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Abstract

In the last few decades, mathematicians have become increasingly interested in el-
liptic curves, and cryptographers have become increasingly interested in digital signa-
tures. As theoretical objects, both elliptic curves and digital signatures have numerous
and wide-ranging applications in their own rights. Elliptic curves feature in the fron-
tiers of number theory like Wiles-Fermat and of theoretical physics like String Theory.
Digital signatures are keys necessary to privately identify ourselves in open channels
for things like sensitive communications and financial transactions. In this paper, I
explore their synthesis: the use of elliptic curves for digital signatures. I assume the
reader has an undergraduate-level knowledge of mathematics, but minimal knowledge
of cryptography. Cryptography, in brief, deals with methods of generating codes that
are prohibitively difficult to decode without a certain bit of knowledge, a key. A very
long key, just as with passwords, is in general more secure, but keys are used so often
that they cannot be arbitrary large, due to excessive power consumption, limits in sili-
con area, minimal speed of communication, and so on. In this paper, I will first review
the relevant basics of elliptic curves and their finite groups, and then I will demonstrate
their utility for efficiently generating highly secure keys. My texts for reference were
Blake (1999), Hellegouarch (2001), Menezes (1996), and Silverman (2009, 2015).

Definition 1. Define the elliptic curve group as (E(Fq),⊕), the group of rational points
on a nonsingular E: y2 = x3 + ax + b defined over Fq with the usual operation of taking
two points to the negative (the mirror about the x-axis) of Bezout’s guaranteed (possibly
infinite, the identity) third collinear term.

Definitions 2. Define for shorthand elliptic point multiplication as

[m]P =

{
∞, m = 0

[m− 1]P ⊕ P, m > 0.

and analogously elliptic point subtraction as Q− P := Q+ (−P ).

Definition 3. Define the discrete logarithm:

logg(h) := min{x such that gx = h, g, h ∈ G finite and abelian}.

Definition 4. Define the Frobenius trace at q as

t := q + 1− |E(Fq)|

for some prime power q.
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Definition 5. Define the qth power frobenius map on E defined over Fq as the group
endomorphism

φ :


E(Fq) → E(Fq)

(x, y) 7→ (xq, yq),

∞ 7→ ∞.

Proposition 6. φ2 − [t]φ+ [q] = [0]

Proof. This is equivalent to having ∀P = (x, y) that

(xq
2

, yq
2

)− [t](xq, yq) + [q](x, y) = ∞,

which is easily verified with Fermat’s Little Theorem and Definition 4.

Proposition 7. If A is an abelian group and d : A → Z is a positive definite quadratic
form then ∀ψ, ϕ ∈ A one has the relation

|d(ψ − ϕ)− d(ϕ)− d(ψ)| ≤ 2
√
d(ϕ)d(ψ).

Proof. This is just a form of Cauchy–Schwarz. Let

L(ψ, ϕ) = d(ψ − ϕ)− d(ϕ)− d(ψ)

be the bilinear form associated with d. Since d is positive definite, we have ∀m,n ∈ Z that

0 ≤ d(mψ − nϕ) = m2d(ψ) +mnL(ψ, ϕ) + n2d(ϕ).

So when m = −L(ψ, ϕ) and n = 2d(ψ),

0 ≤ d(ψ)
(
4d(ϕ)d(ψ)− L(ψ, ϕ)2

)
.

Theorem 8 (Hasse, 1933).
t ≤ 2

√
q.

Proof. Note P ∈ E(Fq) ⇔ φ(P ) = P. Futhermore, the separability of 1 − φ gives that
|E(Fq)| = |ker(1 − φ)| = deg(1 − φ). So using Proposition 7 and the fact deg(φ) = q, one
has the bound ||E(Fq)| − q − 1| ≤ 2

√
q.

Definitions 9 (Cryptographic terminology). A key is a string k of symbols known privately
but not publicly. Plaintext is a string of symbols intended to be communicated. Encryption
is a key-dependent function mapping a plaintext to a string of symbols called the ciphertext.
An encryption scheme E is an encryption in terms of an arbitrary key. Decryption is the
inverse map of encryption. One’s adversary is a hypothetical person who knows one’s
encryption scheme and ciphertext but not one’s key or plaintext. An adversary breaks an
encryption scheme by finding the decryption. Security is the estimated length of time it
would take an encryption scheme to be broken. The Discrete Logarithm Problem (DLP)
is the fact that no algorithm has been discovered which calculates logg(h) in time which is
polynomial in the number of digits of |G|.
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Definition 10. The ECDLP (elliptic curve discrete logarithm problem) is the problem of
finding the integer m such that, given some P ∈ E(Fq) and Q ∈ ⟨P ⟩ , Q = [m]P .

Definitions 11. A baby step is Rb := Q − [b]P for some nonnegative integer b ≤
√
n.

Likewise a giant step is Sa := [a]
([

⌈
√
n ⌉

]
P
)
for some a ≤

√
n.

Definition 12. BSGS (baby-step giant-step) is the following algorithm applicable to any
E(Fq) of size n: tabulate all baby steps, then compute giant steps until reaching a′ such
that Sa′ = Rb′ for some (b′, Rb′) in the table.

Proposition 13. BSGS solves the ECDLP.

Proof. The a′, b′, n solve for m by the Euclidean algorithm:

Sa′ = Rb′

⇔ Q− [b′]P = [a′]
([

⌈
√
n ⌉

]
P
)

⇔ Q = [b′]P + [a′]
([

⌈
√
n ⌉

]
P
)

⇔ m = ⌈
√
n ⌉a′ + b′.

Corollary 14. BSGS has a complexity of O(
√
n).

Definition 15. Define the sub-exponential function as

Lp(v, c) := exp(c(ln p)v(ln ln p)1−v)

for 0 < v < 1.

Proposition 16. If breaking an E reduces to solving the DLP in E(Fq), then E is signif-
icantly more secure than a scheme which is broken by solving the DLP in F∗

p for p ≈ |
E(Fq)|.

Proof. The BSGS method, by Corollary 14, is of complexity O(n) = en for n = ⌈log2(q)⌉.
It suffices to show that the DLP in F∗

p can be solved in sub-exponential time. A quick
search of modern classical algorithms gives the general number field sieve an L-complexity
of v = 1

3 , c = ( 83 )
2/3 (see: Carl Pomerance’s 1996 paper “A Tale of Two Sieves” for more).

Using N = ⌈log2(p)⌉, equating key complexity gives

n =
2cN1/3(ln(N ln(2))2/3

(ln 2)2/3
.

Note, e.g., plugging in conventional values of N = 211 and 212 give n = 173 and 313,
respectively. This is a key reduction of an entire order of magnitude!

Remark 17 (present-day cryptography). The BSGS is the fastest known algorithm for a
general E(Fq). There are minor adjustments that reduce computer memory requirements
(see: Pollard’s “rho” and “lambda” attacks), but the speed/complexity remains exponential.
I will now review all three of the known special cases of E(Fq) which are uniquely susceptible
to subexponential attacks and how to choose E(Fq) such that the attacks do not apply. (The
matter of picking a “strong” E(Fq) is analogous to classical DLP matter of the so-called
strength or safety of primes used in RSA.)

3



Definition 18 (Attack 1). Define the Pohlig-Hellman (PH) attack as solving the DLP on
a finite abelian group by breaking the group into subgroups of prime order, solving those
by brute force, then applying the Chinese Remainder Theorem (CRT). That is, if p divides
|G|, and Q = [m]P , then the DLP restricts to solving

Q′ = [n′]Q = [m0]([n
′]P ) = [m0]P

′,

where n′ = |G|/pc and pc is the p-adic valuation of |G|. Once m ≡ mi (mod pi) are known
∀i, then since m = mi + λpi for some integer λ ∈ Z, ∃R,S such that

R = (Q− [mi]P ) = [λ]([pi]P ) = [λ]S,

|S| = |G|/pi. Let s′ = s/pc−i−1. Then, λ (mod p) is obtained by solving

R′ = [s′]R = [λ0]([s
′]S) = [λ0]S

′,

where S′ is a point of order p. Iterating this determines m (mod pc) for all prime divisors
p of n, so then CRT applies.

Definition 19. Define the Weil pairing as a map

e : E[m]× E[m] → µm

where µm is the group of the mth roots of unity.

Definition 20 (Attack 2). Define the MOV attack as the following reduction of the ECDLP
to the DLP: if Q is linearly independent of P (so e(P,Q) ̸= 1) then e(P,Q) and e(xP,Q) =
e(P,Q)x can be computed; both are elements of a finite field and are m-th roots of unity.

Definition 21. Define an elliptic curve as anomalous if it has a Frobenius trace of 1.

Definitions 22. If E takes values over the p-adics Qp, define E1(Qp) as the group of points
of E(Qp) which reduce to zero modulo p, and define E0(Qp) as the set of points in E(Qp)
which reduce modulo p to an element of E(Fp).

Proposition 23 (Attack 3). If E is anomalous then the ECDLP can be solved in linear
time.

Proof. Note
0 → E1(Qp) → E0(Qp) → E(Fp) → 0.

So if x ∈ E0(Qp) and y is a multiple of |E(Fp)|, then xy ∈ E1(Qp). Furthermore, if
|E(Fp)| = |F+

p |, then

E0(Qp)/E1(Qp) ∼= E1(Qp)/E2(Qp) ∼= F+
p .

So
Q− [m]P = R ∈ E1(Qp).

Note that
E0(Qp)/E1(Qp) ∼= E(Fp) and E1(Qp)/E2(Qp) ∼= F+

p .

But |E(Fp)| = |F+
p | = p, so

[p]Q− [m]([p]P ) = [p]R ∈ E2(Qp).

Since it takes O(n) = log p time to compute [p]P and [p]Q, it takes O(n) = p time to
find m.
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Corollary 24. By taking the negation of the necessary conditions for all three known
attacks upon E(Fp), according to all known present technological and mathematical capa-
bilities, the ECDLP is unbreakable (i.e. breakable, but at the speed of BSGS, which can
easily be made to require a timescale beyond estimates of the heat death of the universe).
More precisely, we only need three (easy to check) conditions:

1. E(Fp) has a large subgroup

2. E is not anomalous

3. q is of large order

Remark 25. The “large” of Corollary 24 is relative to one’s desired complexity, but by
Proposition 16, the use of elliptic curves reduces the length needed for a given complexity
by an order of magnitude. This makes them the superior choice for group generation, and
supports their increasing use in digital signature key generation.
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