
Number fields

Avi Zeff
Seminar on Fermat’s last theorem

The goal of today’s talks is to give an introduction to some key objects in algebraic
number theory. In particular we want to understand algebraic extensions of the rational
numbers Q, meaning everything between Q and its algebraic closure Q (the algebraic num-
bers). Via Galois theory, such extensions are often studied via their automorphism groups
(Galois groups), and in turn such groups are often studied via their representations (Galois
representations); so we’ll give brief introductions to Galois theory and representation theory
along the way. This will be useful when we talk about elliptic curves, and ultimately modu-
larity: one of the most important properties of elliptic curves from a number-theoretic point
of view is that they give rise to interesting Galois representations.

1 Absolute values and Ostrowski’s theorem

The rational numbers Q have the structure of a field: we can add, subtract, and multiply
any two elements, and divide by any element other than 0. They have a further structure
though which is very useful for talking about number theory: an absolute value | · | : Q→ R,
satisfying various good properties.

We might ask: is this absolute value unique? What other absolute values could we
potentially put on Q? To make sense of this, we first need to say what exactly we mean by
an absolute value in an abstract way.

Let R be any ring (so we can add, subtract, and multiply, but not necessarily divide).
An absolute value | · | on R is a map R→ R such that

• |x| ≥ 0 for all x ∈ R;

• |x| = 0 if and only if x = 0;

• |x| · |y| = |xy|;
• |x+ y| ≤ |x|+ |y|.

(Note that this definition differs slightly from that of the textbook.)
The last condition is called the triangle inequality. Some absolute values satisfy a

stronger inequality, called the strong triangle inequality or the ultrametric inequality |x +
y| ≤ max(|x|, |y|) (this is stronger than the triangle inequality by the nonnegativity condi-
tion). Absolute values satisfying the ultrametric inequality are called ultrametric or nonar-
chimedean; sometimes absolute values which satisfy the triangle inequality but not the ul-
trametric inequality are called archimedean.

There is always a trivial absolute value given by |x| = 1 for every x ̸= 0 and |0| = 0,
which also satisfies the ultrametric inequality. However it is usually not interesting and we
typically exclude it from consideration.

One can check that the standard absolute value on Q satisfies the axioms above, but not
the ultrametric inequality, so it is an archimedean absolute value. One can now ask: other
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than the standard absolute value and the trivial one, are there any other absolute values on
Q?

The answer is yes for rather trivial reasons: e.g. x 7→ |x|1/2 is also an absolute value
(all the conditions are clear except the triangle inequality, where one has to check that
|x+y|1/2 ≤ |x|1/2+ |y|1/2, which follows from the fact that f(x) =

√
x has sublinear growth).

More generally x 7→ |x|α is an absolute value for each 0 ≤ α ≤ 1, with α = 0 recovering
the trivial absolute value; so we have an infinite family of absolute values. However these
don’t meaningfully differ from each other (for example they all induce the same topology
and completion, for those familiar with the notions; we’ll come back to completion later) so
we don’t really want to consider them new. Therefore we say that two absolute values | · |1
and | · |2 are equivalent if for every x we have |x|1 = |x|α2 for some α > 0 (not depending on
x), and consider absolute values up to equivalence. These equivalence classes (of nontrivial
absolute values) are sometimes called places of R.

So thus far we only know about one place of Q. However we can construct some more.
First, observe that giving an absolute value of Q is really the same as giving an absolute
value of Z, since by the multiplicative property of absolute values for a/b ∈ Q we have
|a/b| = |a|/|b|. So we want to define a new notion of “closeness” on Z. Fixing a prime p,
we’re going to say that two integers x and y are close if they’re congruent modulo p; even
closer if they’re congruent modulo p2; and so on. To formalize this, we can look at how
many factors of p divide x−y. Writing vp(x−y) for this number, we observe that it satisfies
vp(xy) = vp(x)+vp(y), so to get an absolute value we need to exponentiate; thus we consider
the absolute value |x| = bvp(x) for some real number b > 0 for x nonzero, and |0| = 0.

We need to check that this satisfies the triangle inequality. If x and y are both divisible
by pe, then so is |x + y|; therefore vp(x) ≥ min(vp(x), vp(y)). Therefore so long as b < 1 we
have |x + y| ≤ max(|x|, |y|), i.e. this is not just an absolute value but also an ultrametric
one. Any choice of 0 < b < 1 gives an equivalent absolute value; for concreteness we often
make a standard choice of b = p−1, giving the p-adic absolute value |x|p = p−vp(x). This
formula also holds for all rational numbers: so if x = a/b is in lowest terms with neither a
nor b divisible by p, then |x|p = 1; if (say) a is divisible by p once, then |x|p = p−1, while if
b is divisible by p once then |x|p = p. For example, |p|p = p−1.

It is easy to see that | · |p is not equivalent to the standard absolute value on Q, which we
sometimes write as | · |∞ to avoid confusion. Thus we have found infinitely many places of Q:
one for each prime number p (the p-adic places, with nonarchimedean absolute values) and
one more (the standard archimedean absolute value). This last place is sometimes called the
“prime at infinity,” by analogy with the fact that all the other places are primes; one of the
key ideas in a lot of modern number theory is that philosophically, for many purposes we
should try and think of this “infinite place” as analogous to the finite ones, putting all the
places on the same level, even though literally speaking they look quite different.

Finally we can ask if we’ve now found all the places; Ostrowski’s theorem states that
the answer is yes, i.e. every nontrivial absolute value on Q is equivalent to either a p-adic
absolute value for some prime p or the archimedean absolute value.

These absolute values are related to each other in an interesting way: the archimedean
absolute value measures the “size” of each element in a way we’re used to, while the p-adic
absolute values measure the size of the p-part (in an inverted way). We can formalize this
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idea via the product formula: for any rational number x, we have

|x|∞ ·
∏
p

|x|p = 1.

Indeed, let’s think about the case where x is a positive integer; multiplying by −1 doesn’t
change the formula, and the extension to rational numbers is then easy as above. Each
integer x can be written uniquely as the product of prime numbers with some exponent; we
could think of this as

x =
∏
p

pvp(x),

with vp(x) = 0 for all but finitely many primes p (those which divide x). For x a positive
integer, |x∞| = x, while pvp(x) = |x|−1

p , so this is

|x|∞ =
∏
p

|x|−1
p ,

and rearranging gives the product formula above.
There is also a version of this story for every finite extension K/Q, with the primes

replaced by prime ideals of OK . One can also do a version over function fields, which we
won’t define now but give a characteristic p analogue of number fields; the simplest example
is Fp(t). There, all the places are nonarchimedean, but there is still a place “at infinity” given
by f 7→ q− deg f , and P -adic places for each irreducible polynomial P . Function fields together
with number fields (i.e. finite extensions of Q) make up global fields, which have similar
properties despite living in two different settings; this motivates many analogies between the
number field world and the function field world, and many results can be proven uniformly
for both.

2 Completions

For those who have seen some topology, the following notion may be clear: if X is a metric
space, i.e. it has a notion of distance d(x, y) ∈ R for points x, y ∈ X satisfying various
properties (in particular d(x, y) = |x − y| for an absolute value | · | on a ring will work),
we say that a sequence {xn} in X is a Cauchy sequence if for every ϵ > 0, there exists an
integer N such that for every m,n ≥ N we have d(xm − xn) < ϵ. Note that this depends
on the metric d, and so on the absolute value. We say that X is complete if every Cauchy
sequence converges to some limit in X; for example, R (with the standard absolute value) is
complete, every such sequence of real numbers will converge to a real number, but Q (with
the standard absolute value) is not, e.g. the sequence of decimal approximations to

√
2, i.e.

1, 1.4, 1.41, . . . , although a Cauchy sequence, will not converge to any rational number.
We are interested in the case where X = K is a field equipped with an absolute value

| · |. As the example of (Q, | · |∞) shows, this need not be complete. Our goal is to construct

a completion K̂, which contains K as a subfield and is complete for some absolute value
extending the one on K.
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Consider the ring S = Functions(N, K) of sequences in K, with pointwise addition and
multiplication. This contains a subring C ⊂ S of Cauchy sequences (one can check that sums,
differences, and products of Cauchy sequences are again Cauchy), which further contains a
subset N ⊂ C of “null sequences,” i.e. sequences converging to 0 in K. One can show that in
fact N is an ideal of C (and actually a maximal ideal): multiplying a Cauchy sequence by a
null sequence gives another null sequence, and the null sequences are closed under sums and
differences. Therefore we can take the quotient C/N , which is a ring and, by some algebra,
actually a field; we think of this as taking Cauchy sequences and discarding the different
ways that they can go to whatever their limit would be, if it existed, leaving only the data
of this hypothetical limit. Thus this field K̂ := C/N is the completion of K in the sense of
adding in all the limits that Cauchy sequences should have. It contains K as a subfield by
looking at constant sequences in K, which are certainly Cauchy.

What about the absolute value on K̂? If {an} is a Cauchy sequence in K, then {|an} is
a Cauchy sequence in R, and so since R is complete it has a limit, which we define to be
|{an}|. This gives an absolute value on K̂, which restricted to the constant sequences {x}
gives |{x}| = |x|, so this does extend the absolute value on K̂. In fact, the absolute value on
K induces a topology on it (the metric topology), for which the map given by the absolute

value to R (also with the metric topology) is continuous; and K is dense in K̂, so this is the
unique continuous extension of the absolute value with respect to these topologies. Finally
K̂ is now complete for this topology; this is an exercise in showing that Cauchy sequences
of Cauchy sequences reduce to usual Cauchy sequences, which therefore have limits in K̂.

This might even be a process you’ve seen before: it’s one way of constructing the real
numbers. That is, the completion of Q with respect to the standard absolute value | · |∞ is
exactly the real numbers. Completing for different absolute values in the same equivalence
class still gives the real numbers; the completion depends only on the equivalence class, i.e.
on the place. This suggests the following question: what are the completions of Q with
respect to the p-adic topologies? These are the p-adic numbers Qp, which we discuss next.
We sometimes write R as Q∞, to reflect that we should think of it as the completion at the
infinite place, parallel to the completions Qp at finite places.

3 p-adic numbers

We can now define the p-adic numbers Qp as above, via completion. However while we have
a lot of intuition around the real numbers, we have very little for this strange p-adic world;
so let’s take a moment to think about them.

The first thing to observe is that, unlike the real numbers, the p-adics are nonarchimedean,
i.e. the absolute value (induced from | · |p on Qp) satisfies the ultrametric inequality. This
has some nice consequences. For example, while convergence of series is very subtle over the
real numbers, in the p-adics it is very simple:∑

n≥0

an

converges if and only if limn an = 0. Indeed, we know Qp is complete so it suffices to show
that the sequence of partial sums bn =

∑n
k=0 ak is Cauchy; and (for say m ≥ n without loss
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of generality)

|bm − bn| =

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ ≤ max
n<k≤m

|ak|,

so the conditions for Cauchy sequences are equivalent to those for an to converge to 0.
Another nice property is that the subset of Qp consisting of x with |x|p ≤ 1, which in R

would be the interval [−1, 1] which has no especially nice algebraic properties, in Qp has a
ring structure! Indeed, for x ∈ Q embedded into Qp, |x|p ≤ 1 if and only if, writing x = a/b
in lowest terms, we have vp(b) = 0, i.e. x has no powers of p in its denominator. Since
the p-adic absolute value only sees powers of p, these are the “p-adic integers in Q,” and
indeed contain all the usual integers; more formally this is the localization Z(p). Indeed we
could take the completion of Z with respect to the p-adic absolute value just as well as Q,
and would get a ring Zp ⊃ Z with absolute value extending the p-adic one on Z, which has
|x|p ≤ 1 for every x ∈ Zp. The inclusion Z ⊂ Q induces an inclusion Zp ⊂ Qp, and the
completeness of both means that in fact Zp is exactly the subring of Qp with |x|p ≤ 1.

We can give an independent description of Zp, which will also shed more light on Qp.
First though let’s look at some properties of Zp. Topologically, as we’ve seen, we can think
of it as the ball of radius 1 inside of Qp, centered at 0. Its ideals are pleasantly simple: the
element p ∈ Zp (since |p|p = p−1 ≤ 1) generates an ideal (p), as do all its powers (pn), and
as always there’s the zero ideal (0) and the unit ideal (1) = Zp; and that’s it. In particular
this means that (p) = pZp, equivalently the ball of radius p−1, is the unique maximal ideal
of Zp, since it contains (0) as well as each (pn), and so Zp/pZp is a field; one can show that
it is actually isomorphic to the finite field Fp.

We can look at the units of Zp, which must have absolute value 1; in fact the units Z×
p

are exactly the elements of Qp with absolute value 1. Unlike R, where there are only two
units of absolute value 1, namely ±1, here Z×

p is infinite.
Finally, we want to give a different, more algebraic description of Zp. We have a quotient

map Zp → Zp/pZp ≃ Z/pZ. We can choose lifts of elements of Z/pZ to Z, say by restricting
to {0, 1, . . . , p− 1}; for x ∈ Zp, write x0 for such a lift of the image of x modulo p. Via the
embedding Z ⊂ Zp, we can view x0 as an element of Zp, such that x− x0 ∈ pZp.

Next, we could quotient by p2: this gives a map pZp → pZp/p
2Zp ≃ p ·(Z/p2Z). Similarly

choosing a lift px1 of the image of x−x1 in p(Z/p2Z), we get x−x0−px1 ∈ p2Zp. Repeating
this gives us a sequence {xi} of integers, with xi only really defined modulo pi+1, such that

x =
∑
n≥0

xnp
n,

i.e. we can think of p-adic integers as power series “in p.” More formally, the algebraic
statement is

Zp ≃ lim←−
n

Z/pnZ,

so a p-adic integer is a compatible system of elements of Z/pnZ for every n. Just like for
usual power series, the units are the elements for which x0 is invertible as an element of Fp,
i.e. x0 ̸= 0. More generally, x is in (pn) if xi = 0 for i < n. By dividing by the leading power
of p, we can write every element of Zp as upn for some n ≥ 0, where u ∈ Z×

p .
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An example of such a series expansion which is not obvious is −1, viewed as a p-adic
number. Modulo p, this is p− 1, so x0 = p− 1; −1− (p− 1) = −p, so x1 ≡ −1 ≡ p− 1 as
well, and so on. This gives

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + · · · .

Indeed, formally summing this series via the geometric series expansion gives (p− 1) · 1
1−p

=
−1, and one can check that over the p-adics, unlike over the reals, this series actually
converges: |(p− 1)pn|p = |p− 1|p · |pn|p = 1 · p−n = p−n, which tends to 0 as n→∞ so the
series converges as above.

This in fact lets us describe Qp as well: Qp ≃ Zp[1/p]. We can think of p-adic numbers as
Laurent series in p, i.e. we allow finitely many terms with negative powers, or as everything
of the form upn for u ∈ Z×

p and any integer n, rather than only nonnegative integers.
Again, there are analogues over any finite extension of Q by completing at the place

corresponding to any prime ideal p. These are finite extensions of Qp if p lies over p, and
have similar properties and descriptions. There are also analogues in the function field world:
there, every completion is of the form Fq((t)), i.e. Laurent series over a finite field. These,
together with R and C, are the local fields; they are given by completion of global fields at
their places.

4 Algebraic extensions and closures

We’ve referred a few times to finite extensions of Q or related fields; some examples we’ve
seen before include Q(i), Q(

√
−3), and the cyclotomic fields Q(ζp). More generally, we can

study algebraic extensions. For a field extension L/K, an element x ∈ L is algebraic over K
if there exists some polynomial f with coefficients in K such that f(x) = 0 (e.g. for i over
Q, we have f(x) = x2 + 1); we say that L/K is algebraic if every element of L is algebraic
over K. An example of a non-algebraic extension is given by Q(t)/Q, since the element
t is transcendental (i.e. not algebraic) over Q; another is given by C/Q, since C includes
transcendental elements such as π.

All finite extensions are algebraic; but the converse is not necessarily true. An example is
given by the algebraic numbers Q/Q: this contains e.g. roots of the irreducible polynomial
xn − 2 for every n ≥ 1, and so must have infinite degree, but by definition every element is
algebraic over Q.

This is a special case of a more general idea: the algebraic closure K of a field K, which
can loosely be thought of as the collection of all elements which are algebraic over K. More
precisely, a field is algebraically closed if it has no nontrivial algebraic extensions (e.g. C);
an algebraic closure of K is an algebraic extension which is algebraically closed. It is not
at all trivial to show that every field has an algebraic closure, but it is true (assuming the
axiom of choice); there is also the question of to what extent the algebraic closure is unique.
It turns out that any two algebraic closures of a field are isomorphic, but not necessarily
in a canonical way, so sometimes people prefer to say that we choose an algebraic closure,
though we will not generally concern ourselves too much with such subtleties.

It is interesting to ask how algebraic closures interact with completions. The answer is
that the algebraic closure of a complete field is sometimes, but not always, complete. In
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particular, the algebraic closure of R is C, which is also complete. However, the algebraic

closure Qp of Qp is no longer complete. One can then take its completion Q̂p, and ask if this
is still algebraically closed; and the answer is yes, so we have now arrived at a (quite large)
complete and algebraically closed field, analogous to C.

At this point, before moving on to discuss Galois representations, we can make an impor-
tant and interesting remark about Fermat’s last theorem: it is an essentially global statement.
That is: we want to show that the equation xp+yp = zp has no solutions in nonzero integers,
or equivalently nonzero rational numbers (a global field). One way we could hope to show
this is to say: well, we’ve now found infinitely many embeddings Q ⊂ Qℓ over various primes
ℓ (since we’ve already used p), as well as Q ⊂ R; so if we could find some place v, finite or
infinite, such that the Fermat equation has no nontrivial solution in Qv, then it would follow
that it has no nontrivial solutions in Q. This would be a local obstruction to the existence
of solutions.

However, there are no such local obstructions: it is easy to see (via drawing some graphs)
that there do exist solutions in R. We claim that in fact for every prime ℓ, there exist
solutions in Qℓ as well, so whatever it is that (we hope) causes the Fermat equation to not
have rational solutions must be a fundamentally global phenomenon.

We start with the case ℓ = p. Taking x = 1 and z = p, we can find a solution in Qp by
taking y = −(1 + pp)1/p. The function (1 +X)1/p has a binomial series expansion

(1 +X)1/p = 1−
∑
n≥1

1

n!
(p− 1)(2p− 1) · · · ((n− 1)p− 1)(X/p)n

and in particular has rational coefficients; for X = pp it can be shown to converge, giving an
element of Qp.

For ℓ ̸= p, we similarly take x = 1 and z = ℓ; in this case the binomial series for
(1 + X)1/ℓ, we haven’t introduced any new factors of p and so the series converges more
straightforwardly to an element of Qℓ.

5 Introduction to representation theory

We will want to study number fields via studying their automorphisms, i.e. their Galois
groups. Before we worry about studying these, we first worry about a much broader question:
how should we study groups in general? The principle we will use is that groups should be
understood via their actions: all the information of a group can be recovered from the data
of how it acts on various different objects, but these are often easier to study.

The first claim, that we can recover all the information about groups from their actions,
is a little bit subtle to make precise; a high-level keyword here is “the Tannakian formalism.”
In a simpler sense though it’s almost trivial: every group acts on itself by translation, so if
we understand this action we understand the group.

To justify the second part, we need to say more about what we mean. First of all, what
actions should we take? The simplest group actions are on sets, but this is not much better
than just studying groups; we’d like something with more and simpler algebraic structure.
The next simplest thing we might then think to study is group actions on other groups, or
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perhaps on abelian groups for simplicity; but there are various phenomena such as torsion
in even abelian groups that makes this less than ideal. We could then think to ask about
actions on torsion-free abelian groups, or perhaps free abelian groups, i.e. free Z-modules
(don’t worry if this terminology is unfamiliar); but it’s convenient to be able to scale by
elements of a field rather than just Z so we can have inverses, suggesting studying group
actions on vector spaces over some field k. Although one can take any field for k, it’s often
convenient to have k algebraically closed, and for definiteness we often specialize to the case
k = C.

Now, what do we mean by a group action on a complex vector space? You may recall
the definition of a group action from algebra: for our vector space V and each g in our group
G, we should get a linear map V → V induced by g satisfying various properties. A more
concise way of saying this is that we can all agree that linear transformations V → V act on
V , and since we’re interested in groups we can restrict to the invertible ones, GL(V ); and
so an action of G on V is the same thing as a group homomorphism ρ : G → GL(V ), i.e.
ρ(g1g2) = ρ(g1)ρ(g2). This is called a representation of G (on V ).

For example, consider the unique group of order 3, which is the cyclic group C3 =
{1, σ, σ2} with generator σ. Let V ≃ C2 be a 2-dimensional vector space, and suppose that
σ acts on V by the matrix

ρ(σ) =

(
1 −1
3 −2

)
.

Since ρ is a homomorphism and G is cyclic, this determines the whole representation: we
must have ρ(1) = I2 and

ρ(σ2) = ρ(σ)2 =

(
−2 1
−3 1

)
.

A simpler representation is on the one-dimensional representation via χ(σ) = e2πi/3, so
χ(σ2) = χ(σ)2 = e4πi/3, and again χ(σ) = 1, acting by multiplication on C. Simpler yet is
the trivial representation χ0(g) = 1 for all g; every group has this representation.

The one-dimensional representations are always the simplest, and it’s easier to think of
them as just functions (in fact group homomorphisms)G→ C× instead of the linear algebraic
data we need in general. In fact, we can get a function G→ C from any (finite-dimensional)
representation, simply by taking its trace: we call this the character of a representation ρ,
given by χ(g) = Tr(ρ(g)). Naively, it seems like this loses a lot of information, but in fact this
turns out not to be the case: two representations with the same character are isomorphic.

Some of the information about a representation can be read off easily from its character:
for example, if it has dimension d, then χ(1) = d, since ρ(1) = Id which has trace d. Other
information is less obvious. Since the trace is invariant under base change, although the
matrices of the representation will be different in different bases the character will be the
same, so it can be viewed as retaining the base-invariant information. More precisely, it is
conjugation-invariant:

χ(g−1hg) = Tr(ρ(g)−1ρ(h)ρ(g)) = Tr(ρ(g)ρ(g)−1ρ(h)) = Tr(ρ(h)) = χ(h)

for all g, h ∈ G.
If we are interested in classifying the representations of a group, we immediately run into

a problem that, given some representations, we can generate more by taking their direct
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sum, which gives infinitely many representations in a rather trivial way (this corresponds
to adding various characters together). Thus we say that a representation is irreducible if
it cannot be written as the direct sum of two other representations; so we’re interested in
classifying irreducible representations of a group. (More precisely we say that a representa-
tion is irreducible if it has no proper nontrivial subspaces preserved by G; it is a nontrivial
theorem that every representation of a finite group over C decomposes as a direct sum of
irreducible representations.)

If G is an abelian group, its irreducible representations are relatively simple: they are all
one-dimensional. (In practice enumerating them may still be challenging for some groups,
but this is simple compared to the general case.) In fact the converse is also true, at least
for finite groups.

Notably, this means that the example of C3 acting on C2 above is reducible, although it
doesn’t naively look like a direct sum. However, the matrices in question are diagonalizable,
and changing basis one finds that ρ decomposes as the direct sum of the one-dimensional
representation χ (sending σ to multiplication by e2πi/3 on C) and its conjugate χ (sending σ
to e4πi/3).

There is quite a lot more to say about group representations, even for finite groups over
C (for example we have not mentioned character orthogonality relations), but this should
give us the basics we’ll need. To see why this sort of thing might be useful, let’s look into
some Galois theory.

6 Introduction to Galois theory

For a field K, its automorphisms are the ring homomorphisms f : K → K, i.e. maps which
satisfy f(x+y) = f(x)+f(y) and f(xy) = f(x)f(y) for all x, y ∈ K. IfK containsQ, it is not
too hard to verify that every automorphism of K must fix Q, i.e. for x ∈ Q we have f(x) = x
(it can be checked for integers using additivity and the property f(1) = 1 and then extended
to the rationals by multiplicativity). More generally, we say that for an algebraic extension
L/K, an automorphism f of L is a K-automorphism if it fixes K, i.e. for every x ∈ K we
have f(x) = x. An example is the finite extension C/R, with the automorphism given by
complex conjugation: for every real number x we have x = x, so complex conjugation is
an R-automorphism of C. For any extension L/K the K-automorphisms of L form a group
under composition, which we call the Galois group Gal(L/K).

There exist various subfields between L and K, i.e. subfields of L containing K; there
also exist various subgroups of the Galois group Gal(L/K). The goal of Galois theory is to
provide a dictionary between these.

Suppose M is an intermediate extension, i.e. we have a tower of extensions L/M/K. Any
M -automorphism of L is also a K-automorphism of L, so we get a subgroup Gal(L/M) ⊂
Gal(L/K).

Conversely, say we have a subgroup H ⊂ Gal(L/K). This acts on L and fixes the subfield
K; since it is not necessarily the whole Galois group, it may in fact fix other elements not
in K as well (e.g. the trivial subgroup {1} ⊂ Gal(L/K) fixes all of L!). The subset of L
consisting of elements fixed by every element of H is a subfield containing K, i.e. we get an
intermediate extension given by the H-fixed points, sometimes written as LH . If the subfield
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fixed by the whole group Gal(L/K) is the base field K, then we say that L/K is a Galois
extension. In this case these two constructions give an order-reversing bijection

{intermediate extensions of L/K} ↔ {subgroups of Gal(L/K)}.

This maps Galois extensions of K to normal subgroups of Gal(L/K), i.e. LH is Galois over
K if and only if H = Gal(L/LH) is a normal subgroup of Gal(L/K). In this case we can
study the quotient group Gal(L/K)/Gal(L/LH), which is isomorphic to Gal(LH/K). It also
maps the degree of the extension to the size of the Galois group, i.e. [L : K] = |Gal(L/K)|.
In fact, for L/K a finite extension it is Galois if and only if this equality holds.

For example, the algebraic closure K/K is always Galois for K of characteristic 0 (i.e.
containing Q). On the other hand, the real algebraic numbers R ∩Q are not Galois over Q
(in fact, one can show that its automorphism group is trivial!).

For the cyclotomic fields Q(ζp) that we saw a few weeks ago, their Galois group over Q
is given by (Z/pZ)×. Indeed, they are generated by the pth roots of unity, which as a group
are isomorphic to Z/pZ; and the automorphisms of this group are just multiplication by
invertible elements. We do indeed have |(Z/pZ)×| = |F×

p | = p− 1 = [Q(ζp) : Q] (recall that
the defining irreducible polynomial is 1 + x+ · · ·+ xp−1, of degree p− 1, and that Q(ζp) has
Q-basis given by 1, ζp, ζ

2
p , . . . , ζ

p−2
p of order p− 1), so these are Galois extensions of Q.

In many of the cases we’ve seen so far, the Galois groups are abelian. In general, though,
this is very far from the case. In particular if we study the largest and most interesting
possible Galois group over Q, namely the absolute Galois group Gal(Q/Q), this is extremely
nonabelian. By Galois theory, its subgroups correspond to algebraic extensions of Q; in
principle, one has to be fairly careful here because Gal(Q/Q) is infinite (and in fact a
topological group), and so one should put some topological conditions on which subgroups
we allow. However, in practice we are interested in finite extensions, and use the single group
Gal(Q/Q) as a gadget to handle them all at once; but we will generally focus on its finite
quotients, corresponding to finite Galois extensions of Q.

Indeed, since by our above principle we should study the Galois group via its representa-
tions, we make the following definition: a representation of a topological group is continuous
if the map G→ GL(V ) is continuous (using the natural topology on GL(V )), which in our
case of G = Gal(Q/Q) (or similarly the absolute Galois group of other field) is equivalent to
saying that the kernel of the representation is a finite index subgroup, so the representation
factors through the quotient, which is the Galois group of a finite extension of Q.

It is also worth noting that the inclusions Q ⊂ Qv and Q ⊂ Qv for each place v give maps
Gal(Qv/Qv)→ Gal(Q/Q), by restricting the automorphism of Qv to Q and observing that if
it fixes Qv it also fixes Q. (Really this depends on a choice of algebraic closure and embedding
of algebraic closures; a different choice will result in a map differing by conjugation.) The
local Galois groups are also generally complicated (except for that of Q∞ = R, which is
Gal(C/R) ≃ C2 = {1, c} where c is complex conjugation), but less so than the global one.

7 Abel–Ruffini theorem

A common application of Galois theory is the following result: while for polynomial equations
in one variable of degrees 2, 3, and 4 over Q there exist (increasingly complicated) formulas
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for finding their solutions in terms of addition, subtraction, multiplication, division, and
radicals (i.e. taking nth roots for some n), there exists no such formula for degree 5 or
higher, no matter how complicated.

This is a corollary of the following more precise result: let f(x) be a polynomial with
rational coefficients, whose zeros generate the finite Galois extension K/Q. Then the equa-
tion f(x) = 0 is solvable by radicals if and only Gal(K/Q) is solvable (a group-theoretic
condition which we will return to shortly). Analogues of this result over fields other than Q
exist as well, though one has to be careful in positive characteristic.

To see this, we think about the operation of solving an equation by radicals as follows:
starting with the coefficients of the equation, we make some computation (either addition,
subtraction, multiplication, division, or taking a radical). We get some new number; either
we stop there and produce that number or we repeat the process, now using the coefficients
and this new number as input, and so on for finitely many steps until we get the result.

By assumption, we are starting with values in Q, and we end up with a solution to
f(x) = 0, which is in K (and in fact generates K). After each computation step, we can
look at the field generated by all of the inputs: after zero steps, this is just the field generated
by the coefficients of the polynomial, which are rational, so K0 = Q. Addition, subtraction,
multiplication, and division don’t change the field, so if the computation is one of these then
Ki+1 = Ki; taking a radical does change it, with Ki+1 = Ki(x

1/ni

i ) for some xi ∈ Ki and
integer ni ≥ 2. (To make sure everything is Galois, we sometimes need to add nith roots of
unity to Ki+1 as well; this is harmless since the eventual overall extension K/Q is Galois.)
So we get a finite series of extensions

Q = K0 ⊂ K1 ⊂ · · · ⊂ Kr = K,

with eachKi+1/Ki Galois and Gal(Ki+1/Ki) either trivial or cyclic, and in particular abelian.
Via Galois theory, this corresponds to a descending series of subgroups

Gal(K/Q) = Gal(K/K0) ⊃ Gal(K/K1) ⊃ · · · ⊃ Gal(K/Kr) = Gal(K/K) = {1}

with Gal(K/Ki+1) normal in Gal(K/Ki) and each Gal(K/Ki)/Gal(K/Ki+1) ≃ Gal(Ki+1/Ki)
abelian.

Now we define a solvable group: a group G is solvable if there exists a finite series of
subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gr = {1}

such that Gi+1 is normal in Gi and Gi/Gi+1 is abelian for every i. These are the groups that
can be “built up” from abelian groups in a certain sense.

Now the above translates into the following: if f(x) = 0 is solvable by radicals, then
Gal(K/Q) is solvable, with Gi = Gal(K/Ki). With a little more care one can prove the
converse similarly, though it isn’t actually needed for the Abel–Ruffini theorem.

For low-degree equations, this isn’t an issue since all sufficiently small groups are solvable.
Indeed, for f(x) of degree d we have |Gal(K/Q)| ≤ d! since the Galois group acts transitively
on the d roots and so embeds into the symmetric group Sd, and for d ≤ 4 one can check
that all the groups up to order 24 are solvable, so all such equations of degree at most 4
are solvable by radicals. The smallest non-solvable group turns out to be the alternating
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group A5, of order 60; this is an index 2 subgroup of S5, and does occur as the Galois group
of degree 5 polynomials, and non-solvable groups become more and more common as the
size increases. Therefore for any deg f ≥ 5 we cannot solve every polynomial equation by
radicals, and so there can exist no such formula.
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