C{s)\aPyxyz\^^'. 

Multiplying these inequalities, we obtain 

lafiyxyzr^-^' < Cisf. Q 

COMMENTARY 

We explained above how Frey's idea (1985), the pubhcation of Serre's conjectures (1986-
87), the Mazur-Ribet theorem (1987), and finally Wiles' exploits (1994) lifted the psy­
chological barrier which had kept the elliptic approach to Fermat's last theorem in a state 
of hibernation for fifteen years. 

As an effect of this liberation, we are currently witnessing an intense flowering of 
new results and of open questions (enigmas) which makes it hopeless to even attempt to 
give a coherent synthesis of the current situation. 

The first specialised books devoted to this question are beginning to appear, in par­
ticular the acts of the Boston Summer Conference of August 1985 [CSS], and the book 
by Van der Poorten [VDP]. 
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To limit ourselves to currently available literature, we indicate that the notion of a 
projective limit (Sections 6.1 and Section 6.2) can be studied in [Se 1] and [Sil]. 

An excellent description of the difficult kernel of the subject is given in various 
articles of the Bourbaki Seminar [Oe] and [Se 4]. The articles of Ribet [Ri 1] and Wiles 
([Wi] and [W-T]) should not be neglected but they are by no means easy reading. 

For the Serre conjectures, read [Se 4]. 
Finally, the new results cited in the text are given excellent treatments in the articles 

by Darmon and Granville [D-G], and in the articles by Ribet [Ri 2] and Darmon-Merel 
[D-M]. 

Exercises and Problems for Chapter 6 

6.1 Let A be a ring equipped with an ultrametric absolute value | |, and let R = Mn(A) be the ring 
ofnxn matrices with coefficients in A. 
IfM = (rriij) eR, set 

||M|| = sup{|m/,-|}. 

Show the following relations: 

(i) ||M|| = ^ ^ M = 0, 
(ii) ||M + A^||<sup{||M||,||7V||}, 

(iii) ||M7V||<||M||||A^||. 

Give an example showing that the inequality of (iii) can be strict. 

6.2 We use the notation of Exercise 6.1, with A = Zp for an odd prime p. 

(a) Show that ifMeRis such that 

| | M - / | | < 1 , 

then M e R* (i.e. M is invertible). 
(b) Let G be the set of matrices M such that ||M — / | | < 1. Show that G is a multiplicative 

group. 
(c) Let ^ be a prime number different from /?, and let M G G be such that M ^ I. Show that 

(d) Show that if M 6 G is such that M ^ /, then MP 7̂  /. 
(e) Deduce that the only element of finite order in G is the element /. 

6.3 We use the notation of Exercise 6.2, and let n denote the canonical homomorphism Zp -^ ¥p 
extended to a homomorphism R -> M„(F^). 

(a) Show that KGITT = G. 

(b) Using Exercise 6.2, show that if / / is a subfinite group of GL(Zp), then 

KerTTfi// = {/}. 

(c) Deduce that the order of// divides #GL(Fp) = (p" - DCp'' - /?) • • • (p" - p""^). 
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6.4 Prove lemmas 4.10.1, 4.10.2 and 4.10.3 of Chapter 4 with Z(p) replaced by %p. 
Show that the analogue of Ep is a torsion-free group. 
Show that the analogue oiEp is of finite index in £ (̂Qp) (Lutz' theorem, see [Lut]). 
When the curve E reduced modulo p is of genus one, show that the order of the torsion group 

of £ (̂Qp) divides the cardinal of £(Fp). 

6.5 Let c be a positive integer. We propose to show that the equation x^ —y^ — c has only a finite 
number of solutions (x, y, ri) in N-̂ . 

(i) Assuming that>^ > 1, show that «Logjc/y < y""/"^. 
(ii) Alan Baker's theory of linear forms of logarithms implies the existence of a constant y > 0 

such that 

X 

Log Log- > - y Logw Log>. 
y 

Deduce from this an upper bound for n. 
(iii) Conclude. 

6.6 We use the notation of Exercise 6.5 with ^i = (2,3). Let E\ be the set of solutions of x — >' = 1 
in S\. We propose to show that 

£i = {(2,1), (3, 2), (4, 3), (9, 8)}. 

Write this equation in the form 

2 ^ - 3 ^ = ± l . 

(i) Assume that a is odd and Z? > 0. Working modulo 3, show that the right-hand side is - 1 . 
Then, working in Z3, show that if Z? > 1, then « = 6« + 3. Working modulo 8, show that 
b is even, and obtain a contradiction modulo 10. Conclude. 

(ii) Assume that a > 0 is even and /? > 0, and show by working modulo 3 that the right-hand 
term is 1. Assume that« > 3, and by working in Z3, show that a is divisible by 3. 

Show that the equation 

64« - 1 = 3^ 

is impossible if a > 1. Conclude. 

6.7 We use the notation of Exercise 6.5 with 52 = (2,5). Let £"2 be the set of solutions oix — y= 1 
in 52- Show as in Exercise 6.6 that 

£2 = {(2,1), (5, 4)}. 

6.8 The same question, with S3 = (3, 5). Show that £ 3 = 0 . 

6.9 We use the notation of the previous exercises, and take S4 = (2,3,5). Let £"4 denote the set of 
solutions of jc — J = 1 in 54. 
Show that £4 = £1 U £2 U {(6, 5), (9, 10), (16, 15), (25, 24), (81, 80)} (see [Luc]). 
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6.10 Consider all the triples (r, s, t) € (N*)^ such that/(r, s,t) = r ^ + s ^ -\-1 ^ < 1. Assume 
that r < 5 < r, and order the set of these triples according to the lexicographic order, i.e. 

(r, 5, t) < ( / , / , / ) 

if and only if r < r̂  or (r = r^ and s < s') or (r = r^ 5 = s^ and t < t'). 
Find the smallest triple (r, 5, t) such that/(r, sj) < 1, and compute the minimum of 1 — 

f(r,s,t). 

6.11 Deduce from the abc conjecture that there exists only a finite number of sextuples 
(r, s, t, X, y, z) e (N*)^ such that 

1 1 1 1 
r s t 
ix,y,z) = \ 

One can use Exercise 6.10. 

6.12 Take three numbers w, v, w in N*, and deduce from the abc conjecture that there exists only a 
finite number of sextuples (r, s,t,x,h, z) e (N*)^ such that 

1 1 1 . 
r s t 
ix,y,z) = l 

ux^ + vy^ = wz^. 

6.13 Show that the abc conjecture implies the following conjecture: 
For every s e ]0, l/6[, there exists a constant c(e) > 0 such that for every pair of relatively 

prime integers (x, y) e (N*)^, we have 

|jĉ  - / l > c(£)max(Jc^/)^/^-^ 

6.14 A prime number satisfying the congruence 

2P-^ = 1 modp^ 

is called a Wieferich prime. The Wieferich primes are quite rare since the only/7 < 3 • 10^^ 
which are Wieferich primes are 1093 and 3511. However, it is not known whether there exists 
an infinity of prime numbers which are not Wieferich primes. 
Following J. Silverman, we will show that the abc conjecture implies a positive answer to the 
preceding question. 

(a) Assume that there exists n £ N such that 2" = 1 mod p and 2" ^ 1 mod p^. Show that 
we have 

2P-^ # 1 mod/7^. 

(P) Assume that there exists only a finite number of primes /?/ such that 2^'~^ ^ 1 mod pj, 
and for n GN, set 

2''-\=anbn, 

where «„ lies in the monoid generated by the pi and bn does not lie in it. 
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1/2 

Using (of), show that the radical of bn is less than or equal to bn • 
(y) Consider the triple (1, 2" - 1, 2") and let s > 0. Show that the abc conjecture implies that 

anbn <2" < C(e)rad(2a„Z?„)^+^ 

(8) Obtain a contradiction, when n tends to infinity, using p and y. 

6.15 We propose to show that the abc conjecture implies that if 

rad(jc + 1) = radCy + 1), rad(jc + 2) = rad^y + 2), rad(jc + 3) = radCy + 3), 

then we have x = y except for a finite number of exceptions (this property is due to 
M. Langevin). 

(a) Assume that y > x. Show that the hypothesis implies that 

rad(Cy+l)(j + 2)0; + 3)) divides y-x. 

(P) Applying the abc conjecture to the relation 

l + (>'+l)( j-h3) = 0; + 2)2, 

show that >' is bounded. 

6.16 We say that n G N* is a powerful number if rad(/i)'^ divides n. 
Show that the abc conjecture implies that there exists no triple of consecutive powerful 

numbers (note that if a, b,c are three consecutive numbers, then b^ = ac -]-\). 

6.17 Let A be a Dedekind domain, and let « ^- y„ be a sequence of positive integers tending to 
infinity. 

(a) Show that if x G A is such that the sequence (jc'̂ ") takes only a finite number of values, 
then X e U{A) U {0), where U{A) denotes the group of units of A. 

{fi) Generalise the result of (a) to the case where jc belongs to the fraction field of A. 
(y) Admit the fact (which is a consequence of Faltings' theorem) that if r > 3, then the curve 

of equation 

aX' + bY' + cZ' = 0 

with (a, b, c) € (Q*)^ has only a finite number of points in P2(Q). Deduce from (fi) that 
for n large enough, all the solutions of the equation 

aX"^ + bY"^ + cZ"" = 0 

are proportional to elements of (i[/(A) U {0})̂  (for more details, see [Hel 3]). 

6.18 Let F be an algebraically closed field of characteristic p. 

(a) Show that if P e F[t] admits a root a e F of multiplicity v{a) not divisible by p, then the 
derivative P^ admits a as a root of multiplicity v(a) — 1. 

(P) Consider a relation ABC in which A, B and C are relatively prime elements of F[t] such 
that A + B + C = 0, and assume that AfiC ^ F. 
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We say that this relation is separable ifA/B admits a non-zero derivative. 
Show that, up to replacing t by fP , we can always assume that the relation ABC is 

separable. 
(y) If P e F[t], the tame radical RoiP) is the product ]~[p(^)^o (t - a) e F[t] in which the 

pv(a) 
a are all the roots of P in F whose multiplicity is not divisible by p. 

Following the method of proof of Mason's theorem (Exercise 1.15, Chapter 1), show 
that if the relation ABC is separable, then 

supfdegA, degB, degC} < degRo(ABC). 

(8) Deduce that if the ABC relation given by 

^« + ^« + c" = 0 

with (a, b, c) e (F[t])^ pairwise relatively prime is separable, then n < 2. 

6.19 Let F^ be a finite field of cardinal q, and let F^ be an algebraic closure of F^. 

(a) Show that the map jc h^ jĉ  is an automorphism a of F^, and that 

¥q = {xe¥g',a(x)=x}. 

iP) LetPGF^[r],andset 

cr(P)-P 
D(P) = 

cr{t)-t 

Show that D(F) e¥g[t]. 
(y) Show that the map D : ¥g[t] -^ ¥g[t] is F^-linear and that 

D(PQ)=PD(Q)-^D(P)cr(Q) 

= G{P)D{Q)+D{P)Q. 

We say that D is the Galois derivation of ¥q[t]. 
(5) Show that if Of G F^ is a root of P of multiplicity y (a), then 

(i) If a € F^, a is a root of D(P) of multiplicity v(a) — 1. 
(ii) Ifa^ ¥q, a is arootof Z)(P) of multiplicity v{a). 

{e) LetP G F^[/]. The rational radical R\ (P) is the product H P(a)=oO~^) ^ F^[^] in which 
aeWq 

the a run over the roots of P in F^. Following the method of Exercise 6.18, show that 

deg/?i (P)>q-(q- 2) sup{deg A, degP, deg C}. 

((p) Assume that q = 2, and show that ABC has at least two distinct roots in F2. Could this 
result be obtained directly? 

(ri) Redo Problem 5 of Chapter 1 with the radical replaced by the rational radical. 
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6.20 Limits to optimism 
Given a relation (a, ^, c), we set 

\og\abc\ logsup(|fl|, |Z7|, |c|) 
p(a, b, c) := T(fl, b, c) := — -—— . 

log rad (abc) log rad (abc) 

(a) Show that p{a, b, c) < 3r(fl, Z?, c). 
(P) We propose to show that 

limsupp(a, b, c) > 3. 

For this, we construct a sequence of triples («„, bn.Cn) by the induction relations 

(a i ,^ i ,c i ) = (16, 1,-17) 

«AZ+1 = 4a„Z?„, bn+\ = (an - bnf, C„+l = - ( f l „ + bnf. 

Show that the triple (an, bn,Cn) corresponds to an abc relation, and that an is always 
divisible by 16. 
Set kn := \anbnCn\/(v2id anbnCn), and show that 

> > 1, 
4Xn \an-bn\ 

Deduce that kn tends to infinity and conclude. 
(y) Deduce from a and fi that one cannot have 

Urn sup T(a, b,c) < 1. 
ia,b,c) 

(8) We return to the example of p to show that sup(\a\, \b\, \c\)/rad(a^c) cannot be universally 
bounded. 

Set r„ = raid(anbnCn), iXn = Icnl/rn, an/bn = tg^On with 0 < ^„ < 7r/2. 
Show that On = 20n-\ mod TT and that fin+1 /M« > 1 /1 cos 2^„|. 
Deduce that/x„+i//Lti > 2"|sin2^i| = log |c„+i|/log |ci| | sin2^i|. 
Conclude. 

Problem I 

(Nevanlinna Theory) 

I. The goal of this first part is to prove the Poisson-Jensen formula. 

(1) Let / be a holomorphic function in the disk D = [z e C; \z\ < 1}, bounded in the closed disk 
b = {z e C; \z\ < \} and continuous on D except at a finite number of points. Show that 

27T Jo 

2TT 

f(e^^)dO=f(0). 

(2) Assume now that/ is meromorphic in D, continuous and non-zero on the boundary of D and at 
the origin. 
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Let fli,..., (2^ be the zeros of/ in Z), and let ^i , . . . , ^„ be its poles (zeros and poles are 
repeated a number of times equal to their multiplicity). Prove the Jensen formula: 

log[/(0)| + ^ l o g — - ^ l o g 
h=\ \ah\ l=\ \bi\ 

1 
2^ Jo 

g\f(e'n\dO. 

For every sufficiently small e > 0, we can construct a region R^ in which/(z) has neither poles 
nor zeros, and we will compute the integral of log/(z)/z dz along the boundary ofRg. 

(3) Suppose now that/ is meromorphic in C, and write its Laurent expansion at the origin in the 
form 

f(z) = cz'^---

with c 7̂  0 and e G Z. 
Show that we have the Poisson-Jensen formula: 

log|c|.= f l o g | / f e ) | - ^ - J2 o r d ( / , a ) ^ 

f(a)=0 

+ ^ ord(/, ^) TTT - ^ log r, 
0<\b\<r ' ' 
f(b)=oo 

where Tr denotes a circle centred at the origin and of radius r, travelled in the counterclockwise 
direction. Check that this formula is invariant under the involution/(z) f̂> l//(z). 

II. The aim of this part is to define and study the radical and height of a meromorphic function. 
To the function/, which is meromorphic in C, we associate two counting functions: 

Nfir,0)= J2 ord( / ,«) log-^ + 

f(a)=0 

0 

elogr 

i f ^ < 0 

i f e > 0 

and 

Nf{r, oo) = Y^ ordif, b) log -— + 
0<\b\<r 
f(b)=0 

0 i f ^ > 0 

—^logr if ^ < 0. 

(1) Show that we have 

Ni/f(r,0)=Nf(r,oo) 

Ni/f(r,oo) =Nf{r,0) 

and (by the Poisson-Jensen formula): 

log|c|+iV/(r,0) = J l o g | / ( z ) | ^ + i V / ( r , c x ) ) . 
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(2) Following Nevanlinna, we write 

dz I log[/(z)|-^= / log- \f\ dz 

and we associate t o / two proximity functions: 

/ ^ o g / l + [/P 
dz 

linz' 

mf{r. ,0):= / log l/l dz 

' yrrw ̂ ^^^ 
[/•(O)l e<0 log ; -, 

Vi+l/'(0)P 
log |c| e > 0 

mf{r, (X)) := J \og^l^[f\2^^ -
logy i + [/(0)|2, ^ > 0 

log |c| ^ < 0. 

Show that we have 

and (by 1), 

mi/f(r, 0) = rrifir, oo) 

m\/f{r, oo) = m/-(r, 0), 

Ay(r, 0) + mf{r, 0) = Nf{r, oo) + m/(r, oo). 

(3) Show that if \fiz)\ -^ 0 when |z| -^ oo, then mf{r, 0) tends to +oo when r -^ +oo. Show that 
if | /(z) | -^ 00 when |z| -^ oo, then mf(r, oo) tends to H-oo when r ^> +oo. 

(4) Define the characteristic function (or height) of/ by the formula: 

Tf(r) := Nf(r, oo) + mf(r, oo). 

Show that if/ = a/b where a and Z? are holomorphic functions on C having no common zeros, 
we have 

Tf{r) = j log y|fl(z)|2 + | M z ) | 2 ^ - log y|fl(0)|2 + |Z.(0)|2. 

III. Finally, let us define two new functions of r: 

(i) the logarithmic radical Sa of a non-zero holomorphic function a. By definition, we have 

J2 l o g - ^ + n o log r, Sair) 
0<|X|<A-
a(x)=0 

w 

with no = 0 if a(0) ^ 0 and no = 1 otherwise. 
(ii) the ramification counting function Rf of a non-constant meromorphic function/. By definition, 

we have 

p . , Y - ,,w , , r | o rd ( r , 0 ) log r if/(0) ^ {0, 1, oo) 
Rfir) := 2 ^ o rd( / , x) log — + ] . 

p- T Y k 0 otherwise 
0<|jc|<r ' ' t 

f(xmo,i,oo} 
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The goal of this third part is to give an abc theorem for the holomorphic functions in C, and to 
deduce one of its consequences (see [VF] for more details). Recall Mason's theorem (Exercise 1.15, 
Chapter 1) on the polynomials of C[z]. 

Consider three non-constant relatively prime polynomials a, b, c such that a-\- b -\- a = 0. Then 

sup(dega, degZ?, degc) < degrsidiabc). 

Now, if fl, /?, c are three entire non-constant functions on C having no common zeros and such that 
a-\- b -\- c = 0,we have the following result. 

abc Theorem For every r outside a set of finite Lebesgue measure, we have 

Ta-.bAr) < Sabcir) - Ra/c(r) + 21og Ta-.tAr) + 0{\og\ogTa:tA^)), 

where Ta-tfc i^ defined by 

Ta:bAr)= [ \ogJ\a(z)\^-^\b(z)\^-{-\c(z)\^-
Jrr 

dz 

linz 

log y|a(0)|2 + |M0)|2 + |c(0)|2. 

(1) Consider three non-constant entire functions a, b, c such that a^ -\-b^ = c^, with « e N. Show 
that we can assume that a, b, c have no common zeros; in what follows, we make this assumption. 

(2) Set 

T{r) = Tan:bn:c"(r) 

S(r) = Sanbnc^ir) = Sabcir)-

Show that the abc theorem implies that 

T(r) < Sir) + 2 log Tir) + 0(log log Tir)). 

(3) Show that 

Sir) < Na/bir, 0) + Nb/dr, 0) + Nc/air, 0) 

< Ta/bir) + Tb/cir) + Tc/air) + 0(1). 

(4) Show that 

Tir) > Tan/bnir) + 0(1) = nTa/bir) + 0(1). 

(5) Deduce that if r is sufficiently large, then 

nTa/bir) < Ta/bir) + Tb/dr) + Tc/air) + 3 log T(r). 

(6) Conclude that we must have n <3. 
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Problem 2 

(An application of the Langlands-Ibnnell theorem due to J.-P. Serre) 

A. Preliminaries on GL2(F3). 

(1) GL2(F3) denotes the group of invertible 2 by 2 matrices with coefficients in F3. Show that the 
centre of GL2(F3) is equal to {X/2; A. G F*). 

(2) Let PGL2 (F3) denote the quotient of GL2(F3) by its centre. Show that the cardinal of this group 
is equal to 24. Interpreting this group as a group of permutations of the lines of F3, deduce that 
PGL2(F3) - 54. 

(3) Show that GL2(F3) is generated by 

"=(:i ^)-^=(] f) 
(4) Note that F3 2̂  Z[V^] /7r , where n denotes the ideal of Z[y/^] generated by 1 + V ^ . 

Show that there exists a unique monomorphism (p from GL2(F3) to GL2{IJ[\/-2]) such that 

( « ) = ( : ; ; ) and , ( ^ ) = ( ; - / ) (p{Q 

and we have 

(pig) = g mod P 

for all g e GL2(F3). Deduce that for every g G GL2(F3), we have 

trace((^(g)) = trace(g), det((^(g)) = det(g), 

where the overline denotes the class in F3. 

B. In this second part, we will consider a plane elliptic curve E defined over Q, and its 3-torsion 
group E[3] in P^C We consider the Galois representation 

GQ ^ GLY,{E[3]) 

given by the action of the absolute Galois group on £"[3]. 

(1) Show by an example that P3 is not necessarily irreducible. 
(2) From now on, we fix a basis for £"[3] over F3, and we identify P3 with a representation of GQ 

in GL2(F3). Show that 0 = cp o p^ isa. representation of GQ in GL2(Z[y—2]) C GL2(C). 
(3) Let (7 denote complex conjugation, and show that 

det^(or) = ±1 . 

(4) Using Weil's alternating form, show that 

A^^£[3] ^1^3, 

where /X3 denotes the group of cube roots of unity in C, i.e. a line over F3. 



358 INVITATION TO THE MATHEMATICS OF FERMAT-WILES 

(5) Can E[3] have an Fs-basis (P, Q) consisting of rational points? 
(6) Deduce from (4) that 

det^(cr) = —1 mod TT. 

(7) Show that the eigenvalues of p3(a) are T and —T. _ 
(8) Assume from now on that p3 is irreducible over F3. Show that every matrix M of M2(F3) which 

commutes with all the matrices of Im p^ is of the form XI2 with A e F3. 
(9) Deduce that /03 is absolutely irreducible (i.e. irreducible in GL2(F3)). 

C. Let us admit that for almost all primes q, we have: 

tracep3(Frob^) = ^ + 1 - #E(¥g), 

where the second term is considered modulo 3. Recall that <54 is a solvable group. Show that the 
representation 0 : GQ -^ GL2(C) satisfies the following properties: 

(1) 0 is irreducible (over C); 
(2) det ^(cr) = —1, where a denotes complex conjugation; 
(3) Im ^ is a solvable group. 

Remark A famous theorem due to Langlands and Hinnell states that then there exists 

00 

/(Z) = X]^'^^^'''"'^^1(^0(^),X), 
n=l 

for some Â  and some x, such that 0 "comes from"/ in the sense that 

trace (^(Frob^)) = b^ 

for almost all primes q. This was a decisive first step in the proof of Wiles' theorem and the Shimura-
Taniyama-Weil conjecture. 
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[Hou 2] Houzel C. - Fonctions elliptiques et integrates abeliennes, in Abrege d'Histoire des 

Mathematiques ed. J. Dieudonne, Hermann, Paris 1992, 293-314. 
[Hus] Husemoller D. - Elliptic Curves, Springer, Berlin, 1987. 
[I] Igusa J.I. - Theta Functions, Springer, Berlin, 1972. 
[I-R] Ireland K. and Rosen M. - A Classical Introduction to Modem Number Theory, 2nd edn, 

Springer, Beriin, 1990. 
[J-L] James G. and Liebeck M. - Representations and Characters of Groups, Cambridge Math 

textbooks, Cambridge, 1993. 
[J-S] Jones G.A. and Singerman D. - Complex Functions, Cambridge U.P., Cambridge, 1987. 
[Kap] Kaplansky I.- Fields and Rings, 2nd edn, Univ. of Chicago Press, Chicago, 1972. 
[Kl] Klein F. - Gesammelte mathematische Abhandlungen, 3 vol., Springer, Berlin, 1921-1923. 
[Kn] Knapp A-W. - Elliptic Curves, Princeton U.P., Princeton, 1992. 
[Ko] Koblitz N. - Introduction to Elliptic Curves and Modular Forms, Springer, Berlin, 1984. 
[K-L] Kubert D.S. and Lang S. - Modular Units, Springer, Beriin, 1981. 
[Kuh] Kuhn T.- La structure des revolutions scientifiques, Flammarion, Paris, 1983. 
[Kum] Kummer E-E. - Collected Papers, edited by Andre Weil, Springer, Beriin, 1975. 
[L] Lang S. - Algebraic Number Theory, Springer, Berlin, 1994. 
[Luc] D. Lu9on - Repartition des entiers de la forme 2 .̂3 .̂5"^; Revue de Math. Spe., 1987-88, 3, 

p. 117-119 
[Lut] Lutz E. - Sur 1' ,quation y^ =x^—Ax — B dans les corps /?—adiques. / Reine Angew, Math. 

177,431-466,1937. 



BIBLIOGRAPHY 373 

[M-M] Maillard R. and Millet A. - Geometrie, Classe de Mathematiques, Hachette, Paris, 1951. 
[M] Mazur B. - Modular curves and the Eisenstein ideal, IHES Publ. Math., 47, 33-186, 1977. 
[Mi] Miyake T. - Modular Forms, Springer, Berlin, 1989. 
[ML] Maclaurin C. - A Treatise of Algebra ... To which is added, an Appendix, concerning the 

general properties of geometrical lines, 5th edition, London, 1788. 
[Mum] Mumford D. - Tata Lectures on Theta, 1 and 2, Birkhauser, Basle, 1983, 1984. 
[N] Nitaj D. - Consequences et aspects experimentaux des conjectures abc et de Szpiro, These, 

Caen, 1994. 
[Oe] Oesterle J. - Nouvelles approches du "theoreme" de Fermat Sem. Bourbaki, 1987-88, 

no. 694. 
[Og 1] Ogg A-P. - Modular Forms and Dirichlet Series, Benjamin, 1969. 
[Og 2] Ogg A-P. - Abelian curves of small conductor, J. Reine Angew. Math. 226, 204-215, 1967. 
[Per] Perrin D. - Geometrie Algebrique, Intereditions/CNRS editions, Paris, 1995. 
[Ra] Rademacher H. - Topics in Analytic Number Theory, Springer, Berlin, 1973. 
[Rbb] Ribenboim P. - 13 Lectures on Fermat's Last Theorem, Springer, Berlin, 1979. 
[Re] Reyssat E. - Quelques aspects des Surfaces de Riemann, Birkhaiiser, Basle, 1989. 
[Ri 1] Ribet K.A. - On modular representations of Gal(Q, Q) arising from modular forms. Invent. 

Mar/i. 100,431-416, 1990. 
[Ri 2] Ribet K.A. - On the equation a^ + 2 ^ + c^ = 0, (manuscript). 
[Ro] Roquette P. - Analytic theory of elliptic functions over local fields, Vandenhoeck and 

Ruprecht, Gottingen, 1970. 
[Sa] Samuel R - Theorie algebrique des nombres, Hermann, Paris, 1967. 
[Sch] Schikhof W.H. - Ultrametric Calculus, Cambridge U.R, Cambridge, 1984. 
[Se 1] Serre J-R - Cours d'Arithmetique, RU.F, Paris, 1970. 
[Se 2] Serre J-P. - Representations lineaires des groupes finis, 3^ ed., Hermann, Paris, 1978. 
[Se 3] Serre J-P. - Proprietes galoisiennes des points d'ordre fini des courbes elliptiques. Invent. 

Math. 15,259-331,1912. 
[Se 4] Serre J-P. - Sur les representations modulaires de degre 2 de Gal(Q/Q). Duke Math. J. 54 

179-230, 1987. 
[Se 5] Serre J-P. - Corps Locaux, Hermann, Paris, 1962. 
[Se 6] Serre J-R - Travaux de Wiles (et Taylor) Seminaire Bourbaki, 1994-95, no. 803. 
[Sh] Shimura G. - Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 

197L 
[Sie] Siegel C-L. - Topics on Complex Function Theory, Wiley, New York, 1971. 
[Sil] Silverman J-H. - The Arithmetic of Elliptic Curves, Springer, Berlin, 1986. 
[S-T] Silverman J-H. and Tate J. - Rational Points on Elliptic Curves, Springer, Beriin, 1992. 
[St-T] Stewart LN. and Tall D.O. - Algebraic Number Theory, Chapman and Hall, London, 1987. 
[Tat] Tate J. - The arithmetic of elliptic curves. Invent. Math. 23, 171-206, 1974. 
[Tau] Tauvel P. - Mathematiques Generales pour 1'Agregation, Masson, Paris, 1992. 
[Va] Valiron G. - Theorie des Fonctions, Masson, Paris, 1955. 
[VDP] Van der Poorten A. - Notes on Fermat's Last Theorem, Wiley, 1995. 
[Ve] Verriest G. - Theorie des Equations selon Galois, Gauthier-Villars, Paris, 1939. 
[VF] Van Frankenhuysen M. - Hyperbolic Space and the abc Conjecture, These, La Hague, 1995. 
[Vui] Vuillemin J. - La philosophic de I'algebre, P.U.F., Paris, 1962. 
[VW 1] Van der Waerden B-L. - Modem Algebra I, Ungar, New York, 1953 
[VW 2] Van der Waerden B-L. - Geometry and Algebra in Ancient Civilizations, Springer, Berlin, 

1983. 
[Web] Weber H. - Lehrbuch der Algebra, T. Ill, Chelsea, New York, 1962. 



374 BIBLIOGRAPHY 

[Wei] Weil A. - Number Theory, Birkhauser, Basle, 1984. 
[Wi] Wiles A.J. - Modular elliptic curves and Fermat's Last Theorem. Ann. Maths 142,443-551, 

1995. 
[W-T] Wiles A.J. and Taylor R. - Ring-theoretic properties of certain Hecke algebras. Ann. Maths 

142, 553-572, 1995. 
[W-W] Whittaker E.T. and Watson G.N. - Modem Analysis, Cambridge U.R, Cambridge, 1958. 
[Z] Zagier D. - Introduction to modular forms, in From Number Theory to Physics, ed. 

Waldschmidt, Springer, Berlin, 1989. 



INDEX 

Abel, 56, 68, 77, 80, 90, 101, 108, 114, 116, 
201,260 

Absolute value, 118 
at infinity, 119 
equivalent, 119 
triangular, 119, 123 
trivial, 119 

Admissible, 215 
Algebra 

Group, 140 
quaternion, 202 

Algebraic closure, 132 
Algebraic closure of K inside L, 132 
Algebraic element, 131 
Algebraically closed, 131 
Algebraically closed inside L, 132 
Amice, 155 
Anti-involution, 201 
Arithmetica, 2 

of Diophantus, 1 
Arithmetico-geometric mean, 102 
Artin, 155, 202, 228 
Axiom of choice, 131 

Babylonians, 2 
Bachet de Meziriac, 1, 3 
Baker, 349 
Bernoulli, 31,255 
Bernoulli's lemniscate, 71 
Bezout, 27, 179 
Birational map, 179 
Birationally equivalent over k, 179 
Bombelli R., 2 
Bost, 312 
Bullialdus Ismael, 53 

Cantor, 123 
Cassels, 155, 228 

Cauchy, 18,77, 156 
Cauchy sequence, 123, 158 
Character 

irreducible, 137 
of a representation, 135 

Chasles, 172 
Circular permutation, 333 
Closure 

algebraic, 131 
integral, 21,22, 41 

Coefficients 
Fourier, 304 

Completion, 126 
Complex multiplications, 201, 218 
Conductor, 334, 343 

NE, 227 
Artin, 338, 341 
of £,309 

Congruence(s) 
Kummer, 56 
Ramanujan, 259, 314, 316 

Congruent, 39, 45 
Conjecture(s) 

abc, 343, 344 
Birch-Swinnerton-Dyer, 227 
Denes', 342 
Fermat-Catalan, 347 
generalized Szpiro's, 344 
Hasse, 309,310 
Ramanujan-Petersson, 280, 297 
Riemann, 224 
Serre, 336 
Shimura-Taniyama-Weil, 310 
Szpiro, 343, 346 
Taniyama, 325 

Conjugates, 20 
Continuity, 329 
Countable, 130 
Cramer, 179, 185 

375 



376 INDEX 

Criterion 
Eisenstein, 19 
Euler, 11 
Kummer, 31 
Neron-Ogg-Shafarevitch, 336 
of convergence, 127 

Cubic 
smooth, 336 
Tate, 331 
Weierstrass, 188,292 

associated to the lattice A, 87 
Curve(s) 

EA,B,C^ 325, 333 

absolutely irreducible, 174 
elliptic, 332 
elliptic defined over k, 176 
elliptic with complex multiplication, 336 
equivalent, 197 
Frey-Hellegouarch, 333 
in projective plane, 174 
non-singular, 175 
non-singular (or smooth), 87 
of genus one, 215 
semi-stable elliptic, 334-336 
smooth, 175 
Tate, 68 
Weil, 309, 336, 339-341 
with complex multiplication, 310 

Cusp(s), 287, 338 
Cycle, 183 

intersection, 184 
positive, 184 

d'Alembert, 1 
Darmon, 341, 343, 348 
Darmon and Merel, 2, 343, 348 
De Moivre, 35 
Dedekind, 25 
Degree of a cycle, 184 

of an isogeny, 200 
of a representation, 135 

Dehgne, 280, 297 
Denes, 30 
Derivation 

Galois, 352 
Descartes, 3, 172, 173 
Descombes, 155 

Digits, 129 
Teichmiiller, 129, 131 

Diophantine analysis, 2 
Diophantus, 2 
Dirichlet, 35 
Discriminant, 97-99, 150, 206, 216 

minimal, 343 
Domain 

Dedekind, 41, 224 

Edwards, 35, 155 
Eichler-Shimura, 309, 312 
Eisenstein, 77 
Endomorphism, 198 

Frobenius, 199 
of (£, O) defined over k, 199 

Equation(s) 
p-integral, 218 
Abel's, 95 
functional, 224, 226, 227, 307, 309 
globally minimal, 335 
heat, 270 
long Weierstrass, 202 
minimal, 218 
short Weierstrass, 206 

Equivalence, 179,281 
Euclid, 2, 6 
Euclidian, 44 
Euler, 16, 34, 35, 68, 75, 109, 223, 255, 256 
Everywhere locally true, 7 
Expansion 

Laurent, 86, 94 
Extension(s) 

algebraic, 131 
Galois, 140 

F-automorphism, 134 
Fagnano, 71, 74, 75 
Fermat, 1, 3, 8, 16, 27, 33, 172, 173 

last theorem of, 1 
Field of invariants, 141 
Finite, 341 
Form(s) 

cusp, 294, 295, 297 
Hecke, 299, 302, 304-306, 336 
Hecke cusp, 337 
linear of logarithms, 349 
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long Weierstrass, 192 
modular, 255, 287, 288, 294 
new, 308, 338 
parabolic, 288 
quadratic, 4, 9, 16, 35 
quadratic positive definite, 201 
reduced modulo/?, 337 
short Weierstrass, 193, 229 
weakly modular, 281 
Weil, 195 

Formula(s) 
Desboves, 232 
Euler,33,314 
Euler-MacLaurin, 55 
Jacobi,273,280,314 
Jensen, 354 
Poisson-Jensen, 353, 354 
product, 120 

Fourier coefficients, 261 
Prey, 325, 332, 339, 347 
Pricke involution, 308 
Probenius, 155 
Probenius atp, 330 
Pulton, 228 
Punction(s) 

L, 226, 304 
Artin L-, 227 
Artin zeta, 224 
central, 138 
characteristic, 355 
counting, 354 
elliptic, 71,78 

of the first kind, 110 
of the second kind, 110 
of the third kind, 110 

Euler's P, 306 
Gauss' hypergeometric, 102 
Hasse-Weil L, 223, 226 
Hasse-Weil zeta, 224 
loxodromic, 92 
modular, 287, 288 
multiplicative, 280 
partition, 259 
proximity, 355 
Ramanujan, 280, 297 
Ramanujan tau, 299 
ramification counting, 355 

Riemann^,33, 223, 227 
Tate loxodromic, 331 
theta, 260 
weakly modular, 281 
Weierstrass, 82 

Fundamental domain, 281, 282 
Fundamental parallelogram, 78 

Galois, 142, 145, 147, 155, 172 
Galois correspondence, 141 
Galois group 

absolute, 2, 196 
Gauss, 18,77,102,260 
Generalisation of Fermat's equation, 346 
Genus, 215, 293 
Globally false, 7 
Good reduction, 192,333 
Granville, 348 
Group(s) 

homogeneous modular, 281 
modular, 280 
of analytic automorphisms of 7^, 281 
solvable, 339 

Gunning, 312 

Hartshome, 228 
Hasse, 155 
Hasse principle, 155 
Hecke, 310,312,339 
Hecke operator, 301, 338 
Hellegouarch, 332 
Hensel, 118, 155 
Hermite, 260, 263 
Hermitian matrices, 45 
Holmboe, 56 
Holtzmann, 3 
Homomorphisms, 198 
Houzel, 35, 101 
Husemoller, 228 
Huygens, 8 

Identities, 295 
arithmetic, 294 
Diophantus', 10 
Euler's, 33, 39 

Igusa, 312 
Inductive, 167 
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Inequality 
triangular, 119 
ultrametric, 119, 120 

Inert, 10 
Infinite descent, 4, 6, 30, 34, 284 
Infinite product 

convergent, 127 
Integer(s), 18 

Gaussian, 10 
Integral, 20 
Integral(s) 

complete elliptic of the first kind, 101 
complete elliptic of the second kind, 101 

Integrally closed, 25 
Intersection multipHcity, 180 
Introductio in Analysin Infinitorum, 312 
Invariant measure, 297 
Invariant modular, 291 
Irreducible, 136, 339 
Irreducible components, 177 
Isogeny 

defined over k, 198 
separable, 200 

Jacobi, 18, 77, 259, 262, 263, 332 
Jacobi's triple product, 313, 314 
James and Liebeck, 155 
Jones, 101 

Kp field, 335 
Kaplansky, 155 
Kepler, 68 
Klein, 260, 285, 313 
Knapp, 101,228,312 
Korkine, 38 
Kubert-Lang, 332 
Kummer, 18, 23, 26, 28, 34 

Lagrange, 18, 109, 154 
Lame, 34 
Lambert, 71 
Landsberg, 155 
Langevin, 351 
Langlands, 339 
Lebesgue, 34 
Legendre, 35, 109, 113 
Legendre symbol, 293 

Lemma 
Hensel's, 158, 159, 169 
Schur's, 161 
Zom's, 167, 337 

Level, 285 
minimal, 339 

Liouville, 18,38,68,77 
Liouville's third theorem, 211 
List of the seven properties characterising 

MP, 181 
Local, 7 

MacLaurin, 179, 228, 241 
Mason, 38 
Mazur, 339 
Mazur-Ribet, 347 
Measure 

Dirac, 55 
Mellin transform, 224, 306 
Merel, 341 
Model 

globally minimal, 220 
minimal, 334 
minimal Weierstrass, 308 

Modular invariant, 216 
Modularity condition, 288 
Module 

complementary, 101 
Tate, 329 

Mordell-Weil,211,228 

Noetherian, 25, 41 
Nevanlinna, 355 
Newton, 68, 228 
Newton-Puiseux, 155 
NormA^, 10 
NonriA:, 19 
Number(s) 

/7-adic, 127 
3-adic, 7 
Bernoulli, 31,50,53, 116 
congruent, 253 
Fermat, 4 
powerful, 351 
regular, 26 
triangular, 5 
Wieferich, 342 
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Oesterle, 313 
Ogg,312 
Order, 79, 211 
Ordern, 192 
Order of multiplicity, 177 
Ostrowski, 121, 123 

p-adic exponential, 159 
p-integers, 54, 56 
Pappus and Proclus, 2 
Paradox 

Cramer's, 185 
Partition of the integers, 255 
Pascal, 3, 5 
Pell, 4 
Perrin, 228 
Plucker, 173 
Place, 337 
Poincare, 260 
Poincare upper half-plane, 260 
Point(s) 

«-di vision, 192 
2-division, 192 
multiple, 174 
non-singular, 174 
non-trivial, 336 
simple, 174 
singular, 174 

Polynomial(s) 
Bernoulli, 55 
separable, 147 

Poncelet, 172 
Principal quadratic imaginary fields, 201 
Principle 

of the functional equation, 306 
of the maximum, 322 

Product 
Euler, 305 
Petersson Hermitian, 297, 298, 319 

Pythagorean triangle, 7 

Rademacher, 312 
Radical, 334 

logarithmic, 355 
rational, 352 
tame, 352 

Ramanujan, 305 
Ramified, 10 
Rational map, 177 
Rausenberger, 68 
Reduction, 189, 190,337 

additive, 192 
multiphcative, 192 
semi-stable, 332 

Regular primes, 26, 31, 35 
Relation(s) 

ABC, 333 
Descartes', 240 
Euler's, 166 
Jacobi, 265 
Legendre's, 106 
separable, 352 

Representation(s) 
as sums of two squares, 13 
continuous, 149, 341 
finite, 340 
Galois, 195 
irreducible, 340, 341 
isomorphic, 135 
modular, 340, 341 
odd, 341 
of G defined over F, 134 
of degrees, 134 
proper, 14 
regular, 137 
unramified Galois, 338 

Residue field, 128 
Resoluble, 151 
Reyssat, 312 
Ribet, 34, 339, 341, 342, 348 

Theorem, 343 
Riemann, 223 
Riemann hypothesis, 225, 331 
Riemann surface, 289, 293 
Ring 

Dedekind, 39 
Euclidean, 10 
local, 128, 327 
of p-integers, 54, 218 
of endomorphisms, 199 
of integers, 21, 35 

Roberval, 5 
Rubin, 343 
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Samuel, 35 
Schikhoff, 155 
Schmidt, 205 
Scipione del Ferro, 152 
Self-adjoint, 303 
Semi-stable, 222 
Series 

binomial, 160 
Dirichlet, 304 
Eisenstein, 85, 274 
Fourier, 273, 322 
Poincare, 319 

Serre, 155,312,313, 325, 347 
Set with integral distances, 62 
Shimura, 310, 312, 336 
Siegel, 101 
Silverberg, 343 
Silverman, 101, 228, 350 

and Tate, 228 
Singerman, 101 
Snell-Descartes, 3 
Sophie Germain, 58 
Split, 10 
Stable, 146 
Stationary, 142, 145 
Steinitz, 155 
Stevin, 155 
Stothers, 38 
Subgroup(s) 

commutator, 163 
congruence, 285, 287 
Hecke, 285 
principal congruence of level Â , 285 
torsion, 205 

Supersingular, 202, 203 
Symbolic notation, 32 
System of representatives, 286, 287 

Taniyama, 310 
Tartaglia and Cardan's method, 152 
Tate, 228 
Theorem(s) 

5'-units, 344 
abc, 356 
Abel's, 89 
Addition of lemniscatic integrals, 76 

Artin's, 225 
Bezout's, 180 
Chinese remainder, 165, 221 
Denes', 342 
Faltings', 346 
Fermat's little, 129 
fundamental of Galois theory, 145 
Galois', 151 
Hardy's, 324 
Hasse's, 202, 331 
Hellegouarch, 335 
Jacobi's, 259 
Kummer's, 27 
Legendre, 66 
Liouville's, 41, 77-79, 84, 90, 93, 211 
Lutz's, 349 
Maclaurin's, 194, 232 
Maschke's, 136, 161 
Mason's, 42, 60, 70, 352 
Max Noether's fundamental, 184 
Mazur's, 172, 210, 228, 339, 340 
Mazur-Ribet's, 339-341 
Mordell-Weil,211 
Neron's,221,227 
Nagell-Lutz, 210, 236 
Newton-Puiseux, 167 
Nine-point, 183, 184 
ofBachet, 129 
of strong independence of absolute 

values, 164 
of weak independence of absolute 

values, 163 
Pappus', 231 
Pascal's, 231 
Riemann's, 224 
Riemann-Roch, 215 
Ruffini-Abel's, 151 
Serre's, 197, 228 
Siegel's, 345 
Steinitz', 118, 131 
Tychonoff's, 327 
Wiles', 308, 311,341 

Theory 
Hecke, 297 
Nevanlinna, 266, 353 

Tiling, 283 
Tracer:, 19 
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Transform 
Mellin, 306 

Transformation(s) 
affine, 171 
Jacobi, 272 

Translation(s), 171 
Trivial solution, 332 
Tunnell, 339 
Type 

minimal, 339 
multiplicative, 334 

Ultrametric, 119, 121 
Uniformising parameter at infinity, 119 
Unit, 10, 22 
Universal property, 162 

Valiron, 101 
Van der Poorten, 347 

Van der Waerden, 35 
Verriest, 155 
Viete, 2, 3 

Wallis, 68 
Watson, 101 
Weber, 263 
Weierstrass, 68, 80, 213, 228 
Weierstrass sigma function, 106 
Weil, 35, 228, 336 
Whittaker, 101 
Wieferich primes, 350 
Wiles, 310, 313,325, 339, 348 

Xylander, 3 

Zinoviev, 325 
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