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1 Introduction

In this seminar, we have investigated the notion of a modular form. These are certain
holomorphic functions on the upper half-space H that transform in a nice way with respect
to the group SL2(Z) acting on H. Modular forms appear in many fields across number theory,
the Langlands program, combinatorics, algebraic geometry, and even physics. They admit
various generalizations: they can be seen as sections of line bundles on modular curves, or
automorphic forms and functions on adelic quotients.

In this article, we will introduce one generalization of modular forms, called Siegel
modular forms. These generalize classical modular forms to higher-dimensional analogues of
the half-plane H and group SL2(Z). It turns out that the proper generalization is to consider
functions on a space of matrices, called the Siegel upper half-plane, equipped with an action
of the symplectic group Sp(2g,Z). We develop these notions and define a Seigel modular
form in Section 2.

The Fourier theory of modular forms is also important, including their q-expansions
and Fourier coefficients. In Section 3, we will show how this theory generalizes to higher
dimensions and give some applications. These include the Koecher principle, which shows
how higher rank Siegel modular forms need no additional growth condition at the “cusp” at
infinity.

This paper makes the major sin of containing no examples. As with modular forms,
two main constructions of Siegel modular forms are Eisenstein series and theta functions.
While their theory is interesting and deep, the details are unfortunately technical and com-
plicated. We will content ourselves with showing how some aspects of the general theory
generalizes to the higher-dimensional setting, with the assurance that this theory may be ap-
plied to many interesting examples. It is my hope that the theory for higher ranks elucidates
some aspects of the classical g = 1 case. As one example application, we mention that Siegel
modular forms may be seen as functions on the moduli space of principally-polarized complex
abelian varieties, with the usual interesting difficulties of dealing with orbifold points and
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compactifications of the moduli space.

Our presentation closely follows [vdG08], which is our main reference. For applica-
tions of Siegel modular forms and much more of the theory, we refer the reader to [vdG08].

2 Siegel Modular Forms

2.1 Symplectic Group and Siegel Upper Half Space

The starting point for generalizing modular forms to higher dimensions will be the following
observation. The group SL2(Z) is the automorphism group of the lattice Z2 with alternating
form ⟨−,−⟩ defined by

⟨(a, b), (c, d)⟩ = ad− bc.

In higher dimensions, we generalize the group SL2(Z) with the symplectic group Sp(2g,Z)
for g ≥ 1. This is by definition the automorphism group of the lattice Z2g equipped with
symplectic form ⟨−,−⟩ as follows: letting e1, . . . , eg, f1, . . . , fg be a basis for Z2g, we define

⟨ei, ej⟩ = 0, ⟨fi, fj⟩ = 0, ⟨ei.fj⟩ = δij. (1)

In other words, the matrix for the alternating form ⟨−,−⟩ in this basis is, in block form,

Ω =

(
0 Ig

−Ig 0

)
(2)

where Ig is the g × g identity matrix. Thus, we may write the symplectic group as

Sp(2g,Z) =
{
M ∈ M2g×2g(Z) | MTΩM = Ω

}
. (3)

In the sequel, we will often write g × g matrices in the block form

M =

(
A B
C D

)
(4)

for g × g integer matrices A,B,C,D. If M is represented in such a block form, we will even
write M = (A,B;C,D). If M = (A,B;C,D), it is easy to see that M ∈ Sp(2g,Z) if and
only if the three conditions

ABT = BAT , CDT = DCT , ADT −BCT = Ig (5)

are satisfied. By taking a transpose and multiplying by −1, one can see that these conditions
are equivalent to

CTA− ATC = 0, DTB −BTD = 0, DTA−BTC = Ig. (6)

In particular, when g = 1 we recover the group SL2(Z).

We may similarly generalize the upper half-plane.
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Definition 2.1. The Siegel upper half-plane Hg is defined as

Hg =
{
τ ∈ Mg×g(C) | τT = τ, Im(τ) > 0

}
, (7)

i.e. the complex symmetric matrices with positive-definite imaginary part.

Clearly H1 = H. We can define an action of Sp(2g,Z) on Hg by setting, for M =
(A,B;C,D) ∈ Sp(2g,Z) and τ ∈ Hg,

M · τ := (Aτ +B)(Cτ +D)−1. (8)

While this definition is clear when g = 1, it is not clear that it is well-defined for higher g;
for example, Cτ +D may not be invertible.

Lemma 2.2. If M = (A,B;C,D) ∈ Sp(2g,Z), then Cτ +D is invertible and

M · τ = (Aτ +B)(Cτ +D)−1 ∈ Hg.

Proof. Write τ = x + iy with x and y symmetric real g × g matrices. In particular, y is
positive-definite. We will show that det(Cτ +D) ̸= 0. Using the fact that M ∈ Sp(2g,Z), a
computation shows that

(Cτ +D)T (Aτ +B)− (Aτ +B)T (Cτ +D) = τ − τ = 2iy.

If the equation (Cτ +D)ξ = 0 had a nonzero solution ξ ∈ Cg, then plugging ξ into the above

identity implies ξ
T
yξ = 0, contradicting the assumption that y is positive-definite.

Thus, the expression M · τ makes sense. We will show it is symmetric and has
positive-definite imaginary part. For this we compute an additional identity

(Cτ +D)T (M · τ − (M · τ)T ) = (Cτ +D)T (Aτ +B)− (Aτ +B)T (Cτ +D)

= τ − τT = 0.

Canceling (Cτ + D)T on the left hand side, we see that M · τ is symmetric. Finally, let
y′ = Im(M · τ). By combining the two identities, we see that

(Cτ +D)Ty′(Cτ +D) =
1

2i
(Cτ +D)T (M · T − (M · τ)T )(Cτ +D) = y

and since y is positive-definite, so is y′.

Thus M · τ defines an action Hg. As with the g = 1 case, the matrix −I2g acts
trivially on Hg, but the quotient Sp(2g,Z)/{±I2g} acts effectively on Hg.

Remark 2.3. As with the half-plane H, the Siegel half-spaces Hg have an analogous “Poincare
disk model” and the structure of a homogeneous symmetric space. Moreover, the symplec-
tic group Sp(2g,Z) admits a level set structure, analogous to the congruence subgroups in
SL2(Z). For more about these ideas, see [vdG08].
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2.2 Siegel Modular Forms

We now come to modular forms. In the original g = 1 case, the “automorphy factor”
(cz + d)k was relevant. The key insight is that the number k is really the weight of a
representation of GL1(C). Higher dimensional Siegel modular forms are defined with respect
to representations, but for higher ranks.

Definition 2.4. Let ρ : GLg(C) → GL(V ) be a representation, where V is a finite-
dimensional complex vector space. A holomorphic map f : Hg → V is a Siegel modular
form of weight ρ if

f(M · τ) = ρ(Cτ +D)f(τ) (9)

for all M = (A,B;C,D) ∈ Sp(2g,Z) and all τ ∈ Hg. If g = 1, we further require that f is
holomorphic at the cusps.

Naturally, one might wonder why there is no requirement to be “holomorphic at the
cusps” when g ≥ 2. The reason for this is the Koecher principle, proved in the following
section. This says that, with no additional assumptions, Siegel modular forms are bounded
on subsets of the form {τ ∈ Hg | Im(τ) > cIdg}, i.e. as they approach the “cusp” at infinity.
Thus in higher ranks the holomorphicity at the cusps is automatic.

One might notice that general Siegel modular forms are functions into a vector space.
If we consider the determinant representation det : GLg(C) → GL1(C) and its tensor prod-
ucts (powers), then we obtain complex-valued modular forms.

Definition 2.5. A classical Siegel modular form of weight k is a holomorphic function Hg →
C such that

f(M · τ) = det(cτ + d)kf(τ) (10)

for all M = (a, b; c, d) ∈ Sp(2g,Z) and all τ ∈ Hg. If g = 1, we also require that f is
holomorphic at the cusps.

3 Fourier Expansion of Siegel Modular Forms

We now begin generalizing the Fourier theory to Siegel modular forms. We will give the
very beginnings of the theory here. One primary difference in the g ≥ 2 case is the Koecher
principle, which we prove here. The proof makes clear why a similar principle does not hold
in the g = 1 case.

The “exponents” of our Fourier expansions will be half-integral matrices, which we
define now.

Definition 3.1. A symmetric g×g matrix N ∈ GLg(Q) is half-integral if 2N is a matrix with
integer entries, whose diagonal entries are even (i.e. the diagonal entries of N are integers).

Let τij, 1 ≤ i, j ≤ g be the coordinates of Hg. Any half-integral matrix N defines a
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linear form with integral coefficients in the coordinates τij, defined by

Tr(Nτ) =

g∑
i=1

niiτii + 2
∑

1≤i<j≤g

nijτij. (11)

Since τ is symmetric, every linear integral combination of the coordinates τij comes from
such a half-integral matrix N .

Now, write τ = x+ iy with x, y real symmetric g × g matrices. By the usual Fourier
theory, a function f : Hg → C with the periodicity property f(τ + s) = f(τ) for all integral
symmetric g × g matrices s has a Fourier expansion

f(τ) =
∑

N half-integral

a(N)e2πiTr(Nτ) (12)

where a(N) ∈ C is defined by

a(N) =

ˆ
x mod In

f(τ)e−2πiTr(Nτ)dx, (13)

where dx is the Euclidean volume element with respect to x on the space of real symmetric
g × g matrices and the integral is over the box −1/2 ≤ xij ≤ 1/2. The Fourier expansion
converges uniformly on compact subsets of Hg.

Similarly, if f is a vector-valued Siegel modular form of weight ρ, then we can write

f(τ) =
∑

N half-integral

a(N)e2πiTr(Nτ) (14)

where a(N) ∈ V is defined in a similar matter. If we use the notation qN = e2πiTr(Nτ), we get

f(τ) =
∑

N half-integral

a(N)qN , (15)

generalizing the familiar q-expansions for modular forms.

Lemma 3.2. For all U ∈ GLg(Z),

a(UTNU) = ρ(UT )a(N). (16)

Proof. Set M =

(
U 0
0 (U−1)T

)
∈ Sp(2g,Z). Then M · τ = UτU−1 and

a(UTNU) =

ˆ
x mod 1

f(τ)e−2πiTr(UTNUτ)dx

= ρ(UT )

ˆ
x mod 1

f(τ)e−2πiTr(NUτUT )dx

= ρ(UT )a(N).
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This property of the Fourier coefficients leads immediately, by parity conditions, to
a restriction on the weights of forms.

Corollary 3.3. A classical Siegel modular form of weight k with kg odd, vanishes.

Proof. Letting U = −Ig, we get

a(N) = (−1)kga(N).

Since kg is odd, we see that a(N) = 0 for all N .

We finally come to the Koecher principle.

Theorem 3.4 (Koecher principle). Let f be a Siegel modular form of weight ρ with q-
expansion f =

∑
N a(N)qN . Then if the half-integral matrix N is not positive semi-definite,

we have a(N) = 0.

Proof. For g = 1, this is the assumption that the Fourier expansion of f has no negative
terms. So we suppose g ≥ 2. Setting τ = iIg in the expansion f =

∑
N a(N)e2πiTr(Nτ), the

fact that f converges absolutely in Hg shows that there is a constant C > 0 such that for all
half-integral matrices N , |a(N)| ≤ Ce2πiTr(N).

Suppose N is not positive semi-definite. General results about half-integral matrices
yield a primitive (the entries are coprime) column vector ξ such that ξTNξ < 0. By the theory
of unimodular matrices (those with determinant ±1), we may complete ξ to a unimodular
matrix U such that ξ is the first column of U . Using a(UTNU) = ρ(UT )a(N) and replacing
N by UTNU , we may assume that the entry N11 of N is negative.

Now for m ∈ Z, let V be the matrix

V =

1 m
0 1

Ig−2

 ∈ GLg(Z).

Then,

|a(N)| = |ρ(V T )−1||a(V TNV )| ≤ Cme2πTr(V TNV ).

But now Tr
(
V TNV

)
= Tr(V )+n11m

2+2n12m. Letting m → ∞, we see that Tr
(
V TNV

)
→

−∞ and so |a(n)| = 0.

Corollary 3.5. Let f be a Siegel modular form of weight ρ. Then f is bounded on any subset
of the form Hg of the form {τ ∈ Hg | Im(τ) > cIdg} with c > 0.

Proof. As in the proof of the Koecher principle, the g = 1 case follows from the assumption
of holomorphicity at the cusps. So we assume g ≥ 2 and write f(τ) =

∑
N≥0 a(N)e2πiTr(Nτ),
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where we can assume N ≥ 0 by the Koecher principle. We can now estimate, for Im(τ) > cIg,

|f(τ)| ≤
∑
N≥0

|a(N)|e−2πTr(N Im(τ)) ≤
∑
N≥0

|a(N)|e−2πTr(Nc).

This latter sum is finite since it is the absolutely-convergent version of the series for f(cIg),
so we are done.
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