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1 Introduction

1.1 Motivation and Abstract

Pell’s equation, also known as the Pell-Fermat Equation, is a Diophantine equation much like the
equation in Fermat’s Last Theorem. Pell’s equation does not immediately yield solutions, but is
simpler to work with than Fermat’s Last Theorem. I chose to research Pell’s equation because it has
very clear and interesting ramifications – it yields rational approximations of the square root of any
non-square integer. Additionally, it has interesting ramifications in the study of rings and fields, as
well as in number theory beyond Diophantine equations. This paper aims to give a brief explanation
of a method for determining solutions to Pell’s equation, with certain algebraically lengthy proofs
ommitted (such proofs can be found in Solving the Pell Equation by Jacobson and Williams)..

1.2 What is Pell’s equation?

Pell’s equation is a class of quadratic Diophantine equations of the form

x2 − ny2 = 1

Here, n is any positive non-square integer, and x and y are integers. Pell’s equation has infinitely many
solutions for x and y for every valid choice of n, these solutions being integral points on a hyperbola.

1.3 History

Pell’s equation has been studied by mathematicians for several millennia. Archimedes likely knew of
Pell’s equation in some form, as there is a famous math puzzle known as the cattle problem attributed
to him that essentially simplifies to Pell’s equation (we’ll see the cattle problem at the end of this
paper). In the seventh century A.D., Brahmagupta found a method for determining solutions to the
Pell equation (as we shall discuss, this boils down to finding a fundamental solution for every n), but
unfortunately, as n grows, Brahmagupta’s method is inconvenient (to use computer science language,
it does not run in polynomial time with regards to the size of log(n)).

2 Solving the Pell Equation: Fundamental Solutions

2.1 The modified Pell equation

Consider a more generalized form of the equation given in 1.2. Let us look at the integer solutions of

x2 + ny2 = z2

Without loss of generality, we can assume that n < 0 and n is not a perfect square, so clearly any
solution to this is a solution to Pell’s equation. In fact, this equation has at least one solution for every
negative non-square n; we would like, for any n, to find a way of generating every solution.

We will now examine the solutions of the Diophantine equation

X2 − nY 2 = 4σ, σ ∈ {−1, 1}
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If we have some X,Y, σ satisfying this equation, it is clear that X ≡ nY (mod 2).

When X ≡ nY ≡ 0 (mod 2) and σ = 1, we have two subcases. Our first option is that X ≡ Y ≡ 0
(mod 2). In this case, let x = X/2, y = Y/2. This yields a solution to Pell’s equation. Alternatively, it
is possible that X ≡ 0 (mod 2), Y ≡ 1 (mod 2). Clearly, by modular arithmetic, we have n ≡ 0 (mod
4). Now let x = X/2, y = Y . This also yields a solution to Pell’s equation, but now it is a solution for
n/4 as our determiner rather than for n itself.

Given two solutions to the equation we are currently considering (call this the Modified Pell Equation),
we can, given certain constraints, derive a third.

Theorem 1 If (x1, y1, σ1) and (x2, y2, σ2) are solutions to the Modified Pell Equation, where x1 ̸=
ηx2, y1 ̸= −ηy2 for η ∈ {−1, 1}, then we have a third solution to the Modified Pell Equation (x3, y3, σ3)
where x3 = x1x2+Dy1y2

2 , y3 = x1y2+x2y1

2 , σ3 = σ1σ2.

This is not difficult to prove algebraically, but for a proof for this (and for proceeding) theorems, see
Jacobson and Williams, ch. 1.

For any solution to the Modified Pell Equation, the following lemmas hold:

Lemma 2 If (x, y, σ) is a solution to the Modified Pell Equation, then x + y
√
n > 2 if and only if

x, y > 0.

Lemma 3 If (x, y, σ) is a solution to the Modified Pell Equation, and x, y > 0, then 2yn ≥ 8.

The first lemma can be shown quickly by checking parity; the second lemma can be shown simply by
looking at all possible options for which 2yn would be less than 8.

2.2 The fundamental solution of a Pell equation

Theorem 4 If we have two solutions (x1, y1, σ1) and (x2, y2, σ2) to the Modified Pell Equation, with
all x and y positive, then

x2 + y2
√
n > x1 + y1

√
n

if and only if x2 > x1 and y2 ≥ y1.

This allows us to have a concept of a certain solution being ”smaller” than another solution. Given
that smaller values for x and y biconditionally yield smaller values for x+y

√
n, we can define a smallest

solution such that x+ y
√
n is minimal (though greater than 2). We call this solution the fundamental

solution, and we let ϵ = x+y
√
n

2 .

Critically, we can now show that every solution of Pell’s equation for a given n is derived from this
value of ϵ.

Theorem 5 If (x′, y′, σ′) is any solution of the Modified Pell Equation for a given n, then

η = (x′ + y′
√
n)/2 = ±ϵn

This gives us a good way to attack the problem of finding every solution of the Pell Equation.

3 Solving Pell’s equation: continued fractions

3.1 What are continued fractions?

Given any real number r and any given sequence of integers {qn} known as partial quotients. Define
r0 = r, and recursively define rj+1 = 1

rj−qj
for 0 ≤ j ≤ i. Now, we can express r0 as the continued
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fraction

q0 +
1

q1 +
1

q2 +
1

. . . qi−1 +
1

qi +
1

ri+1

Now, we denote this by r0 = ⟨q0, q1...qi, ri+1⟩.

3.2 The convergents of a continued fraction

We define the convergents of a continued fraction as follows: Let A−2 = B−1 = 0, A−1 = B−2 − 1.
Recursively define Aj+1 = qj+1Aj+Aj−1, Bj+1 = qj+1Bj+Bj−1. The following facts are easily shown
through arithmetic manipulation:

AjBj−1 −BjAj−1 = (−1)j − 1

Ai

Bi
= ⟨q0, q1...qi⟩

Ai

Ai−1
= ⟨qi, qi−1...q0⟩

Bi

Bi−1
= ⟨qi, qi−1...q1⟩

Call Ai

Bi
the ith convergent of a continued fraction. We can now define a continued fraction as either con-

vergent or divergent, depending on – as intuition would have it – whether the sequence of convergents
converges or diverges. Note that the convergents depend on r and on the sequence of qs initially chosen.

These convergents provide a very good rational approximation for the real number r, as is obvi-
ous from the definition of the series. However, what is not as obvious is the fact that if any rational
fraction provides a ”very good approximation” of a real number, it must be a convergent of the con-
tinued fraction of the number. Unfortunately such a proof is outside the scope of this paper, but is
given in Jacobson and Williams. This yields the following result that makes the connection to Pell’s
equation clear:

Theorem 6 If x, y, n, z ∈ Z, x, y,> 0,
√
n /∈ Q, |z| ≤

√
n, and

x2 − ny2 = z

then x/y is a convergent in the continued fraction expansion of
√
n.

3.3 Periodic and purely periodic continued fractions

We define a continued fraction as periodic if, at some point, the sequence eventually repeats; that is,
if the partial denominators are comprised of a preperiod q0 through qm, and a repeating block (the
period) qm+1 through qk that then repeats infinitely (e.g. qk+1 = qm+1, qk+2 = qm+2...)

Euler and Lagrange proved the following –

Theorem 7 If x is a regular continued fraction that is periodic, x is a quadratic irrational number
(Euler). The converse is also true (Lagrange).

(For an elegant proof of this theorem, see Ben Lynn’s notes in the bibliography.)
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We turn our attention to the quadratic irrationals with no preperiod; that is, the ones whose
continued fraction expansion is solely comprised of a repeating block. We call these purely periodic.
For example, consider

Φ = 1 +
1

1 +
1

1 +
1

. . .

= ⟨1, 1, 1, 1...⟩

Of course, the period need not be of length 1 as it is with Φ.

3.4 Using periodic continued fractions to find ϵ

As discussed in 2.2, finding every solution to a Pell equation boils down to finding ϵ. Now, putting it
all together, we can use continued fractions to find ϵ as follows.

First, note (as discussed) that if the Modified Pell Equation is solvable for X ≡ nY ≡ 1 (mod 2),
then n ≡ 1 (mod 4). For some n, define s and q as:

s =

{
2 if 4—n or n ≡ 1 (mod 4)

1 otherwise

q =

{
0 if n ̸≡ 1 (mod 4)

1 otherwise

Now the following algorithm allows us to determine ϵ. Let P0 = q, Q0 = s, q0 = ⌊(
√
n + q)/s⌋,

B−1 = 0, B0 = 1, G−1 = s and G0 = sq0 − q. We define the recurrences

Pi+1 = qiQi − Pi

Qi+1 =
n− P 2

i+1

Qi

qi+1 = ⌊Pi+1 +
√
n

Qi
⌋

Gi+1 = qi+1Gi +Gi−1

Bi+1 = qi+1Bi +Bi−1

for successive i until we find the least positive p for which Qp = s. Then,

ϵ =
Gp−1 +

√
nBp−1

s

and σ = (−1)p.

If one is wondering why this holds, a full algebraic proof is offered in Jacobson and Williams. However,
to summarize roughly, it involves proving facts regarding the length of the period of the continued

fraction expression of δ = q+
√
n

s , and proving that various expressions including x1, y1, n, σ1, and ϵ are
all within small distances of ϵ (and thus belong to the continued fraction expression).

3.5 Pell’s theorem for approximation of square roots

Essentially, the method described previously boils down to nothing more than finding the continued
fraction representation of

√
n, and then using the ”best” convergent (e.g. the one with yielding s = 1)

to derive the fundamental solution (which all the following solutions can be determined by). Intuitively,
this makes sense, given the fact that convergents are ”good approximations” of real numbers, and the
fact that we can rearrange a given Pell equation as follows:

x2 − ny2 = 1
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x2 = 1 + ny2

x =
√
1 + ny2

And now, given sufficiently large x and y:

x ≈
√
ny2

x ≈ y
√
n

x/y ≈
√
n

This is no coincidence; in fact, the Pell equation is as famous as it is in part because it allows for these
approximations. The Pythagoreans, the Baudhayana Śulbasûtra (an ancient Sanskrit mathematical
text containing a separately-derived assertion of the Pythagorean theorem), and writings of Archimedes
all draw a connection between solutions to the Pell equation and approximations of the square roots
of small numbers (generally 2 and 3).

4 Further results and curiosities involving the Pell equation

The Pell equation is closely related to modern algebra, specifically to the study of quadratic number
fields. Quadratic number fields bear the concept of a norm, defined as N(x+ y

√
k) = x2 − ky2. Thus,

we can see that finding the solutions to the Pell equation x2 − ny2 = 1 is equivalent to finding all the
elements of the ring Q[

√
n] with norm of 1.

The Pell equation also appears in an important number-theoretic result, Størmer’s Theorem, which
says that, for any finite set P of prime numbers, there are only a finite number of pairs of consecutive
integers whose prime factors are all in P . Though this result might not appear at first to have any
relation to the Pell equation, not only is the Pell equation instrumental in its proof, but considering
simultaneous solutions to Pell equations yields a method for which one can determine all these con-
secutive pairs for any set P .

These are just two among many of the curious applications of this relatively simple Diophantine
equation.
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