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These notes are an expansion on Sections 2.6-2.12 of [1]; most of the Sections have been named accordingly.

1 Review of Elliptic Functions I

First, we review some previous material.

1.1 Fundamentals of Complex Analysis

Definition 1.1. We define f : C → C to be holomorphic if the following limit exists (where the limit as h → 0 is
taken over the complex numbers):

lim
h→0

f(z + h)− f(z)

h

Equivalently, we can use the following:

Theorem 1.2. f : C → C can be written as f = u+iv. f is holomorphic if an only if the following Cauchy-Riemann
equations hold:

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

The following propositions may be useful from time to time:

Proposition 1.3. (Liouville / Cauchy) A bounded holomorphic function (i.e. |f(z)| ≤ b for some b ∈ R≥0) must be
constant.

Proposition 1.4. The limit of a uniformly convergent sequence of holomorphic functions is holomorphic (given an
open set), and the differential and limit operators are interchangeable in this case.

Definition 1.5. A meromorphic function f : C → C∪∞ is the quotient of two holomorphic functions, that is f = g
h

for g, h holomorphic. Consider a point p such that f(z) = (z − p)nh(z) where h is a holomorphic function. p is a
zero of order or multiplicity n if n > 0, and p is a pole of order or multiplicity −n if n < 0.

As we define differentiation of complex functions, we can also define integration of complex functions. Given a
curve γ in C where z : [a, b] → C is the parameter, and f is a continuous complex function, the integral of f along γ
is ∫

γ

f(z)dz =

∫ b

a

f(z(t))z′(t)

This looks quite similar to path integrals in real domains. To define integrals over areas rather than paths, we can
write continuous f : C → C as f = u+ iv for two real continuous functions u, v, and define

∫
f =

∫
u+ i

∫
v.

The Laurent series for a complex function are the complex analogue of Taylor series, but this time we include
negative powers:

f(z) =

∞∑
n=−∞

an(z − c)n

If c is a pole of f with order n, it is known from complex analysis that we can write f(z) like this (where G is
holomorphic):

f(z) =
a−n

(z − c)n
+

a−n+1

(z − c)n+1
+ . . .+

a−1

z − c
+G(z)
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a−1 = rescf is called the residue of f at c.

Proposition 1.6. One can compute the residue of f at a singularity c by evaluating the following integral, where C
is a circle such that c is the only pole of f contained in C:

1

2πi

∫
C

P (z)dz = a−1

This formula comes from Cauchy’s integral.

Another result from complex analysis is the residue formula:

Theorem 1.7. Given an open set U which contains a circle C, if f contains a finite number of poles z1, . . . , zN
inside C and is holomorphic everywhere else in U , we have∫

U

f(z)dz = 2πi

n∑
k=1

reszkf

This formula is an application of Stokes theorem, which relates the integral over some region to the integral over
the boundary of said region. We can replace the circle with anything homeomorphic to it, or more specifically, a
“toy countour,” which is useful for integration techniques in complex analysis.

1.2 Defining Elliptic Functions

Definition 1.8. A lattice Λ is the Z-span of two R-linearly independent ω1, ω2 ∈ C, i.e.

Λ = Zω1 + Zω2

If Λ = Zω1 + Zω2, the fundamental parallelogram Πω1,ω2
is the filled-in parallelogram formed by the points 0, ω1,

ω1 + ω2, and ω2 minus the boundary. We can translate a parallelogram by adding a fixed α to every element of Π;
we denote this by α+Π.

Definition 1.9. Elliptic functions are meromorphic f : C → C ∪ {∞} where there exists a lattice Λ so that
f(z + ω) = f(z) for all ω ∈ Λ.

Below is another important result from complex analysis:

Proposition 1.10. If f is a meromorphic function on C ∪∞, that the number of zeroes of f equals the number of
poles f counted with multiplicity.

This follows from evaluating the integral
∫ f ′(z)

f(z) dz over C ∪∞ using Stokes Theorem and the residue formula.

One can translate this to elliptic functions:

Proposition 1.11. If f is an elliptic function of lattice Λ which has no poles on the boundary of α + Π, then the
number of zeroes and poles contained in α + Π are the same when counted with multiplicity. Furthermore, we have
that if a1, . . . , an are the zeroes and b1, . . . , bn are the poles in α+Π, then

n∑
j=1

aj ≡
n∑

j=1

bj mod Λ

Definition 1.12. The number of poles (or zeroes) of an elliptic function f of a lattice Λ which lie in a parallelogram
of α+Π is the order of f .
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1.3 Weierstrass Theory

The theory of Weierstrass functions, which we is a way to find meromorphic functions at specific poles and zeroes.

Definition 1.13. Given a lattice Λ, we define the Weierstrass function of the lattice Λ to be

ϱΛ(z) =
1

z2
+H(z) H(z) =

∑
ω∈Λ\{0}

[
1

(z − ω)2
+

1

ω2

]
Proposition 1.14. This meromorphic function has the following properties:

(i) H(z) is holomorphic.

(ii) ϱ′Λ(z) = −2h(z) where

h(z) :=
∑
ω∈Ω

1

(z − ω)3

h is an odd elliptic function of lattice Λ with order 3.

(iii) ϱΛ(z) is an elliptic function of lattice Λ.

(iv) If λ ∈ C∗, then we have
ϱΛ(z) = λ2ϱλΛ(λz)

(v) ϱΛ(z) is an even function of order 2.

Then comes a very important result:

Theorem 1.15. Every elliptic function f of lattice Λ can be written in terms of the Weirstrass function (where φ,ψ
are rational functions):

f = φ(ϱΛ) + ϱ′Λψ(ϱλ)

Furthermore, the field of elliptic functions of lattice Λ is C(ϱΛ, ϱ′Λ).

2 Eisenstein Series

As with any meromorphic function, we would like to know the Laurent expansion of ϱΛ is, given a lattice Λ.

For m ≥ 3, consider

Gm(Λ) :=
∑

ω∈Λ\{0}

1

ωm

Ifm is odd, then noting that if ω ∈ Λ, −ω ∈ Λ, we observe thatGm(Λ) = 0. SoGm is interesting only for evenm = 2k.

Definition 2.1. G2k is the Eisenstein series of index 2k of the lattice Λ.

Recall from the previous section that

ϱΛ(z)−
1

z2
=

∑
ω∈Λ\{0}

[
1

(z − ω)2
+

1

ω2

]
If we take z ̸= ω, we see that 1

(z−ω)2 is holomorphic, so only the principal part of the Laurent expansion remains.

1

(z − ω)2
=

∞∑
j=2

(j − 1)zj−2

ωj

We can then write this in terms of the Eisenstein series. Given our observation about Eisenstein series of odd
indices, the Weierstrass equation becomes

ϱΛ(z) =
1

z2
+

∞∑
j=1

(2k + 1)G2k+2z
2k =

1

z2
+ 3G4z

2 + 5G6z
4 + 7G8z

6 + . . .

Using the Laurent series for ϱ, we can derive the Laurent series for ϱ′ by differentiating with respect to z:

ϱ′(z) = − 2

z3
+ 6G4z + 20G6z

3 + 42G8z
5 + . . .
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Theorem 2.2. Let G4 = G4(Λ), G6 = G6(Λ) for some lattice Λ and ϱ be the Weierstrass function of Λ.
Then ϱ is the solution to the differential equation

Y ′2 = 4Y 3 − 60G4Y − 140G6

Proof. Replace Λ with αΛ and z with αz for some α ∈ C∗. It follows from Proposition 1.14 that ϱ becomes α−2ϱ.
Furthermore, G4 becomes α−4G4 and G6 becomes α−6G6; this can be seen just by looking at each Eisenstein series.
In other words, ϱ is of weight 2, G4 is of weight 4, and G6 is of weight 6.

From example 2.5.1 of [1], we have the following relation between ϱ′ and ϱ:

ϱ′2 = 4ϱ3 + aϱ2 + bϱ+ c

Note from before that the Laurent series for ϱ′ has only terms of odd power (this can also be seen from the fact that
ϱ′ = −2h(z) and h(z) is an odd function, which means that so is ϱ′). So ϱ′2 has terms of power 2 mod 4. The first
term of ϱ2 is 1

z4 , so we can conclude a = 0.

Out of convenience, we experiment with the case that the terms 4ϱ3+ aϱ2+ bϱ+ c are all of the same weight (i.e.
homogeneous). For this to happen, b must be of weight 4 and c must be of weight 6, since ϱ3 is of weight 6. Using
our observations about the weights of G4 and G6 and the Laurent series expansions of ϱ and ϱ′, we can see that it
is most likely that

b = λG4 c = µG6

We compute λ and µ using the Laurent series expansion for ϱ and ϱ′.

We compare terms our two different versions of the Laurent expansion of ϱ′(z). In particular, to compute λ, we
pay attention to the terms involving G4; the expression on the left corresponds with the Laurent expansion of ϱ′(z)
obtained by taking the derivative of ϱ(z), and the expression on the right corresponds to the Laurent expansion for
4ϱ3 + λG4ϱ+ µG6. (

− 2

z3
+ 6G4z

)2

+ . . . 4

(
1

z2
+ 3G4z

2

)3

+ λ
G4

z2
+ . . .

Examining the terms with 1
z2 , we see that the expression on the left has the term −24G4

z2 and the expression on

the right has the term (36+λ)G4

z2 . Hence, we see that λ = −60.

To compute the terms involving µ, we pay attention to the terms involving G6.(
− 2

z3
+ 20G6z

3

)2

+ . . . 4

(
1

z2
+ 5G6z

4

)3

+ µG6 + . . .

Examining the constant terms, we see that the expression on the left has the term −80G6 and the expression on
the right has the term 60G6 + µG6. Hence we get that µ = −140.

3 The Weierstrass Cubic

Before we proceed further, it may be in our best interest to introduce some aspects of geometry regarding
projective curves.

3.1 Complex Projective Space

I introduce the geometry of projective space quite loosely here. I have purposefully left out a handful of termi-
nology.

Definition 3.1. We define complex projective n-space Pn
C to be Cn+1/{x ∼ λx ∀λ ∈ C∗}.

Its elements are written as [z1 : z2 : . . . : zn : zn+1], recognizing that [z1 : z2 : . . . : zn : zn+1] ∼ [λz1 : λz2 : . . . :
λzn : λzn+1]. Note that zi cannot not all be 0.
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For our purposes, it is ideal to understand what P1
C and P2

C look like.

The elements of P1
C look like [z1 : z2]. Let’s consider the set of points in P1

C where z2 ̸= 0. Scaling our coordinates
by z2 gives us [z1 : z2] = [z : 1], where z = z1

z2
. Note that every point in {z2 ̸= 0} can be expressed [z : 1] for some

z ∈ C. Hence, we have a bijective correspondence {z2 ̸= 0} → C given by [z : 1] 7→ z. If z2 = 0, the only such point
in P1

C is [1 : 0]. So, we see that
P1
C = {z2 ̸= 0} ∪ {[1 : 0} ∼= C ∪∞

In other words, [1 : 0] serves as our point at infinity, and P1
C is the1 one-point compactification of the complex

plane–in other words, the unit sphere2 S2.

The elements of P2
C look like [z1 : z2 : z3]. Similarly, we can consider the set {z3 ̸= 0}; when we scale by z3

respectively, we find a correspondence {z3 ̸= 0} → C2. But this time, we need more than one “point at infinity,”
namely points of the form [a : b : 0] to complete P2

C. But note that this set is identifiable with P1
C. So we have

P2
C
∼= C2 ⊔ P1

C

Observe that we have seen that locally, P1
C mostly looks like C1 and P2

C mostly looks like C2, except for the fact
that these projective spaces are compact. In general, Pn

C will mostly look like Cn–this is why we call it projective
n-space, even though we define the equivalence relation on Cn+1.

3.2 Elliptic Curves

Definition 3.2. Let 60G4 = g2 and 140G6 = g3. We define

Y 2 = 4X3 − g2X − g3

to be the Weierstrass cubic associated to the lattice Λ.

This is the first example we have seen of an elliptic curve!

Definition 3.3. Elliptic curves are of the form E = {y2 = f(x)} where the polynomial f(x) is a cubic with no
repeated roots.

This is the expression for the curve in terms of affine coordinates; i.e. we consider this algebraic set as living in
C2. But, it often behooves us to homogenize this equation. In other words, if we replace x with X/Z, y with Y/Z
and clear denominators, we get, supposing that f(x) = ax3 + bx2 + cx+ d, that

Y 2Z = aX3 + bX2Z + cXZ2 + dZ3

We now view this as a subset of P2
C, i.e. we consider [X : Y : Z] which satisfy the above relation of the form

F (X,Y, Z) = 0. Indeed, if we scaled X,Y, Z by some constant λ, the solutions to the above equation would remain
untouched. In other words, we are looking at this set now as a projective curve. In particular, we are looking at the
projective completion, denoted Ē, of our curve E.

We can also look at this curve locally by de-homogenizing the curve to other subsets of P2
C. For example, if we

consider the subset {X ̸= 0} and let Y
X = y and Z

X = z, after scaling our coordinates by X, our equation becomes

y2z = a+ bz + bz2 + bz3

Or we can also consider the subset {Y ̸= 0} and, after scaling by Y and suitably replacing coordinates, our
equation becomes

z = ax3 + bx2z + bxz2 + cz3

There are three non-homogenous equations associated with our curve, of the form f1(x, y) = 0, f2(y, z) = 0, and
f(x, z) = 0; they are said to represent the three different affine charts of our curve, in the same way that {X ̸= 0},

1One-point compactifications are unique up to homeomorphisms; this is a result from point-set topology.
2Imagine folding the distant edges of the complex plane into one point. Another way to see this is through stereographic projection: In

which we view the unit sphere as {x2+y2+z2 = 1} ⊂ R3 and define a map f : S2 \{(0, 0, 1)} → R2 which sends a point p ∈ S2 \{(0, 0, 1)}
to the point where the xy-plane intersects the line through (0, 0, 1) and p. This shows that S2 \ {(0, 0, 1)} ∼= R2 ∼= C–the sphere minus a
point may be identified with the complex plane. Adding (0, 0, 1) turns the complex plane into a compact set.
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{Y ̸= 0}, and {Z ̸= 0} are three affine charts of P2
C, each identifiable with C2 (which is what we call “affine space”),

which together cover all of P2
C.

Definition 3.4. A projective curve is smooth if at each affine chart, not all partial derivatives of the defining
polynomial (which in our case would be fi) are simultaneously zero at any point.

Proposition 3.5. An elliptic curve y2 = f(x) forms a smooth projective curve.

I will leave this to you as an exercise. You can either check every affine chart, or you can verify that for our
homogeneous equation F (X,Y, Z) = 0 that ∂F

∂x = ∂F
∂y = ∂F

∂z = 0 implies that X = Y = Z = 0, which is impossible
for projective space.

In particular, this smooth projective curve, when defined over the complex numbers, forms a torus. This algebraic
set also turns out to possess a group law which is compatible with the complex geometric structure, which makes it
a Lie group.

3.3 Back to Weierstrass

We return to the Weierstrass cubic associated to the lattice Λ, defined

Y 2 = 4X3 − g2X − g3 60G4 = g2 140G6 = g3

We call this curve E and its projective competion Ē. Now, we define a map f : C/Λ → P2
C by

f(z) =

{
[ϱ(z) : ϱ′(z) : 1] z /∈ Λ

[0 : 1 : 0] z ∈ Λ

Proposition 3.6. The map f : C/Λ → P2
C is a bijective holomorphism onto Ē.

Remark. Notice that the lattice points are sent to points at infinity. In broad strokes, this map depicts the for-
mation of a torus in P2

C by gluing together the lattice points together at one of the “points at infinity” in P2
C. C/Λ

itself forms a torus; opposite edges of the fundamental parallelogram get identified to glue the torus together. The
geometry of an elliptic curve is determined by its lattice Λ. The construction of this lattice follows from the Riemann
bilinear relations. All of this material may be covered in a course about Riemann surfaces.

Proof. Recall that we use Π to denote the fundamental parallelogram. Since we know that lattice points get mapped
to a point at infinity, we just need to show that Π \ {0} gets mapped bijectively onto E.

To show injectivity, suppose f(z1) = f(z2).

If ϱ′(z1) ̸= 0, we have by definition of f and scaling that ϱ(z1) = ϱ(z2), which implies z2 ∈ {z1, σ(z1)} where
σ(z) = −z mod Λ is the representative that lies inside Π. ϱ′(z1) = ϱ′(z2) then gives us z1 = z2 because ϱ′ is an odd
function.

If ϱ′(z1) = 0, then from section 2.5 of the [1] (i.e. the previous lecture), z1 can be one of three possible values:
ω1

2 ,
ω2

2 ,
ω1+ω2

2 , but these are all distinct mod Λ, so we will also conclude z1 = z2.

Again, because we know that the preimage of [0 : 1 : 0] is 0 mod Λ, it suffices to show surjectivity of f restricted
to Π \ {0} onto E.

If we consider (a, b) ∈ E, which satisfy b2 = 4a3 − g2a− g3, we notice that since ϱ has order 2, we can find z0 so
that ϱ(z0) = a and ϱ(σ(z0)) = a. Since we are considering points in E, we observe that ϱ′(z0)

2 = ϱ′(σ(z0))
2 = b2.

Since ϱ′ is odd, ϱ′(σ(z0)) = −ϱ′(z0), so we see that we have either f(z1) = [a : b : 1] or f(σ(z1)) = [a : b : 1] (and by
injectivity, only one of these will be the solution).

z 7→ f(z) is holomorphic on C \ Λ, so we need to prove that it is holomorphic on our lattice points. In order to
do this, we need to shift our affine chart so that the “points at infinity” are somewhere else. In other words, our
projective equation for Ē is given by

Y 2Z = 4X3 − g2XZ
2 − g3Z

3
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We need to consider {Y ̸= 0}, which is where [0 : 1 : 0] is located, so we dehomogenize to the affine chart given by

Z = 4X3 − g2XZ
2 − g3Z

3

In dehomogenizing, we scaled by the Y -coordinate, which means that our function can be re-written as

f(z) =

[
ϱ(z)

ϱ′(z)
: 1 :

1

ϱ′z

]
In the language of affine space, we write

f(z) =

(
ϱ(z)

ϱ′(z)
,
1

ϱ′z

)
0 is not a zero of ϱ′ in Π, so this function is holomorphic at lattice points as well.

C/Λ has a group; correspondingly, Ē has a group structure, and its identity is given by [0 : 1 : 0], which is
predictable given our bijection f . We can define a group law + on Ē: let P and Q be two points in Ē and u, v be
such that f(u) = P and f(v) = Q; we define P +Q := f(u+ v).

A consequence of the relation between C/Λ and Ē is the following theorem by Abel:

Theorem 3.7. Three points P,Q,R of Ē are collinear if and only if P +Q+R = O.

Remark. Three points are collinear if they lie on the same line aX + bY + cZ. The proof of this can be found in
the [1] on page 90.

4 Loxodromic Functions

There are multiple constructions of elliptic functions. We learned about Weierstrass-ϱ functions. Other ap-
proaches include the theory of θ functions (developed by Jacobi) and loxodromic functions. Here, we will discuss
loxodromic functions.

Definition 4.1. A meromorphic map f : C∗ → C ∪ {∞} is a loxodromic function of multiplicator q ∈ C∗, where
|q| < 1 if f satisfies f(qζ) = f(ζ) for all ζ ∈ C∗.

The set of loxodromic functions of multiplicator p is a field, denoted Lq.

This is analagous to our previous discussion in the following way: let g(z) = f
(
e2iπz/ω1

)
. This is periodic along

Zω1. If we add the condition that f(qζ) = f(ζ) for every ζ ∈ C∗ for some q = e2iπω2/ω1 so that ω2 and ω2 are linearly
independent, we see that g is doubly periodic with respect to the lattice Zω1 + Zω2.

Instead of considering fundamental parallelograms Π, here we will consider annuli Cq(ε) = {z ∈ C : |q|ε ≤ |z| ≤ ε}.
Loxodromic f of multiplicator q is determined by its behavior on Cq(ε). We have the following:

Proposition 4.2. Let f ∈ Lq.

(i) If f is entire, then f is constant.

(ii) If f has neither zeroes nor poles on the boundary of Cq(ε) = {z ∈ C : |q|ε ≤ |z| < ε, then the sum of the
residues of the poles of f(z)/z lying in Cq(ε) is zero.

(iii) The number of poles and the number of zeroes of f , when counted with multiplicity, are the same.

Like the versions of these propositions for elliptic functions of a lattice, these theorems follow from results in
complex analysis discussed in Section 1. We also have the following corollary:

Corollary 4.2.1. Every non-constant f ∈ Lq has at least two poles (and two zeroes) in every annulus Cq(ε).
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Now, we construct an example of a loxodromic function.

Define S : C∗ → C to be

S(z) =

∞∏
n=0

(1− qnz)

∞∏
n=1

(1− qnz−1)

This product converges to a holomorphic function. Observe that S(qz) = S( 1
Z ) = −z−1S(z).

Now, out of this we construct a loxodromic function with poles b1, . . . , bm (so ai ̸= bi) with the condition that∏m
i=1 ai =

∏m
i=1 bi.

For z ̸= bi mod ⟨q⟩3, let

M(z) :=

∏m
i=1 S(z/ai)∏m
i=1 S(z/bi)

The class ai mod ⟨q⟩ contains the zeroes and the class bi mod ⟨q⟩ contains the poles of M . Furthermore, from

our previous observations, we can conclude M(qz) = M(z) and M
(
1
z

)
=

∏m
i=1 S(aiz)∏m
i=1 S(biz)

. In other words, M is a

loxodromic function of multiplicator q, and we were able to specify zeroes and poles to a certain extent.

Theorem 4.3. Let ϵ be such that ∂Cq(ε) does not contain zeroes or poles of f ∈ Lq. Let a1, . . . , am be the zeroes of
f and b1, . . . , bm be the poles of f in C1(ε). We have

m∏
i=1

ai
bi

∈ ⟨q⟩

Proof. Let M be as defined before without the condition that
∏m

i=1 ai =
∏m

i=1 bi, and let
∏m

i=1
ai

bi
= λ. So our

previous observation becomes M(qz) = λM(z).

Define g(z) = f(z)
M(z) . The zeroes of f are the zeroes of M , and the poles of f are the poles of M . These all cancel,

which makes g and 1
g entire on C∗.

Since holomorphicity is equivalent to analyticity (as a result of complex analysis), we can write out the Laurent
expansion of g, which is of the form

∑∞
−∞ cnz

n. Observe that

λg(qz) =
λf(qz)

λM(z)
=

f(z)

M(z)
= g(z)

by our observations about M and because f ∈ Lq by assumption. g is nonzero, so cn ̸= 0 for some n. Fiddling with
the terms in the Laurent expansion of λg(qz)− g(z) = 0 gives us

(λqn − 1)cn = 0

We can conclude λ = q−n ∈ ⟨q⟩.

From this theorem, it is possible to derive the following result:

Theorem 4.4. If λ = qn, the loxodromic function f of Theorem 4.3 is of the form

f(z) = C

∏m
i=1 S(z/ai)

S(qnz/b1)
∏m

j=2 S(z/bi)

5 The Function ρ

Here, we study a special loxodromic function which we will call ρ.

Let M := {f : C∗ → C∗ meromorphic}. This is a complex vector space. Define λ : M → M by

f(z) 7−→ z
f ′(z)

f(z)

3⟨q⟩ represents the cyclic subgroup generated by q, i.e. {qi, i ∈ Z}
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We observe λ(Lq) ⊆ Lq. If we let H = {h : h(qz) = −z−1h(z)} (taken from our earlier exapmle), then we see
that

h′(qz) =
1

q
(z−2h(z)− z−1h′(z))

=⇒ [λ(h)](qz) = qz
q−1(z−2h(z)− z−1h′(z))

−z−1h(z)
=
zh′(z)

h(z)
− 1 = [λ(h)](z)− 1

In other words, if Sq are solutions of Abel’s equation v(qz) = v(z)− 1, then λ(H) ⊆ Sq.

Lemma 5.1. Define χ(z) := zS′(z)
S(z) , where S from before is defined as

S(z) =

∞∏
n=0

(1− qnz)

∞∏
n=1

(1− qnz−1)

(i) Sq is the affine C-space χ+ Lq.

(ii) v(z) 7→ zv′(z) defines a map D : Sq → Lq.

Expanding by product rule gives us

χ(z) =

∞∑
n=1

qnz−1

1− qnz−1
−

∞∑
n=0

qnz

1− qnz

Define

ρ = −D(χ) =

∞∑
n=−∞

qnz

(1− qnz)2

Using the observation that S
(
1
z

)
= z−1S(z), we can also derive

χ(z) + χ

(
1

z

)
= 1

If we apply D to both sides above, we get that

ρ(z) = ρ

(
1

z

)
As before, we want to find the Laurent Expansion of ρ in the annulus Γ = {z ∈ C : |q| < |z| < |q−1|}; the eventual

goal will be to express ρ as a solution to an ordinary differential equation.

We observe the following:

n > 0 =⇒ qnz

(1− qnz)2
= qnz + . . .+mqnmzm + . . .

n < 0 =⇒ qnz

(1− qnz)2
= qn

(
1

z

)
+ . . .+mqnm

(
1

z

)m

+ . . .

The above are convergent series, so we have

ρ(z)− z

(1− z)2
=

∞∑
m=1

mqm

1− qm

(
zm +

1

zm

)
The above is invariant under the transformation z → 1

z . A fixed point of this symmetry is 1; observing the Laurent
expansion of ρ(z)− z

(1−z)2 in a neighborhood of 1, letting z = 1 + ζ, we have

ρ(z)− z

(z − 1)2
= 2

∞∑
m=1

mqm

1− qm
+

∞∑
n=2

γnζ
n γ2 =

∞∑
m=1

m3qm

1− qm
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Now, if we let ρ1(z) = ρ(z) + c for some constant c, the above expression becomes

ρ(1 + ζ) = ζ−1 + ζ−1 + (c+ γ0) +

∞∑
n=2

γnζ
n γ0 = 2

∞∑
m=1

mqm

1− qm

Applying the operator D to the equation above gives

(Dρ1)(1 + ζ= − 2ζ−1 − 3ζ−2 − ζ−1 +

∞∑
i=1

nγn(ζ + 1)ζn−1

Remember from before that we had
ϱ′2 = 4ϱ3 + aϱ2 + bϱ+ c

Analagously, we find that

[Dρ1]
2 − 4ρ31 = Aζ−4 +Bζ−3 + Cζ−2 +Dζ−1 + . . .

A = 1− 12(c+ γ0) B = 2A C = 1− 20γ2 − 12(c+ γ0)− 12(c+ γ0)
2

If we add the condition A = 0, we get B = 0 and C = − 1
12 − 20γ2.

Observe the expression [Dρ1]
2 − 4ρ31 − Cρ1. There is only one linear term in ρ1, so the expression has at most

one simple pole in Γ. But by Corollary 4.2.1, this implies that [Dρ1]
2 − 4ρ31 − Cρ1 is constant.

Theorem 5.2. The meromorphic function given by

ρ1(z) = ρ(z) +
1

12
− 2

∞∑
m=1

mqm

1− qm

is loxodromic of multiplicator q and satisfies the differential equation

[zρ′1(z)]
2 = 4ρ31 − g4ρ1 − g6

g4 =
1

12
+ 20

∞∑
n=1

m3qm

1− qm
g6 =

1

216
− 7

3

∞∑
n=1

m5qm

1− qm

6 Bringing Things Full Circle

We hinted at the beginning of the previous section that there was some relation between elliptic functions and
loxodromic functions.

Recall that if f is loxodromic of multiplicator q = e2πiω2/ω1 with Im(ω2/ω1) > 0, then f(e−2πiu/ω1) is an elliptic
function of lattice Zω1 + Zω2.

We can go the other way around as well. Let g be an elliptic function of lattice Λ = Zω1+Zω2 with Im(ω2/ω1) > 0.
Letting z ∈ C∗, we define

f(z) = g
( ω1

2πi
log z

)
Note that if q = e2iω2/ω1 , we get

f(qz) = g
( ω1

2πi
log(qz)

)
= f(z)

We have not lost analyticity while traveling in either direction. So if we write

z = e2iπu/ω1 = 1 +
2πiu

ω1
− 2π2u2

ω2
1

+ . . .

We can write ζ from before as

ζ = z − 1 =
2πi

ω1
u

(
1 +

πiu

ω1
− 2π2u2

ω2
1

+ . . .

)
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ζ2 = (z − 1)2 = −4π2

ω2
1

u2
(
1 +

2πiu

ω1
− 7π2u2

3ω2
1

+ . . .

)
Since ρ1(

1
z ) = ρ1(z), the corresponding elliptic function of lattice Λ is even. An even elliptic function will admit

a double pole at the origin; the principal part is given by

ζ−2 + ζ−1 +
1

12
= − ω1

4π2
u−2 + o(u)

Theorem 6.1. The loxodromic function ρ1 ∈ Lq corresponds to −ω1/4π
2ϱ, where ϱ denotes the Weierstrass function

associated to Λ.

Additionally, we have some relations between some items we computed in different sections (note that both
differential equations give you similar elliptic curves, so we can translate the coefficients):

60G4 =

(
2πi

ω1

)4

g4 140G6 =

(
2πi

ω1

)6

g6

Furthermore, section 2.11 of [1] contains a computation of the discriminant ∆ of the elliptic curve Y 2 = 4X3 +
g4X + g6 associated with ρ1, which is given by

∆ = q

∞∏
n=1

(1− qn)24

It turns out that if ∆1 is the discriminant of Y 2 = 4X3 − 60G4X − 140G6, the elliptic curve associated, we get

∆1 =

(
2πi

ω1

)12

∆
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