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Much of this is taken from Edward Frenkel’s “Lecture on the Langlands Program and Conformal Field Theory.”
The goal of this exposition will be to understand the motivation behind the Langlands program and how the Geomet-
ric Langlands Conjecture emerges from the corresponding problem in number theory. For the sake of intuition and
(relative) brevity, I focus on Q as our number field of concern. Especially to understand the geometric part, it is very
helpful to have some knowledge of topology and manifolds–especially Riemann surfaces–as well as basic Riemannian
geometry (up to connections). I’ve tried to include the details of as much of the relevant algebraic geometry as I can
in a succinct way.

1 The Meaning of Langlands Correspondence and its Motivations

The Langlands Correspondence is a statement that declares a relationship between n-dimensional representations
of Gal(F̄ /F ) and representations of GL(n,AF ) in functions of GL(n,AF )/GL(n, F ). This first section will explain
in detail the case F = Q and how we arrive at this statement.

1.1 Galois Field Extensions

We recall from abstract algebra the first definitions from field extension theory:

We consider algebraic extensions over a field F , which are fields E ⊃ F such that for all x ∈ E, there exists a
polynomial f with coefficients in F such that x is a zero of f . Such an E is also an F -vector space; we define the
degree of the extension, denoted [E : F ], to be the dimension of this vector space; if this number is finite, then we
say the extension is finite. We say that a field extension is Galois if it is:

• Normal : If E is a splitting field for f ∈ F [x] over F , meaning that f splits completely into linear factors in
E[x], and all roots of f generate the extension E as an F -vector space.

• Separable: If for every extension K/F , there exists an extension L/K so that there are exactly [E : F ]
homomorphisms E → L with φ(x) = x for all x ∈ F .

The Galois group Gal(E/F ) is the set of field automorphisms σ : E → E such that σ(x) = x for all x ∈ F . It
turns out that we may equivalently say that E is Galois over F if #Gal(E,F ) = [E : F ]. The group operation here
is composition; the identity element is the identity map Id : E → E, and all automorphisms have unique inverses
(and these will preserve the property of fixing elements of F ).

An important example of Galois field extension is the cyclotomic extension of degree n over the rational numbers
Q(ζn), formed by adjoining ζn = e2π/n. ζn is a zero of the polynomial xn − 1; all of the zeros are ζkn for k ≤ n− 1 :
gcd(k, n) = 1, which generate Q(ζn) as a Q-vector space. It can that Q(ζn) is a

Φn(x) =
∏

k≤n−1, gcd(k,n−1)=1

(x− ζkn)

is a polynomial with integer coefficeints, which means that Q(ζn) is a splitting field for Φn over Q. Furthermore,
Q(ζn) is an algebraic extension over Q, a field of characteristic 0, Q(ζn) is automatically separable.
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One of the major properties of Galois extensions is the correspondence between subgroups of the Galois group
and intermediate field extensions–and additionally, normal subgroups of the Galois group correspond to normal in-
termediate extensions.

Galois theory has provided many valuable insights. It provides a method of proving the fundamental theorem
of algebra, it tells us about when polynomial equations are solvable by radicals, and there are valuable analogies
between Galois extensions in field theory and covering spaces and deck transformations on Riemann surfaces (referred
to as Galois coverings) which will become relevant later when we discuss geometric Langlands.

1.2 Abelian Class Field Theory

One major concern in number theory is, given a field F , is to understand its algebraic closure F̄ , an extension
over F formed by adjoining all roots of every polynomial with coefficients in F . To find detailed information about
Galois groups of algebraic closures is in general very difficult. For example, think of the fundamental theorem of
algebra, which states that Q̄ ⊂ C. This is statement is quite nontrivial. Gal(C/Q) is a massive group, and no known
proof of the fundamental theorem of algebra involves purely algebraic methods.

But we can say something about the abelianization1 of Gal(F̄ /F ), which is identifiable with the maximal
field F ab ⊂ F̄ where Gal(F ab/F ) is abelian–this is called the maximal abelian extension. For example, recall
the cyclotomic extension Q(ζn)/Q from before. One can check that Gal(Q(ζn)/Q) ∼= (Z/nZ)∗, which means that
Gal(Q(ζn)/Q). If we adjoin multiple roots of unity2 to Q, the Galois group remains abelian; in fact, if we adjoin
all roots of unity to Q, we get the maximal abelian extension Qab. This is the result of the Kronecker-Weber Theorem.

The abelian class field theory describes the Galois group Gal(F ab/F ), or equivalently the ablelianization of
Gal(F̄ /F ). Returning to the example of Qab/Q, we see that

Gal(Qab/Q) ∼= lim
←

(Z/nZ)∗ =
∏
n∈N

(Z/nZ)∗
/

{x ∼ y ⇐⇒ ∃pmn : pmn(x) = y}

where pnm : (Z/nZ)∗ → (Z/mZ)∗ with m|n is defined by taking choosing a representative x of [x]n and then finding
[x]m.3. This group can be nicely descibed in terms of the p-adic numbers as well. Recall that a p-adic number for
p prime is an infinite series

∑∞
n=k anp

n where ak ∈ [0, p − 1] ∩ Z and k ∈ Z is chosen so that ak ̸= 0; the set Qp of
p-adic numbers turns out to be an analytic completion of Q. It turns out that

Gal(Qab/Q) ∼=
∏
p

Z∗p

where Zp, the collection of p-adic integers, is the set of elements of Qp with k ∈ Z≥0; one finds this by considering
prime factorizations.

Note that all analytic completions of Q are either R or Qp. If P is the set of primes, the adèle of Q, denoted AQ,
consists of tuples ((xp)p∈P , x) with xp ∈ Qp, x ∈ R, and xp ∈ Zp for all but finitely many p; this gives us

AQ
∼= (Ẑ⊗Z Q)× R

where Ẑ =
∏

p Zp. The p-adic norm on Q is defined by
∣∣∣pka

b

∣∣∣
p
= p−k, where a, b ∈ Z are coprime to p4; observe that

1In general, while some aspects of the structure of the original group may be lost through abelianization, the result still can possess
very useful properties, as demonstrated in other areas of mathematics:

- In algebraic topology, the first homology class happens to be the abelianization of the fundamental group and is still a homotopy-
invariant object.

- The classification of compact Lie groups involves understanding how the Lie algebra is decomposed into root spaces and the Lie
algebra of a maximal torus–that is, a maximal abelian sub Lie group.

- Faltings’s theorem is a major result in algebraic geometry draws a connection between the finiteness of rational points in an abelian
variety and the absence of subabelian varieties; Olivier Debarre and Matthew Klassen used this in the 1990s to prove powerful
results about smooth plane curves.

We will see shortly that maximal abelian extensions can be used to describe representations of Gal(F̄ /F ). (A representation is a
homomorphism ρ : Gal(F̄ /F ) → GL(V ), or equivalently a linear action Gal(F̄ /F )× V → V , on some vector space V .).

2A nth root of 1 for any integer n is referred to as a root of unity.
3In such a system, we have pnn = Id : (Z/nZ)∗ → (Z/nZ)∗ and pnm ◦ pmr = pnr.
4One can express any rational number as pka

b
for some a, b ∈ Z relatively prime to p.
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Qp is the analytic completion of Q under this norm. With this norm, we can define a metric space topology on Qp;
we can then say Zp = {x ∈ Qp : ||x||p ≤ 1}. It can be shown that as a metric space, Qp has the Heine-Borel property
and that Zp is a compact set.

Then, we assign to Ẑ the product topology, Q the discrete topology, and R the standard Euclidean topology. We
identity Q as a subset of AQ through a diagonal embedding and find that

AQ/Q ∼= Ẑ× (R/Z)

R/Z is homeomorphic to a circle, and by Tychonoff’s theorem, Ẑ is compact, so the quotient above is compact. Now
if we take the multiplicative groups, we get that similarly

A∗Q/Q∗ ∼=
∏
p

Z∗p × R+

∏
p Z∗p is totally disconnected and R is connected, so the group of connected components is isomorphic to

∏
p Z∗p. We

saw previously that this is isomorphic to Gal(Qab/Q).

1.3 Restrictions on this Isomorphism from the Abelian Class Field Theory

For an arbitrary number field F , the set of its adèles AF is defined quite analogously; the norms are defined
through prime ideals of the ring of integers of F–roots of monic polynomials with coefficients in F–and the comple-
tions are all isomorphic to a finite extension of some Qp. In general the abelian class field theory says that for an
arbitrary field F , Gal(F ab/F ) is isomorphic to the group of connected components of A∗F /F ∗. This is really useful,
especially since we do not have an analogue of Kronecker-Weber for arbitrary number fields.

Furthermore, this isomorphism satisfies some restrictions. Recall from abstract algebra that we can classify all
finite extensions of finite fields Fp up to isomorphism: An extension of degree m must be isomorphic to Fq with
q = pm, and Gal(Fq/Fp) ∼= Z/mZ is generated by the Frobenius automorphism Fq → Fq, defined by x 7→ xp, which
gets identified with [1]m in Z/mZ. If we take the union of all such Fq = Fpm , we get the algebraic closure F̄p;

Notice that Gal(F̄p/Fp) ∼= lim← Z/mZ ∼= Ẑ. This holds true for any p that is a power of a prime. Now, recalling

the definition of the inverse limit from before, there is an element of Ẑ that identifies with [1]m under the projection

Ẑ → Z/mZ, which then gets identified with the Frobenius automorphism of Gal(Fpm/F). We say that this element

of Ẑ corresponds to the Frobenius automorphism of F̄p.

There is a relation between Gal(F̄ /F ) and Gal(F̄p/Fp). We again look at the case F = Q. We have seen that
Q(ζn) is an abelian extension of degree φ(n), where φ is the Euler-φ function. Let p ∈ Z be a prime number. We
consider the ideal (p) in Z[ζn]. By Dedekind’s theorem, (p) is a product of prime ideals of Z[ζn]. Let q be one of
these ideals.

We call Z/(p) ∼= Fp the residue field. One can also verify that Z[ζn]/q ∼= Fpm for some m. We have from before
that Gal(Fpm/Fp) = Z/mZ. Now, we call Dq, the subgroup of σ ∈ Gal(Q(ζn)/Q) such that σ(x) ∈ q for all x ∈ q,
the decomposition group of q. Any element of Dq will preserve (p), as an ideal of Z ⊂ Q, because it already preserves
Q; this observation leads to a natural surjective homomorphism Dq → Gal(Fpm/Fp).

Note that if p does not divide n, the kernel of the above homomorphism, denoted Iq, otherwise known as the
inertia group of q, must be trivial, since Gal(Fpm/Fp) is generated by the Frobenius automorphism x 7→ xp. We say
in this case that Q(ζn)/Q is unramified at p. So then we have isomorphisms

Dq
∼= Gal(Fpm/Fp) ∼= Z/mZ

and we can identify the Frobenius automorphism of Gal(Fpm/Fp) uniquely with an element Fr[q] of Dq. For all
choices of prime ideals q, the corresponding subgroups Dq and elements Fr[q] are conjugate to each other, so in our
case, the conjugacy class of Fr[q], denoted Fr(p), is well-defined in Gal(Q(ζn)/Q) and depends only on p. The action
of Fr(p) on ζn sends ζn to ζpn. Recall that Gal(Q(ζn)/Q) ∼= (Z/nZ)∗; Fr(p) is identified with [p]n ∈ (Z/nZ)∗.
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Now, what if we try to define the conjugacy class Fr(p) in Gal(Qab/Q)? To avoid troubles, we reframe this
question by instead considering Gal(Qab,p/Q) where Qab,p is the maximal abelian extension that is unramified at p,
obtained by adjoining all roots of unity such that p does not divide the degree of the root. Since we are in effect
“avoiding p,” it turns out that

Gal(Qab,p/Q) ∼=
∏
q ̸=p

Z∗q

which is isomorphic to the group of connected components of (A∗Q/Q∗)/Z∗p (we treat this as the set of double cosets,

where the quotient by Q∗ is a left quotient and the quotient by Z∗p is a right quotient). Since Gal(Qab,p/Q) ∼=
Gal(Qab,Q)/Ip, we see that Ip ∼= Z∗p. So then we can identify under this isomorphism the inverse of Fr(p), denoted
Frp, with the double coset of (1, . . . , 1, p, 1, . . .) ∈ A∗Q where p occurs in the entry corresponding to Q∗p in the group
of conencted components of (A∗Q/Q∗)/Z∗p.

Observing the nature of the Frobenius conjugacy class as elements of these Galois groups can lead to interesting
consequences–in particular, reciprocity laws, which are particular arithmetic properties about p in relation to a given
finite field extension. For example, in the case n = 4, one can use this to derive the theorem by Fermat which states
that an odd prime p as an element of the Gaussian integers Z[i] is representable as the sum of two integer squares if
and only if p ≡ 1 mod 4. We may go through a similar process for an arbitrary number field F and obtain a similar
result, which results in analogous reciprocity laws.

1.4 De-Abelianization and the Langlands Correspondence

Unlike what may be extrapolated from the title above, there is no real way to “de-abelianize” here, but the
point is that we would like to be able to say something about Gal(F̄ /F ). Fortunately, we can make the following
observations: The 1-dimensional representations of Gal(F̄ /F ) are the same as the 1-dimensional representations
of Gal(F ab/F ); the 1-dimensional representations is enough to completely retrieve Gal(F ab/F ) itself. So we can
rewrite the abelian class field theory as saying that there is a bijective correspondence between one-dimensional
representations of Gal(F̄ /F ) and one-dimensional representations of the group of connected components of A∗F /F ∗.
The group of connected components of A∗F /F ∗ is closely related to A∗F /F ∗ itself, and we can view one-dimensional
representations of these as representations of GL(1,AF ) in functions on GL(1,AF )/GL(1, F ). So the abelian class
field theory, which we have spent the last few sections on, can be reformulated as describing a relationship between
one-dimensional representations of Gal(F̄ /F ) and representations of GL(1,AF ) in functions on GL(1,AF )/GL(1, F ).
Robert Langlands conjectured the Langlands correspondence, which declares a relationship between n-dimensional
representations of Gal(F̄ /F ) and irreducible representations of GL(n,AF ) in functions on GL(n,AF )/GL(n, F )–
called automorphic representations.

1.5 Hecke Eigenvalues

Before, we saw that the isomorphism from the abelian class field theory had an extra condition involving the
Frobenius conjucacy classes. Indeed, the Langlands correspondence demands a correspondence between Frobenius
conjucacy classes (in the context of Galois groups–found by going through the same process as before but this time
applied to the infinite extension F̄ ) and Hecke eigenvalues (in the context of automorphic representations). In this
section, we will define what these are in the case of 2-dimensional representations of GL(2,AQ); indeed, we return
to the case F = Q.

Let K =
∏

pGL(2,Zp)×O(2), a subgroup of GL(2,AQ). The center z of the universal enveloping algebra of the
complexified Lie algebra gl2 is generated as a polynomial algebra by the identity matrix I and

C =
1

4
X2

0 +
1

2
(X+X− +X−X+)

X0 =

[
0 i
−i 0

]
X± =

1

2

[
1 ∓i
∓i −1

]
We define a function on GL(2,AQ)/GL(2,Q) to be smooth if it is locally constant as a function on GL(2,A′),

where A′ =
∏′

p Qp
5 and smooth as a function on GL(2,R). We can define a group action of GL(2,AQ) on the space

5The notation denotes a restricted product, where all but finitely many entries in the tuples are p-adic integers.
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of smooth functions f : GL(2,AQ)/GL(2,Q) → C by

(g · f)(h) = f(hg) g ∈ GL(2,AQ)

One representation of the group GL(2,A′) =
∏′

p primeGL(2,Qp) and gl2 (which corresponds to GL(2,R)) is given
by the space Cχ,ρ(GL(2,AQ)/GL(2,Q)) of smooth functions satisfying

- The aforementioned left action by elements of K span a finite-dimensional vector space.6

- For a character χ : Z(AQ) → C∗ and ρ ∈ C, f(gz) = χ(z)f(g) for all g ∈ GL(2,AQ), z ∈ Z(AQ), and C ·f = ρf .7

- f is bounded on GL(n,AQ).

-

∫
AQ/Q

f

([
1 u
0 1

]
g

)
du = 0

Cχ,ρ(GL(2,AQ)/GL(2,Q)) is completely reducible in terms of GL(2,A′)×gl2, with each irreducible representation
occurring once in the direct sum; we may write these so-called cuspidal automorphic representations of GL(2,AQ) as

π =

′⊗
p prime

πp ⊗ π∞

where πp is an irreducible representation of GL(2,Qp), π∞ is one for gl2, and for all but finitely many p, πp fixes a
unique line under the action of GL(2,Zp), in which case πp is called unramified.

Suppose πp is ramified at p, so that all lines change under action by GL(2,Zp), and χ ≡ Id. Then there is a line
whose image under πp is invariant under action of

K ′p = {A ∈ GL(2,Zp) : A21 ≡ 0 mod pnpZp}

for some np ∈ Z+. For all primes p where π is ramified, we choose this vector vp and set np = 0 where πp is
unramified, to obtain that the vector space whose image through π is preserved under action of K ′ is

π̃∞ =
⊗
p

vp ⊗ π∞

Up to action by GL(AQ), this subspace contains the information of the entire space.

If n =
∏

p p
np and

Γ0(N) = {A ∈ SL(2,Z) : A21 = 0 mod nZ}

Then, by the strong approximation theorem,

(GL(2,AQ)/GL(2,Q))/K ′ ∼= GL+(2,R)/Γ0(n)

Note that Γ0(N) is one of the types of Hecke subgroups from earlier in the course.

If we consider the action of GL(2,R) on C(GL(2,AQ)/GL(2,Q)), we see that differentiating at the identity matrix
gives us an action of gl2 and that the subgroup O(2) also acts. These actions are therefore compatible, and we there-
fore get a (gl2, O(2))-module. This action carries over to the subspace of elements π̃∞. A result from representation
theory is that irreducible representations of (gl(2,C), O(2)) are all principle series, discrete series, limits of discrete
series, or finite-dimensional representatoins.

If π∞ is a representation of the discrete series of (gl2(C), O(2)), we get that ρ = k(k − 2)/4 for some k > 1,
and it follows from the classification of representations of sl2 that since sl2 acts on C(GL(2,AQ)/GL(2,Q)) through
the representation π∞, π∞ can be expressed as a direct sum of (1) the irreducible module generated by the highest
weight vector v∞ such that X0 · v∞ = −kv∞, X+ · v∞ = 0, and (2) the irreducible module generated by the lowest

weight vector

[
1 0
0 −1

]
· v∞. These are otherwise known as the irreducible Verma module with highest weight −k

6Also note that K is a compact subgroup.
7The center Z(AQ) consists of diagonal matrices and is isomorphic to A∗

Q.
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and the irreducible Verma module with lowest weight k, respectively.

The entire gl2(R)-module π∞ is generated by v∞; let φπ be the corresponding function on SL2(R) (modulo
Γ0(n)) corresponding to v∞. We have

φπ(γg) = φπ(g), γ ∈ Γ0(n)

φπ

(
g

[
cos θ sin θ
− sin θ cos θ

])
= eikθφπ(g) 0 ≤ θ ≤ 2π

Then, we assign φπ to fπ : H → H using the correspondence H ∼= SL(2,R)/SO(2) given by[
a b
c d

]
7−→ ai+ b

ci+ d

Define fπ by
g 7−→ φπ(g)(ci+ d)k

This satisfies

fπ

(
aτ + b

cτ + d

)
= (cτ + d)kfπ(τ)

[
a b
c d

]
∈ Γ0(n)

X+ · v∞ = 0 is equivalent to holomorphicity of fπ (one can check that the condition ∂fπ
∂τ̄ = 0 holds). These

conditions are exactly what it means for fπ to be a modular form of weight k and level n. One can also check that
fπ is also a cusp form.

The spherical Hecke algebra Hp is the algebra of compactly supported GL(2,Zp) bi-invariant functions on
GL(2,Qp) with respect to the convolution product, given by

(φ ∗ ψ)(g) =
∫
GL(2,Qp)

φ(gx−1)ψ(x)dx

Let ρp : GL(2,Zp) → Endπp be the representation homomorphism,

M1
2 (Zp) = GL(2,Zp)

[
p 0
0 1

]
GL(2,Zp) M1

2 (Zp) = GL(2,Zp)

[
p 0
0 p

]
GL(2,Zp)

Consider the operators H1,p and H2,p whose action on vp is given by

H1,p · vp =

∫
M1

2 (Zp)

ρp(g) · vpdg

H2,p · vp =

∫
M2

2 (Zp)

ρp(g) · vpdg

H1,p ·vp and H2,p ·vp are both scalar multiples of vp because vp is an eigenvector of the spherical Hecke algebra;
those integrals are taken over GL2(Zp) cosets. Under the assumption that χ ≡ Id, , H2,p ·vp = vp, but the eigenvalue
h1,p of H1,p is in general nontrivial; such eigenvalues are defined to be the Hecke eigenvalues.

Also note that the cosets M i
2(Zp) generalize our double cosets of (A∗Q/Q∗)/Z∗p from earlier, illustrating the corre-

spondence between Hecke eigenvalues and Frobenius conjugacy classes.

We have seen how modular forms arise from the automorphic representation side of the correspondence. It turns
out that elliptic curves emerge from the Galois representation; this is how Weil’s proof of Fermat’s theorem, which
involves relations between modular forms and elliptic curves, has become considered one of the first major manifes-
tations of the Langlands program.
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2 The Geometric Langlands Correspondence

While we have made some headway in understanding what the Langlands correspondence with regard to number
fields could be, this is has still a very difficult question to tackle.

In this section, we shall turn to the geometric version of the Langlands correspondence, which is a valuable
analogue to the number-theoretic correspondence. In this section, we explain how the each side of the Langlands
correspondence becomes geometrized. Our number fields will become function fields over a Riemann surface, and
the correspondence will now involve holomorphic vector bundles and Hecke eigensheaves.

2.1 Galois Groups and Galois Coverings

One of the key insights that leads to the geometrization of the Galois side of the Langlands correspondence is the
relationship between Galois extensions of number fields and Galois topological coverings.

First, we review some basic material from the theory of covering spaces in topology. Given a topological space X,
a covering consists of a topological covering space Y together with a covering map p : Y → X satisfying the condition
that every x ∈ X is contained in an open neighborhood U that is evenly covered by p–that is, p−1(U) =

⊔
i∈I Vi

for a collection of disjoint sets Vi each homeomorphic to U through p. The group of deck transformations, de-
noted Aut(p), is the collection of homeomorphisms f : Y → Y such that p ◦ f = p. These can often be thought of
as ways to permutate the Vi’s. The group operation is composition. The covering is finite if the indexing set I is finite.

It is well-known that if Y is simply connected8 and X is path connected, then this group of deck transformations
is isomorphic to the fundamental group of X, the set of loops9 in X modulo homotopy (or “wiggling”).

Now suppose Y and X are connected manifolds where (Y, p) is a finite covering of X. Recall from Galois theory
of field extensions that a finite extension is Galois if the order of its Galois group is as large as it can be–namely, the
degree of the extension. Analogously, a (Y, p) is a Galois covering of X if the order of Aut(p) is as large as it can
be. One can define a group action of Aut(p) on Y by stipulating that on each fiber p−1(x),

(f, y) 7→ f(y) f ∈ Aut(p) y ∈ p−1(x)

The maximum order condition for the deck transformations is achieved only if p : Y → X descends to a homeomor-
phism p̄ : Y/Aut(p) → X; equivalently, Aut(p) must act transitively on all fibers of p. These definitions make sense
also if we remove the finiteness condition.

In the case that (Y, p) is a Galois cover, we denote Aut(p) instead by Gal(Y/X). Recall also from the Galois
theory of field extensions that there are correspondences between (1) subgroups of the Galois group and intermediate
field extensions and (2) normal subgroups of the Galois group and normal extensions. Similarly, in the Galois theory
of covering spaces, there are correspondences between (1) subgroups of Gal(X/Y ) and intermediate coverings up to
equivalence10 and (2) normal subgroups of Gal(Y/X) and intermediate Galois coverings.

But it turns out that the connection between the Galois theory of field extensions and the Galois theory of
covering maps is even more intimate than this. If X is now a projective algebraic curve defined over the complex
numbers (or, equivalently, a Riemann surface), and (Y, p) is a Galois covering, the function field C(Y ) is a Galois
extension of C(X) and Gal(Y/X) ∼= Gal(C(Y )/C(X)).

2.2 Galois Representations and Holomorphic Vector Bundles

Suppose that p : Y → X is a Galois covering of connected Riemann surfaces. Recall that covering spaces are in
general also a type of fiber bundle: Letting x ∈ X and U ∋ x be the neighborhood evenly covered by p, we see that

8Simply connected means that any loop can be continuously “wiggled” (i.e. defomed via homotopy) down to a single point. Examples
are Euclidean space and any sphere of dimension ≥ 2. The case where Y is simply connected is unique up to homeomorphism; in this
case, Y is referred to as the universal cover of X.

9The group operation here is concatenation.
10Two intermediate covers W,Z are equivalent if they cover each other in such a way that fits in with the other covering maps in the

compositions Y → W → Z → X and Y → Z → W → X
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we have the local trivialization property described by the commutative diagram below:

p−1(U) U × p−1(x)

U

p

∼=

pr1

Here, the fiber is the discrete preimage of x. What makes it a fiber bundle is the local trivialization, which is the
homeomorphism p−1(U) → U × p−1(x)

But now, we consider representations of the Galois group Gal(Y/X); here, an n-dimensional representation is a
homomorphism ρ : Gal(Y/X) → GL(n,C). Representations will transform permutations of the fiber elements p−1(x)
into invertible linear transformations on Cn. So, one may guess that what we will end up with as our analogue to
n-dimensional representations of Galois groups is a type of fiber bundle whose fibers are vector spaces–in particular,
copies of Cn–instead of the discrete fiber p−1(x). These are holomorphic vector bundle of rank n, a pair (E, π) where
E is the total space, π : E → X is the projection, and for an open cover {Uα}α∈A of X, the following commutative
diagram is satisfied:

π−1(Uα) U × Cn

Uα

π

hα

pr1

where the local trivialization hα : π−1(U) → U × Cn is biholomorphic, and additionally, on nonempty overlaps
Uα ∩ Uβ , we have that the transition maps hαβ : hβ ◦ h−1α : Uα ∩ Uβ → Uα ∩ Uβ are biholomorphisms of the form

(x,v) 7−→ (x, gαβ(x)v)

Where gαβ : Uα ∩ Uβ → GL(n,C) is holomorphic. Lastly, a holomorphic section s is a family of locally defined
holomorphic maps sα : Uα → E such that π ◦ sα = IdUα

. These sections form an n-dimensional OX -module, where
OX denotes the set of holomorphic functions X → C.

Now that we have a guess for the spaces which are analogues to Galois representations, let’s understand how we
reach this analogy. We first develop the language of sheaves.

A sheaf is a functor F that takes the data of our manifold X and turns it into something special, such as a group
or a ring. In other words, for our purposes, for every open set U , F(U) is a n-dimensional C-vector space, whose
elements are sections of F over U . These sections will form our aforementioned “special” set–such as a group or
ring. F(X) consists of the global sections. If U ⊆ V are two open sets, we have a corresponding restriction map
resV,U : F(V ) → F(U) which is the image of the inclusion map ι : U → V under the functor F . Functors between
categories preserve morphisms: This means that, for example, in the case of a sheaf of groups, resV,U will be a group
homomorphism, or in the case of a sheaf of rings, resV,U will be a ring homomorphism. There are two required
conditions: (1) resU,U is the identity on F(U), and (2) if U ⊆ V ⊆ W , then we have the following commutative
diagram:

F(W ) F(V )

F(U)

resW,U

resW,V

resV,U

All of this makes F a presheaf : this becomes a sheaf with two more ingredients: If {Oα}α∈A is an open cover of U ,
then

- s1, s2 ∈ F(U), and resU,Oα
(s1) = resU,Oα

(s2) for all α ∈ A, then s1 = s2.

- If we have a collection {sα ∈ F(Oα)}α∈A such that resU,Oα∩Oβ
(sα) = resU,Oα∩Oβ

(sβ) for all α, β ∈ A, then
there exists a unique s ∈ F(U) such that resU,Oα(sα) = s.

We can see immediately, for example, that OX can be thought of as a sheaf whose sections are holomorphic
functions.
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If we have another sheaf G, then a morphism of sheaves φ : F → G is such that the induced morphism of objects11

φ(U) : F(U) → G(U) obeys the following commutative diagram, if U ⊆ V are open sets:

F(V ) G(V )

F(U) G(U)

resV,U

φ(V )

resV,U

φ(U)

This morphism is an isomorphism if on all open sets U ⊂ X φ(U) : F(U) → G(U) are isomorphisms which
obey the above property. Then, thinking about the fact that as we move a point around a manifold, a section of an
n-dimensional holomorphic vector bundle will manifest as a n-tuple of holomorphic functions, we can intuit that a
holomorphic vector bundle can be equivalently expressed as a sheaf of modules–in particular, a locally free sheaf of
rank n–meaning that F ∼= O⊕nX .

Now that we have developed this language, we can move back to discussing how to get from Galois representations
to holomorphic vector bundles–or, as we have now established, locally free sheaves.

For this, we consider a such a sheaf F with an extra condition that makes it a locally constant sheaf. This
means that for we have a covering {Uα}α∈A of X such that F|Uα is isomorphic to the constant sheaf K, where
K(U) = Cn constantly for all open sets U and all restriction maps are isomorphisms.12 This means in particular that
for nonempty Uα ∩ Uβ , F|Uα

and F|Uβ
are naturally identified via a constant linear transformation gαβ ∈ GLn(C);

this demands, in the language of vector bundles, that our transition maps hαβ be of the form (x,v) 7→ (x, gαβv)
for a constant general linear matrix gαβ . It turns out that this condition is equivalent to, in the language of vector
bundles, the existence of a flat connection–one that satisfies [∇X ,∇Y ] = ∇[X,Y ] for any vector fields X,Y –in other
words, a connection that yields zero Riemannian curvature.

Returning to the topic of Galois covers, suppose X̃ is the universal cover of X (meaning that X̃ is simply con-
nected). Then X̃ is automatically a Galois cover. Furthermore, X̃ covers every other covering space of X; as a result,
for every intermediate Galois cover Y , Gal(Y/X) is a normal subgroup of Gal(X̃/X). In general, every intermediate
cover has an associated subgroup of Gal(X̃/X). Also, Gal(X̃/X) ∼= π1(X), where π1(X) denotes the fundamental
group of X. So our Galois representations are now homomorphisms ρ : π1(X) → GL(n,C).

Here, it is useful to define the stalk of F at x ∈ X:

Fx = {(s, U) : U open, x ∋ U, s ∈ F(U)}
/

{(s, U) ∼ (t, V ) ⇐⇒ ∃W ⊂ U, V : resU,W (s) = resV,W (t)}

In the language of vector bundles, this is the set of germs, where we identify under an equivalence relation sections
which agree on all neighborhoods containing p.

By definition of our locally constant sheaf, if x0 and x1 are contained in the same neighborhood isomorphic U
where F(U) = Cn, then we can draw a path from x0 and x1 and transport a vector via a section by moving along
the path between x0 and x1 and looking at the values of the section on x0 and x1. The result is an invertible linear
map Fx0

→ Fx1
, or equivalently an element of GL(n,C) that depends only on the homotopy class of the path. Now,

setting x0 = x1, we can identify each loop modulo homotopy with an element of GL(n,C); equivalently, we get a
representation ρ : π1(X) → GL(n,C). To make this more concrete with an example, think of the tangent bundle
with a flat affine connection; the representation ρ can be expressed exactly in terms of holonomy, where the resulting
linear transformation is the parallel transport of a tangent vector along a loop.

So any locally constant sheaf of rank n gives us an n-dimensional Galois representation. If we instead start with
a Galois representation ρ : Gal(X̃/X) → GL(n,C). Recalling the group action of Gal(X̃,X) on X̃, we see that

X̃ × Cn

/
{(x̃,v) ∼ (f(x̃), ρ(f)v) ∀f ∈ Gal(X̃/X)}

This demonstrates a one-to-one correspondence between Galois representations of dimension n and locally con-
stant sheaves of rank n–or equivalently, holomorphic vector bundles with a flat connection.

11“Objects” is in reference to the type of sheaf. So if F ,G are sheaves of groups, for example, the induced morphism of objects φ(U)
on each open set is a group homomorphism. This is a category-theoretic term.

12F|U denotes the restriction of the F to U , where we consider a single fixed open set U as the global topological space.
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2.3 Hecke Eigensheaves and the Geometric Langlands Correspondence

The last two sections were dedicated to understanding how we get from Galois representations to holomorphic
vector bundles. Now for the other component of the Langlands correspondence, we will briefly summarize how we
get from automorphic representations to Hecke Eigensheaves, which will come from moduli spaces of rank n vector
bundles. Recall from the first part that we are looking specifically at automorphic representations of GL(AK) for
some field K. As we pointed out in Section 2.1, for Geometric Langlands, instead of a number field K, we now have
a function field K. There are analogous definitions for ramified and unramified representations; we will assume that
we are dealing with irreducible unramified automorphic representations.

If we have a Riemann surface X, we have the associated function field C(X) = F , and we define the set of adèles
AF in exactly the same way as we did before. Recall from Section 1.5 that out of an automorphic representation,
we get a modular form fπ that is an eigenfunction of the spherical Hecke algebra. Analogously, If we fix a point
x ∈ X, if we are given an automorphic representation on GL(n,AK), we can similarly derive from this a function fπ
on (GL(n,AF )/GLn(O))/GL(n, F ), where O =

∏
x∈X Ox is the ring of integers of the completion Fx of F at x; this

function fπ is an eigenfunction of every spherical Hecke algebras Hx, where x ranges over X.

From here, we invoke a crucial observation in the form of a theorem from Weil: There is a one-to-one correspon-
dence between (GL(n,AF )/GLn(O))/GL(n, F ) and rank n holomorphic vector bundles on X up to isomorphism.

The first observation instructs us to view the set (GL(n,AF )/GLn(O))/GL(n, F ) as a moduli space of rank n
vector bundles on X. Heck eigensheaves turn out to be the analogue to our fπ; these are defined as perverse sheaves
defined on the moduli stack on the space of isomorphism classes of vector bundles, denoted Bunn, with associated
“eigenvalue” E–a holomorphic vector bundle.

So the geometric Langlands correspondence declares a relation between holomorphic rank n bundles together
with a flat connection and Hecke eigensheaves on the moduli stack Bunn. As of quite recently, this correspondence
has been proven by the mathematicians D. Arinkin, D. Beraldo, J. Campbell, L. Chen, J. Faergeman, D. Gaitsgory,
K. Lin, S. Raskin and N. Rozenblyum.
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