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The goal of today’s talk is to go into slightly more detail about how the modularity
theorem is actually proved. Since the proof is a hundred-page paper assuming a tremendous
amount of background, we will not give anything approaching a full proof; but we will try
to sketch some of the ideas that go into it.

Recall that the modularity theorem states that every (semistable) elliptic curve E over Q
corresponds to a Hecke eigenform f , with the property that if we write out the q-expansion

f =
∑
n≥1

anq
n

(so an is the eigenvalue of the nth Hecke operator) then #E(Fp) = p+1− ap for each prime
number p (not dividing the level of the form f). This can equivalently be phrased as an
equality of L-functions L(f, s) = L(E, s).

We’ve noted before that an elliptic curve being modular can be viewed as “really” a
property of its associated Galois representations Tp(E) = lim←−n

E[pn]. Note that there’s some
ambiguity: we can choose the prime p! So part of the claim is: if Tp(E) is modular, then so
is E, and therefore so is each Tℓ(E) for ℓ ̸= p as well.

We’ll approach our goal to prove that any semistable elliptic curve E over Q is modular
via two steps. First, we’ll discuss a “modularity lifting theorem,” which lets us use a simpler
criterion: it says that (under some technical conditions) if the mod p representation E[p]
(which we recall is a rank 2 vector space over Fp) is modular, then so is Tp(E). Then we’ll
look at the possibilities for Tp(E). In particular since we can use any prime p, we’ll choose
explicitly p = 3, which is essentially the simplest case; this will often work, and when it
doesn’t we’ll see that we can get around the obstruction by also using p = 5. (This is sort
of like an induction argument: the induction step is via the modularity lifting theorem, and
the base case is via some more classical results together with the 3-5 trick.)

The modularity lifting theorem is often expressed as an identity R = T. Before we can
say anything about this, we need to answer two questions: what is R? and what is T? In
the course of answering these questions, we’ll see that we can actually find a natural map
R → T, so the main issue will be to show that this is an isomorphism. We’ll skip over how
this is done, though we may return to it at the end if there’s time.

We’ll start with the ring R. This is a very interesting object, defined as the universal
deformation ring of a Galois representation; so we first of all want to say what this means.

1 Deformations of Galois representations

Let G be a group. We are used to studying representations of G over C, i.e. complex vector
spaces V together with an action of G, i.e. a group homomorphism G→ GL(V ); but we’ve
also sometimes seen representations over finite fields Fp such as the p-torsion points E[p]
or even over rings which are not fields such as Zp in the case of the Tate module Tp(E).

1



More generally, let’s say that a representation of G over an arbitrary (commutative) ring R
is an R-module M together with a G-action on M , compatible with the R-module structure;
equivalently this is a group homomorphism ρ : G → AutR(M). When R is a field, M is
a vector space, which is particularly nice; even when R is not a field, the most common
situation of interest is for M to be a free module, as for example in the case of Tp(E) over
Zp. We’ll write RepR(G) for the set of representations of G over R, elements of which we’ll
often abbreviate to ρ. (In fact, this naturally has the structure of a category, but we generally
won’t need this; you can often think of functors when we talk about maps between sets (or
categories) of representations.)

Now, let’s say we have two rings R and S, and a ring homomorphism R → S. Suppose
we have a representation of G over R, i.e. an R-module M with G-action; let’s imagine for
concreteness that M is actually free, so M ≃ R⊕r, so the G-action is given by a homomor-
phism ρ : G → GLr(R). The ring homomorphism R → S induces a group homomorphism
GLr(R) → GLr(S) (by taking the ring map on each entry of the matrices), so composing
gives a map

G
ρ→ GLr(R)→ GLr(S),

which is to say a G-action on the free S-module S⊕r. Thus we’ve produced a (free) G-
representation over S from a (free) G-representation over R; in fact a similar operation
works for non-free representations as well, so we get a map

RepR(G)→ RepS(G).

Consider for example a ring like R = C[T ], the ring of polynomials in one variable over
T , and take S = C. In principle, we could have a lot of maps C→ C, so maps C[T ]→ C are
even more complicated; but we’ll say for simplicity that these have to be maps of C-algebras,
i.e. they have to be the identity on the constant polynomials C ⊂ C[T ]. Therefore such maps
are completely determined by the image of T , which can be any complex number; that is,
there is a natural bijection between homomorphisms of C-algebras

f : C[T ]→ C

and complex numbers f(T ).
Suppose we have a representation ρ of G over C[T ], i.e. a C[T ]-module M with G-action.

Then the construction above gives, for every map f : C[T ] → C, a C-representation of G,
which we might write as ρf . Since the maps f correspond to complex numbers, this gives
us a whole family of complex representations of G, parametrized by complex numbers; to
understand this whole family, we could instead think about the original representation ρ.

We can also do this in more unfamiliar contexts. For example, suppose we have a rep-
resentation ρ on a module M over the integers Z. Then by reducing modulo p, we obtain
a Fp-representation M/pM for every prime p, which we can again think of as a family of
representations ρp parametrized by the set of prime numbers and induced by the original
representation of ρ over Z.

A related construction is: say we have a representation of G over Z/pnZ for some integer
n. Reducing modulo p gives a representation over Fp, and in fact reducing modulo pm for
any m ≤ n gives a representation over Z/pmZ. This suggests a question: if we’re given a
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representation of G over Fp, when does it come from a representation over Z/pn, and for
which n? How high can we go?

More generally, if we’re concerned with all representations of G, we could hope that they
all arise as a single family in some way like this: that is, we’d look for some ring R and
representation ρ over R such that every representation over any ring S is given by applying
this construction to some map R→ S. In this case we’d call ρ the universal representation
of G, and R its universal representation ring.

This is usually too much to hope for. A good example of why comes from the case above
where we looked at representations modulo p: if we just study representations of G over Fp,
we may still have many different ones, and if ρ1 and ρ2 are two different Fp-representations
then they can’t come from the reduction modulo p of the same Z-representation. In prin-
ciple they could still come from a more complicated ring with multiple maps to Fp, which
sometimes happens, but in general we still get a lot of different “classes” of representations.

Thus the best we can really hope for in this situation is that all representations with the
same reduction modulo p should come from the same “universal” representation. To make
this a little more precise, we fix some base ring k (such as Fp, or more generally typically a
field), and consider the class of rings S equipped with maps S → k (which we often require
to be surjective). If indeed S → k is a surjection onto a field, its kernel is a maximal ideal,
which will sometimes be relevant.

Now, fix a G-representation ρ0 over k. For any representation ρ over S, the map S → k
induces a representation ρ over k; we’re only interested in representations ρ such that ρ ≃ ρ0,
i.e. whose reduction to k is given by the fixed representation ρ0. Such representations ρ are
often called deformations of ρ0 to S, since the idea is often that S is some “enlargement” of
k so that ρ is an extension of ρ0 to this larger space, which recovers ρ0 when we specialize
back to k.

The hope is that all of these ρ really will come from some representation ρuniv of G over
some ring Runiv

ρ0
by the process above; that is, a deformation ρ of ρ0 to S is equivalent to

a map Runiv
ρ0
→ S, with ρ obtained via the construction above along this map from the

representation ρuniv. In this case ρuniv is called the universal deformation, and Runiv
ρ0

the
universal deformation ring of ρ0.

There are a lot of technical questions about when this is true that we will not get into;
but the upshot is that in most cases of interest it will be true. This is not quite as miraculous
as it sounds; it just means that we can translate the question of studying G-representations
with a fixed reduction to k into the question of studying ring homomorphisms out of the
ring Runiv

ρ0
, which is a priori not necessarily any easier since we don’t know anything about

this ring. However, it turns out that there are ways to study it, so this will end up being a
powerful tool.

The case that we’re interested in is when G is the absolute Galois group G = Gal(Q/Q) of
the rational numbers, and the representations that we’re most interested in are Tate modules
of elliptic curves Tp(E). In this case, we know what the reduction modulo p looks like: it’s
E[p], a rank 2 representation of G over Fp, so Tp(E) is a particular deformation of E[p] to
the ring S = Zp. We fix a particular mod p representation ρ, so we’re interested in elliptic
curves E with E[p] ≃ ρ (of course, by varying ρ we can get all elliptic curves in one of
these sets). The deformation Tp(E) of ρ is then equivalent to a map Runiv

ρ → Zp. Since Zp
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isn’t a field, we can’t describe this map as the quotient by a maximal ideal; but there’s a
natural inclusion Zp ⊂ Qp giving a map Runiv

ρ → Qp (corresponding to the Qp-representation
Tp(E) ⊗Zp Qp), which does correspond to a maximal ideal. Although there may be many
maps Runiv

ρ → Zp, the composite maps Runiv
ρ → Fp should all agree, since they all correspond

to the same Fp-representation ρ.
In fact, in general the universal deformation ring tells us much more than just about

the lifts Tp(E). For example, while the Tp(E) are lifts all the way to Zp, or equivalently
compatible systems of lifts to every Z/pnZ, we could have representations ρ that don’t lift
all the way: for example, perhaps they lift to Z/p3Z, but not further, or perhaps they don’t
even lift past Fp. These properties are then reflected in the universal deformation ring Runiv

ρ :
if it is an Fp-algebra, i.e. p = 0 in Runiv

ρ , then it cannot have any maps to rings in which
p ̸= 0, so the deformation does not lift at all; if p2 ̸= 0 but p3 = 0 in the universal deformation
ring, then there exist lifts modulo p3 but not higher. In the case ρ = E[p], the existence of
the lift Tp(E) means that pn ̸= 0 for all n in the universal deformation ring, i.e. p is not
nilpotent.

One can also impose other conditions on the deformations ρ of ρ parametrized by maps
from Runiv

ρ . In the case of interest G = Gal(Q/Q), recall that there are various properties
that Galois representations can have, e.g. being unramified at various points; one of the
things we will require is that our representations be unramified at primes not dividing a
fixed positive integer N (which will be our level), as well as more complicated conditions at
primes dividing N whose details we won’t get into. We’ll write the universal deformation
ring for such representations deforming our fixed Fp-representation ρ as R. It is a Zp-
algebra, concretely of the form R ≃ Zp[[x1, . . . , xn]]/I for some ideal I; and all of the
Galois representations (over any ring S) with which we will be concerned can be thought of
equivalently as ring homomorphisms R → S.

2 The Hecke algebra

We’ve seen Hecke operators before, which act on the space of modular forms. Given two
Hecke operators, we can compose them, which we think of as a kind of multiplication;
we’ve seen before that this multiplication is commutative. We can also add two Hecke
operators, with T1 + T2 given by the operator f 7→ T1(f) + T2(f); this is compatible with
the multiplication, and makes the space of Hecke operators into a commutative ring T.

Given a Hecke eigenform f (of weight 2, as all our eigenforms will be) and a Hecke
operator T , we can associate to them the Hecke eigenvalue aT , i.e. T (f) = aTf . If the
eigenform f has rational coefficients (in its q-expansion), which is the kind we care about,
then it defines a map

T→ Q
T 7→ aT

which one can show is a ring homomorphism. Since the target is a field, the kernel is a max-
imal ideal mf . More generally, we can identify Hecke eigenforms (with rational coefficients)
with maps T→ Q, or equivalently with maximal ideals of T.
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We’ve mentioned before that there is a construction due to Eichler–Shimura that as-
sociates to each Hecke eigenform with rational coefficients f an elliptic curve Ef over Q,
such that for each prime p not dividing the level of f we have #Ef (Fp) = p + 1 − ap. The
modularity theorem can be viewed as the statement that this gives a bijection.

In our language, it’s more convenient to work with rings like Zp than Q, so we ask instead
for a map T→ Zp, which (away from the level N) should be equivalent. (Really we should

ask for some completion T̂ of T to make everything p-local and complete, which we’ll largely
ignore for the moment.) Quotienting by the resulting maximal ideal gives some field over
Fp.

Given such an f and its associated elliptic curve Ef , we get the Tate module Tp(Ef ),
which is a Galois representation over Zp. If Ef [p] ≃ ρ, then this is the same thing as a map
R → Zp; assume this for the moment. Then we can think of Eichler–Shimura as a machine

that takes in maps T̂→ Zp and produces a map R → Zp, or similarly for any Zp-algebra S.
In general, a suitable (i.e. functorial in S) machine

Hom(A, S)→ Hom(B, S)

is actually the same thing as a ring homomorphism B → A. One direction is easy: given
a map B → A, we can turn a map A → S into a map B → S by composition. The other
direction requires some category theory and we omit it, but we’re only interested in this
special case: the Eichler–Shimura machine can be interpreted as a ring homomorphism

R → T̂.

Let’s return to our assumption that Ef [p] ≃ ρ, since (for a fixed ρ) this can’t possibly be
true for all Ef and thus for all f , so we can’t hope that this map could be an isomorphism.
This has to do with the completion issues we elided: if we reduce T modulo the maximal
ideal mf , we obtain a field T/mf of characteristic p. The fixed Fp-representation ρ then

induces a Galois representation over this field. On the other hand, the map R → T̂→ T/mf

should also correspond to a Galois representation over T/mf , so we need these to agree. This
is achieved by completing T at the maximal ideal mf , which corresponds to taking only the
eigenforms f whose corresponding elliptic curves Ef satisfy Ef [p] ≃ ρ. Thus we really do
have a map

R → T̂,

and it is not unreasonable to hope it may actually be an isomorphism. Note however that
this requires there to exist some eigenform f such that Ef [p] ≃ ρ, i.e. that the mod p
representation ρ is itself modular.

Suppose that ρ is modular and that the associated map R → T̂ is an isomorphism.
What would this mean? Well, we can go the other direction: for every deformation of
ρ to a Zp-algebra S, we can find a corresponding map T̂ → S giving an eigenform over
S. In particular, given an arbitrary deformation ρ of ρ to Zp, this corresponds to a map

R ≃ T̂→ Zp and hence to an eigenform over Zp; the completion map T→ T̂ induces T→ Zp

which factors through T → Z(p) and hence gives an eigenform f with rational coefficients
such that ρ ≃ Tp(Ef ) via the Eichler–Shimura construction. Thus if we can show that for
every (semistable) elliptic curve E over Q, the resulting Fp-representation E[p] is modular
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and that the resulting map R → T̂ is an isomorphism, then we can conclude that E must
be modular as well; that is, we will have proven the modularity theorem.

The statement that for ρ modular, R → T̂ is an isomorphism is the Wiles–Taylor modu-
larity lifting theorem: if the reduction of the Galois representation of E modulo p is modular,
then this lets us “lift” the modularity up to recover the modularity of E. This is the technical
heart of their proof. We may attempt to say a few words at the end of the class about how
it works, but for now we’ll leave it alone. The main remaining thing we want to discuss is
the “base case”: how do we know if E[p] is modular?

3 Mod p modularity

We want to analyze what happens to Galois representations modulo p, and since we’re free
to choose p we’ll start by choosing a convenient one.

The smallest prime is 2, but this is often too small and strange things tend to happen at
p = 2; so the next-simplest case is p = 3. This turns out to be a happy medium; part of this
is that GL2(F3) is a solvable group, while already GL2(F5) is not solvable so many things
are harder at p = 5.

Fix a semistable elliptic curve E over Q. We sometimes write ρ for its Galois repre-
sentation Tp(E), and ρ for its modulo p representation E[p]. At the prime p = 3, if the
representation ρ is irreducible, then it is known by work of Langlands–Tunnell that ρ must
be modular, i.e. there must be some eigenform f with Ef [p] ≃ ρ (note we do not necessarily
need to have Ef ≃ E! so the modularity lifting theorem is necessary). So the remaining
case is when ρ is reducible.

In this case, we can’t say much, so we simply try the next-simplest prime, p = 5. Now
we put the prime in a subscript for clarity, i.e. ρ3, ρ5, ρ3, ρ5. We can assume that ρ3 is
reducible by the above, so there are two cases: either ρ5 is reducible or it is irreducible. One
can actually show that if ρ3 and ρ5 are both reducible, then the original curve E cannot be
semistable, so we can focus on the case where ρ3 is reducible and ρ5 is irreducible.

We no longer have a theorem like Langlands–Tunnell at p = 5, so the fact that ρ5 is
irreducible doesn’t let us conclude just yet. However, one can do something called the “3-5
trick”: one can find another elliptic curve E ′ such that the corresponding mod 5 represen-
tations are isomorphic, ρ5 ≃ ρ′5, and the mod 3 representation ρ′3 is irreducible. Then by
Langlands–Tunnell, it follows that ρ′3 is modular, so by modularity lifting E ′ is modular, so
all of its Tate modules ρ′p = Tp(E

′) are modular for all primes p and in particular ρ′5 and
hence ρ′5 is modular. Therefore ρ5 ≃ ρ′5 is also modular, and therefore the original curve E
is modular.

4 Patching

The proof of the R = T theorem is very complicated, but we’ll try to say something about
really just one of the key ideas involved: patching. The idea is this: for certain sets Q of
“Taylor–Wiles primes,” one gets a modified version of the universal deformation ring RQ
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and Hecke algebra TQ allowing ramification at Q, fitting into commutative diagrams

RQ TQ

R T

where all the maps are surjective (we can think of T as the quotient of R parametrizing
the modular deformations). Each of the maps RQ → TQ may be rather poorly behaved, as
may both sides. However, what we’d like to do is take some sort of inverse limit over the
different sets Q to get a map at “infinite level” R∞ → T∞, where now in the limit the bad
behavior has been somehow “smoothed out.” This is analogous to how although each ring
Z/pnZ has rather bad technical properties (other than for n = 1), since they have lots of
zero divisors, the inverse limit Zp is an integral domain with very good properties. Indeed,
we mentioned before that R ≃ Zp[[x1, . . . , xn]]/I for some ideal I; similarly at level Q we
have R ≃ Zp[[x1, . . . , xn]]/IQ for some ideal IQ, and in the limit the ideals vanish and we
just get R∞ ≃ Zp[[x1, . . . , xn]].

In particular, if we take the module M of modular forms (suitably completed) over the

algebra of Hecke operators T̂, the map R → T makes M an R-module. If we could show
that M is a finite rank free R-module, then in particular we could find some vector v ∈ M
such that − · v : R → M is an embedding of R-modules. On the other hand the R-action
factors through the surjection R → T̂, so so does this map R → M ; since the latter is
injective, this is only possible if R → T̂ is actually an isomorphism. However, it is too hard
to show that M is free over R. Instead, we find a version MQ for each Q, consisting roughly

of modular forms of level NQ = N ·
∏

ℓ∈Q ℓ, and again take the limit to get M∞ over T̂∞.

Now the formal properties of the rings R∞ and T̂∞ and the map between them ensure that
M∞ will be free as an R∞-module, and so the above argument implies that R∞ ≃ T̂∞. Both
sides are given by quotienting by the same ideal, so we can then deduce that back at the
base level R ≃ T̂.

There is a problem, however: when we formed Zp as the inverse limit of the Z/pnZ, we
thought of its elements as compatible systems of elements of the Z/pnZ along the natural
maps Z/pn+1Z→ Z/pnZ given by reduction modulo pn. Here, however, we have no natural
maps between the various rings and modules at level Q: there is a priori no real relationship
between modular forms of level NQ and level NQ′.

Nevertheless, via the notion of patching data Taylor–Wiles showed that one can choose
sequences of Q’s and maps between them such that it is possible to take the inverse limits
and get the desired behavior. This involves making a lot of non-canonical choices, and it is
quite surprising that it seems to give “the right thing.”
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