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Let (E,O) be an elliptic curve over a field k, and let Ω be a field containing k. Here
O is a choice of origin or base point on E. As we saw last time, we can endow E(k) with a
group structure: given A,B ∈ E(k), we consider the third point of intersection C of the line
AB with E. Then, we define A⊕B to be the third point of intersection of the line OC with
E. From the construction, this group is clearly abelian.

In the special case where k = C, we saw before that we can use elliptic functions
to define an isomorphism E(C) ∼= C/Λ, where Λ is a lattice in C. In this case the group
structure on E(C) is isomorphic to that on the torus C/Λ.

With more machinery, one way to see this is to just prove that the map P 7→ P −O
is an isomorphism from E(C) → Pic0(E), the group of degree 0 divisors (or line bundles) on
E, and then identify Pic0(E) with C/Λ using cohomology. This could be seen as one of the
starting points of Hodge theory, or abelian varieties.

In this talk, we will attempt to study more of the structure of elliptic curves and
their groups. At the risk of giving away the punchline, let’s state Mordell’s theorem.

Theorem 0.1 (Mordell 1922). Let E be an elliptic group over Q. Then E(Q) is finitely
generated.

This theorem was subsequently generalized to algebraic number fields by Weil in
1930.

Since we also knew that E(Q) was abelian, this theorem, combined with the classifi-
cation of finitely-generated abelian groups, tells us that

E(Q) ∼= Z⊕r ⊕
n⊕

i=1

Z/piZri .

However, the doesn’t tell us anything about the rank r, or anything about the torsion sub-
groups. These turn out to be very interesting questions: interpreting the rank is the content
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of the Birch and Swinnerton-Dyer conjecture (a Millenium prize problem). Meanwhile, de-
scriptions of the torsion part of E(Q) or even E(C) will occupy the first part of the talk.

We can also interpret Mordell’s theorem as telling us about the number of Q-rational
points of E; for example, if the rank r = 0, then E has only finitely many rational points.
Similar questions about the number of rational points will be in the second part of the talk
where we will discuss Hasse’s theorem, which gives sharp bounds for the number of Fq-rational
points of an elliptic curve.

1 Torsion in Elliptic Curves over Q
Let E be an elliptic curve defined over k, and let Ω be a field extension of k.

Definition 1.1. A point P ∈ E(Ω) is an n-division point of E if nP = P ⊕ · · · ⊕ P = 0,
where ⊕ is repeated n times.

Given P ∈ E(Ω), the least n for which P is an n-division point is its order.

Note that the set of n-division points forms a subgroup of E(Ω). When k = Ω = Q,
the n-division points are precisely the corresponding n-torsion part of E(Q).

Using Weierstrass forms and calculations, the book classifies the order 2 and 3 points
for arbitrary fields k̄ and shows that they are isomorphic to Z/2Z× Z/2Z or Z/3Z× Z/3Z,
respectively, if k is not characteristic 2, or characteristic 2 or 3.

Let us for now restrict to the case k = Q and Ω = C; we’ll try to figure out which
ones are Q-rational later. Let E[n](C) be the set of n-division points in E(C). Then we can
write E(C) = C/Λ, with Λ a lattice in C. The n-division points of E(C) are precisely those
equivalence classes of P ∈ C such that nP ∈ Λ; in other words, the group 1

n
Λ/Λ. If we let

ω1, ω2 be the generators of Λ, then

1

n
Λ =

{a1
n
ω1 +

a2
n
ω2 | a1, a2 ∈ Z

}
so

1

n
Λ/Λ =

{a1
n
ω1 +

a2
n
ω2 | a1, a2 ∈ Z/nZ

}
.

Thus, E[n](C) ∼= Z/nZ× Z/nZ.

Let us try to understand the number-theoretic properties of points in E[n](C). Let
(x1, y1), . . . , (xm, ym) denote the coordinates of the points in E[n](C), and consider the field
extension

Kn = Q(x1, y1, . . . , xm, ym)

over Q.

Recall that an extension L/Q is Galois if L is algebraic and, and if for every σ ∈
Aut(C) we have σ(L) ⊂ L.
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Theorem 1.2. The extension Kn/Q is Galois.

Proof. Let σ ∈ Aut(C). Since σ|Q = IdQ and E is defined over Q, the automorphism σ
respects the group law in E(C) and so nσ(P ) = 0 if nP = 0, i.e. σ(E[n]) ⊂ E[n]. From
here, we know Kn is algebraic since then each P ∈ E[n] can only have a finite number of
conjugates under the action of Aut(C) (since E[n] is finite), hence are algebraic. Also Kn is
Galois since σ(Kn) ⊂ Kn.

Now, consider the absolute Galois group GQ = Gal(Q/Q). Since all points of E[n](C)
are defined over Q, any σ ∈ GQ permutes the points in E[n](C) ∼= Z/nZ× Z/nZ. This is a
“free Z/nZ-module,” or equivalently when n is prime a rank two vector space over Fp. One
can verify that the action of σ preserves the linear structure of E[n] and the group structure
of GQ. Therefore, we obtain a homomorphism

GQ
ρn−→ GL2(Z/nZ),

i.e. a representation of E[n]. We can also show that Im ρn ∼= Gal(Kn/Q), essentially by
noting that ρn factors through Gal(Kn/Q) and unwrapping the definitions. Thus, we obtain
a representation of the absolute Galois group, and in particular a representation of the Galois
group Gal(Kn/Q)!.

But when is ρn surjective, i.e. when Gal(Kn/Q) is isomorphic to GL2(Z/nZ)? It
turns out this is quite rare.

Theorem 1.3 (Serre ’72). Suppose additionally E is not isomorphic over Q to any curve
having complex multiplications. Then there exists an integer N ≥ 1, depending only on E,
such that for every integer n prime to N , the representation ρn is surjective.

We’ll define complex multiplications later on. For now, it suffices to say that most
(almost all) elliptic curves do not have complex multiplications.

We end this section by mentioning the following (hard) theorem, telling us which of
the points in E[n](C) are actually rational.

Theorem 1.4 (Mazur). Let E be an elliptic curve over Q.

1. If E(Q) contains a point of order n, then 1 ≤ n ≤ 10 or n = 12.

2. Equivalently, the torsion subgroup of E(Q) is Z/mZ with 1 ≤ m ≤ 10, m = 12, or
Z/2Z× Z/2mZ with 1 ≤ m ≤ 4.

In more specific cases, we can also use p-adic methods and the Weirstrass equation
for an elliptic curve E to obtain restrictions on the torsion points.
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2 Isogenies and Hasse’s Theorem

We now turn to the problem of determining the number of rational points for an elliptic
curve defined over Fq, where q = ph. Somewhat unsurprisingly, this can be done using the
Frobenius automorphism z 7→ zq. To place this automorphism in a more general, useful
framework, we define isogenies.

Definition 2.1 (Isogeny). Let (E1, O1) and (E2, O2) be two elliptic curves over k. An isogeny
φ : E1 → E2 over k is a rational map from E1 to E2, defined over k, such that φ(O1) = O2.

Isogenies are the right notion of “morphism of elliptic curve.” We clearly need to
preserve the marked points to preserve the group structure.

Only requiring that isogenies be rational is not really significant, since rational maps
between smooth curves are automatically morphisms over k̄ (i.e. they are defined at every
point). In fact, some algebraic geometry tells us that every morphism between curves is
either constant or surjective. In fact, we have the following quite general correspondence:

Given a curve C over k, write k(C) to be its function field, defined as the fraction
field of the ring of regular functions on C. Then there is an equivalence

{Nonconstant rational maps between smooth curves φ : C1 → C2 over k}
↕

{Field extensions φ∗k(C2) ⊂ k(C1)}

and we can think of these as ramified finite coverings of curves:

Figure 1: Picture of a morphism of curves from https://en.wikipedia.org/wiki/

Ramification_(mathematics)

We’ll use this correspondence of morphisms as field extensions below. Mainly, if
C is an elliptic curve, then it can be written as y2 = f(x) where f is a cubic in x. So
k[C] = k[x, y]/(y2 − f(x)), and the function field k(C) is k(x, y) with these relations on x, y.

Isogenies induce homomorphisms of E1(Ω) → E2(Ω) for any extension Ω of k. Also
note that two isogenies φ, ψ : E1 → E2 can be added pointwise:

(φ+ ψ)(P ) := φ(P )⊕ ψ(P ).
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Example 2.2. Let n ≥ 0 be an integer. We have the multiplication by n isogeny

[n] : P 7→ nP.

Its kernel E[n] consists of the n-torsion points studied before.

Example 2.3. Let E be defined over Fq. Then the Frobenius endomorphism Frobq : z 7→ zq

on Fq induces an isogeny of E to itself. If Ω is an extension of k, then one can show that
Frobq preserves lines in P2(Ω), and hence Frobq preserves the group law of E(Ω) when O is
the origin, O ∈ E(Fq).

Example 2.4. Assume char k ̸= 2, and let

E1 : y
2 − (x3 + ax2 + bx)

E2 : y
2 − (x3 − 2ax2 + (a22− 4b)x)

with 2b(a2 − 4b) ̸= 0. Then the map

φ : (x, y) 7→ (
y2

x2
,
y(x2 − b)

x2
)

is an isogeny when we choose (0, 1) as the basepoints on both curves. Indeed, one can verify
its image is contained in E2, and after homogenizing and multiplying by X3 we can write φ
as

[X : Y : Z] 7→ [Y 2X : Y (Y 2 − aX2 − 2bXZ) : (Y 2 − aX2 − bXZ)Z].

to see that φ[0 : 1 : 0] = [0 : 1 : 0]. We can also write φ as

[X : Y : Z] 7→ [Y (X2 + aXZ + bZ2) : (X2 − bZ2)(X2 + aXZ + bZ2) : XZ2]

by homogenizing and multiplying by XY . This shows that the point [0 : 0 : 1] also gets
mapped to O = [0 : 1 : 0], so kerφ has size at least two. Note that this gives an example of
a map that is a priori not defined on all of E1, but turns out to be a morphism!

An endomorphism of E over k̄ is just an isogeny E → E over k̄. We can compose
endomorphisms as usual, and also add them using the addition of isogenies. Therefore, we
obtain a ring of endomorphisms Endk̄(E) of E over k̄. One can verify that this is indeed a
ring. The harder part is the distributivity of multiplication. While it is clear that

(φ+ ψ) ◦ θ = φ ◦ θ + ψ ◦ θ,

the other direction
θ ◦ (φ+ ψ) = ψ ◦ φ+ θ ◦ ψ

boils down to showing

θ(φ(P )⊕ ψ(P )) = θ ◦ φ(P )⊕ θ ◦ φ(P )

for all P ∈ E(k). This is follows from the fact that θ is a group homomorphism.

Fact. The ring Endk(E) is an integral domain with unit IdE, not necessarily com-
mutative but of characteristic zero.
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Example 2.5. We have a copy of Z in Endk(E) given by multiplication by n, denoted [n].
Over Q, we have in general (i.e. for almost all E) that EndQ(E)

∼= Z generated by these [n].

However, there are 9 equivalence classes (over Q) of elliptic curves over Q such that EndQ(E)
is larger than Z; these extra endomorphisms are called complex multiplications. These special
curves have lots of special properties, and their endomorphism rings are the rings of integers
of the 9 principal quadratic imaginary fields.

The most useful properties of Endk(E) (at least this talk) will be from defining the
degree.

Definition 2.6. Let φ : E1 → E2 be a isogeny over k̄. The degree degφ of φ is the degree
of the corresponding field extension φ∗k̄(E2) ⊂ k̄(E1). (It is 0 if φ is constant).

Key facts about the degree, which all essentially follow from the corresponding Galois
theory for curves and their function fields, are below.

• If ψ : E2 → E3 is another isogeny, then

deg(ψ ◦ φ) = degψ · degφ.

• If the field extension k(E1)/k(E2) is separable, then

deg(φ) = #Kerφ.

Think of an n-sheeted cover. The group property actually lets us prove that φ doesn’t
have ramification, so the number of points in the preimage is constant.

Example 2.7. By the first part of the talk, we know that #Ker[n] = n2.

Example 2.8. Let E = y2− (x3+x) and φ : (x, y) 7→ (−x, iy). Let’s see that φ is a complex
multiplication for E. We know φ ∈ EndQ(i)(E) ⊂ EndQ(E) and clearly φ ̸= ±Id. If φ was
in the image of Z, then we would have φ = [n] for some n and so #Kerφ = n2. However,
clearly #Kerφ = 1 so n = ±1. We know this is impossible, so φ is a complex multiplication.
Since φ2 = −Id, we have φ = ±i and one can show that EndQ(E)

∼= Z[i].

The big fact that will let us prove Hasse’s theorem is the following.

Fact. The map deg : Endk̄(E) → Z is positive-semidefinite quadratic form. In
particular, the inequality

| deg(ψ − φ)− degφ− degψ| ≤ 2
√

degψ degφ (∗)

holds. This is proven by minimizing a quadratic equation, similar to proofs of Cauchy-
Schwartz.

We can now prove Hasse’s theorem.
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Theorem 2.9 (Hasse 1941). Let E be an elliptic curve over Fq. Then

|#E(Fq)− (q + 1)| ≤ 2
√
q.

Note that q + 1 = #P1(Fq).

Proof of Hasse’s Theorem. Let Fq(E) = Fq(x, y) be the funcion field of E, where x, y are
coordinate functions satisfying y2 = f(x), where f a cubic polynomial. Let φ be the Frobenius
endomorphism

(x, y) 7→ (xq, yq)

which sends O 7→ O and hence is an isogeny. The field Fq is precisely the fixed points of φ
on Fq, i.e. the z ∈ Fq with zq = z. Equivalently, this is the kernel of Frobq −Id. Assuming
that φ− Id is separable, we then have

E(Fq) = #Ker(φ− Id) = deg(φ− Id).

Now deg Id = 1. In view of the inequality (∗), to prove Hasse’s theorem it suffices to prove
that degφ = q.

For simplicity we assume the characteristic p > 2 (but the proof can be extended to
p = 2). Then by definition of the degree,

degφ = [Fq(x, y) : Fq(x
q, yq)] = [Fq(x, y) : Fq(x, y

q)][Fq(x, y
q) : Fq(x

q, yq)].

The first term on the left hand side equals 1, since y satisfies the quadratic equation y2 = f(x)
and so the degree of y over Fq(x, y

q) must divide both 2 and q, hence equals 1 since p > 2.
The second factor then must equal q, since x satisfies no lower-order relations. This concludes
the proof.

Theorem 2.10. If two elliptic curves E1, E2 over Fq have a non-constant isogeny θ : E1 → E2

between them, then #E1(Fq) = #E2(Fq).

The crucial point is that θ is defined over Fq, hence “commutes” with Frobenius
(since it’s constant on Fq).

Proof. Let φ1, φ2 be the corresponding Frobenius endomorphisms. Then #Ei(Fq) = deg(φi−
Id). Since θ is defined over Fq, we have the commutative diagram

E1 E1

E2 E2

φ1

θ θ

φ2
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and so also the commutative diagram

E1 E1

E2 E2

φ1−Id

θ θ

φ2−Id

Since the degree is multiplicative,

deg θ · deg(φ1 − Id) = deg(φ2 − Id) · deg θ

and since deg θ ̸= 0 we see that

deg(φ1 − Id) = deg(φ2 − Id).

Example 2.11. Recall that we had constructed an isogeny between the curves

E1 : y
2 − (x3 + ax2 + bx)

E2 : y
2 − (x3 − 2ax2 + (a22− 4b)x)

with a, b ∈ Fq and 2b(a2 − 4b) ̸= 0 (when charneq2). By the theorem E1(Fq) = E2(Fq).

Example 2.12. Consider the curves over F3

E1 : y
2 − (x3 − x+ 1) (1)

E2 : y
2 − (x3 − x− 1). (2)

These are isomorphic over F9, but #E1(F3) = 7 and #E2(F3) = 1, so they are not isomorphic
over F3.
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