
Lecture 18: the fundamental theorem of calculus

Calculus I, section 10
November 22, 2022

Last time, we introduced a new kind of calculus problem: evaluating definite integrals,
which we think of as the “cumulative” value of a function so far, for example as in the area
under a curve between two points. We saw how we can approximate integrals by Riemann
sums, and rigorously define them as a limit; finally we hinted towards how one could compute
them using indefinite integrals, also called antiderivatives. Today we’ll see how to do this,
using the fundamental theorem of calculus.

Recall last time we looked at the example∫ b

0

(mx+ k) dx =
1

2
mb2 + kb.

If we viewed this as a function F (b) of the endpoint b, then we can check that d
dx
F (x) =

d
dx

(1
2
mx2 + kx) = mx+ k, which was our original function f(x). The fundamental theorem

of calculus states that this generalizes:

Theorem (Fundamental theorem of calculus, first version). Let f(x) be an integrable func-
tion on the interval [a, b], and

F (y) =

∫ y

a

f(x) dx

for any y between a and b. Then d
dy
F (y) = f(y), i.e. F ′ = f .

Already this generalizes the above observation, even when f(x) = mx+k, since this tells
us that it’s true even starting from any a, not just a = 0.

Nevertheless, although this is a cool observation it doesn’t really help us much at first
glance. It’s nice to know the derivative of F , but really what we want is to be able to
compute the value of F at particular points b, i.e. F (b) =

∫ b
a
f(x) dx.

What we can note, though, is that the theorem tells us that F ′ = f , or in other words
that F is an antiderivative of f . This suggests that maybe if we first find an antiderivative
of f , we can use it to compute integrals.

Let’s try approaching the problem from this direction: say that we’ve found an antideriva-
tive G of f , i.e. G′(x) = f(x). We know from last time that this means F and G are the
same, up to a constant:

F (y) =

∫ y

a

f(x) dx = G(y) + C

for some constant C. Since C doesn’t depend on y, we can choose a value of y to make the
calculation simple; a good choice is y = a, since then the integral is across the interval [a, a]
which is a single point, so the area must be 0. Thus we have

F (a) = 0 = G(0) + C,

so C = −G(0). Therefore in general

F (y) =

∫ y

a

f(x) dx = G(y)−G(a).
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This notation is a little redundant: we’ve wound up writing y instead of b, and G instead
of F since we meant something else by F . Cleaning this up by replacing some of the variable
and function names, we’ve found the following:

Theorem (Fundamental theorem of calculus, second version). Let f(x) be an integrable
function on the interval [a, b], and F (x) be an antiderivative of f(x). Then∫ b

a

f(x) dx = F (b)− F (a).

For example, recall the integral we were interested in last time:∫ 1

0

x2 dx.

We found some upper and lower bounds by hand using Riemann sums; taking the limit and
using some trickery, we deduced that the answer should be 1

3
, but we didn’t really have any

kind of method that could be generalized. Now we do, so let’s see if the answers agree: from
your homework, you should know that an antidervative for x2 is of the form∫

x2 dx =
x3

3
+ C.

Let’s just take x3

3
for simplicity (though any antiderivative would work). We find that∫ b

a

x2 dx =

(
x3

3

) ∣∣∣∣1
0

=
13

3
− 03

3
=

1

3
,

just as we predicted last time.
Another example which should be familiar from your homework is∫ π

0

sin(x) dx.

One one part of your homework, you approximated this integral via Riemann sums. On
another, you found that its antiderivative is − cos(x) (plus an additive constant), so∫ π

0

sin(x) dx = (− cos(x))
∣∣∣π
0

= − cos(π)− (− cos(0)) = −(−1)− (−1) = 2.

This should be reasonably close to the approximations you found (though not too close, since
you only did four intervals).

Now that we’ve seen a little bit of how powerful this tool can be, let’s think for a moment
about why it might be true. Since we saw how the second version of the theorem follows
from the first version, we’ll focus on the first version.

By definition, F ′(y) is

lim
h→0

1

h

(∫ y+h

a

f(x) dx−
∫ y

a

f(x) dx

)
.
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There is a general property of definite integrals which will be useful to us here, and is worth
writing out: ∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx,

because the area under the curve of f(x) between a and b plus the area between b and c is
just the area between a and c.

Applying this in our case, we get

F ′(y) = lim
h→0

1

h

∫ y+h

y

f(x) dx.

There are a few ways we could proceed: one is to now replace the integral by a Riemann
sum, and take the limit. Another is to say that because the interval [y, y + h] has length h,
which is going to 0, we should actually be able to approximate the integral over this interval
well by a single rectangle. This is equivalent to approximating f(x) on this interval by a
constant, say f(y), so that we’d get a total area for the integral of hf(y). When we divide
by h, we conclude that F ′(y) = f(y), as desired.

If we’re suspicious of this zeroth-order approximation, we could try using the first-order
approximation instead: in the limit, we can safely replace f(x) by f(y) + (x− y)f ′(y). Then
the integral is ∫ y+h

y

(f(y) + (x− y)f ′(y)) dx,

which is the definite integral of a linear function of x. We already know a formula for these
integrals; I won’t make you work through it, but it should come out to

1

2
f ′(y)h2 + f(y)h.

Thus in total we get

F ′(y) = lim
h→0

1
2
f ′(y)h2 + f(y)h

h
= lim

h→0

(
1

2
f ′(y)h+ f(y)

)
= f(y).

To see more examples, we’ll have to think about some more antiderivatives. Let’s start
as usual with polynomials. From your homework, you know how to antidifferentiate (and
thus integrate) expressions of the form xn:∫

xn dx =
xn+1

n+ 1
+ C.

To combine them, we use another general property of integration: linearity. Just like for
derivatives, for two integrable functions f and g we have∫

(f(x) + g(x)) dx =

∫
f(x) dx+

∫
g(x) dx,

and for any constant c we get ∫
cf(x) dx = c

∫
f(x) dx.
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You can prove these by differentiating, and using the fact that differentiating is linear: for
example,

∫
cf(x) dx is a function whose derivative is cf(x), and if F (x) =

∫
f(x) dx is an

antiderivative of f(x) then cF (x) is an antiderivative of cf(x), so we get the identity above.
Using linearity for antiderivatives together with the fundamental theorem of calculus, we

get the same linearity statement for definite integrals. (We could also have tried to prove it
from the Riemann sum formula.) This should be pretty intuitive: if we add two functions
vertically, we expect to add the corresponding areas, and similarly if we scale a function we
should scale its area.

Applying linearity to monomials xn, just like for differentiation this means we can now
integrate any polynomial! For example,∫ 2

−1
x3 − 2x− 1 dx =

(
x4

4
− 2 · x

2

2
− x
) ∣∣∣∣2
−1

=

(
24

4
− 22 − 2

)
−
(

(−1)4

4
− (−1)2 − (−1)

)
= −2− 1

4

= −9

4
.

Now let’s take a moment to think about this. We did all our steps, and we got a negative
result. But we said that the integral is supposed to give us an area; how can this be negative?

To see what’s happened, let’s try sketching the situation.

x

y

−2 −1 1 2

−2

−1

1

2

3

You can sort of see what’s happening here: we have a little bit of area above the x-axis
at first, then a lot below the x-axis, and then a little more above the x-axis. We consider
the area above the x-axis to be positive, and below the x-axis to be negative. So what’s
happening here is that more of the total area is negative then positive, and so the total ends
up negative.

Why do we count some of the area as negative? Because what the integral is about is not
really area, although that’s one convenient way to think about it: it’s really about cumulative
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value. If the function is negative at a point, then that actually reduces the cumulative value,
so we want to count that part as negative. If we care about actual area, rather than this
sort of “signed” area, we should instead of

∫ b
a
f(x) dx use

∫ b
a
|f(x)| dx.

Okay, so we understand how to integrate polynomials. Next comes rational functions, but
integrating rational functions is actually quite hard in general (and is one of the important
topics of calculus 2). One particular rational function that we’d like to be able to integrate
is f(x) = 1

x
, because our previous method fails: this is x−1, but its antiderivative can’t be

x−1+1−1 + 1 = 1
0
!

Instead, we recall a derivative: d
dx

ln(x) = 1
x
, so

∫
1
x
dx = ln(x) + C. In particular,∫ y

1

1

x
dx = ln(y)− ln(1) = ln(y),

and in fact this is one way to define ln(x). We can then define the exponential function ex

as the inverse function of ln(x), instead of the other way around, and prove its properties
from there.

Next we have exponential functions themselves. Since ex is its own derivative, we have∫
ex dx = ex + C.

How would you integrate a general exponential function?
You saw some trigonometric antiderivatives on your homework; others are possible,

and become important in calculus 2. One interesting one is that you might recall that
d
dx

tan−1(x) = 1
x2+1

. This means that∫ b

a

1

x2 + 1
= tan−1(b)− tan−1(a).

For example, tan−1(1) = π
4

and tan−1(0) = 0, so∫ 1

0

1

x2 + 1
dx =

π

4
,

or equivalently

π =

∫ 1

0

4

x2 + 1
dx.

Since the definite integral on the right is something we can numerically approximate (by
Riemann sums or various improvements some of you suggested last class), we could actually
use this formula to compute π!

Generally, the intuition is that integration is much harder than differentiation. We learned
how to differentiate essentially any function we know how to write down in this course, but
for integration the situation is much worse: there are many functions that are easy to write
down but have no integral in terms of functions we know. For example, sin(sin(x)) has no
antiderivative in terms of any functions we know, and in general we have no way of computing
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the corresponding integrals except numerically.1 In particular, we don’t have the rules of
differentiation (such as the product, quotient, or chain rules), other than linearity: these were
what allowed us to differentiate arbitrary functions, but aren’t true for integrals. Instead,
they become techniques of integration, which sometimes work and allow us to integrate
more complicated functions than we would otherwise be able to, but still not every function.
We’ll see a first example of one of these next time: u-substitution, which is the integration
analogue of the chain rule.

1There may be special choices of bounds for which we can say exactly what the integral is: for example,

if a = −b, then since sin(sin(x)) is an odd function we get that
∫ b

−b
sin(sin(x)) dx = 0.
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