Lecture 4: limit laws and the squeeze theorem

Calculus I, section 10
September 15, 2022

Last time, we introduced limits and saw a formal definition, as well as the limit laws. Today we'll review limit laws and look at some one-sided limits, and introduce the squeeze theorem.

The limit laws essentially say that subject to reasonable conditions, you can split up limits in a variety of ways: addition, multiplication, subtraction, division. These "reasonable conditions" are that, in order to say that e.g.

$$
\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x),
$$

we need both limits on the right to exist. In the case of division, to have

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}
$$

we also need the denominator to be nonzero, or else the right-hand side can fail to exist even if the left-hand side is reasonable.

We could combine limit laws in certain ways to get similar statements. For example,

$$
\lim _{x \rightarrow a} f(x)^{2}=\left(\lim _{x \rightarrow a} f(x)\right)^{2}
$$

so long as $\lim _{x \rightarrow a} f(x)$ exists, by the multiplication limit law. We could keep going like this to see that

$$
\lim _{x \rightarrow a} f(x)^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}
$$

for any n.
One very powerful limit law we haven't talked about before is about function composition. If $\lim _{x \rightarrow a} g(x)$ exists and is equal to some number L, then

$$
\lim _{x \rightarrow a} f(g(x))=\lim _{y \rightarrow L} f(y)
$$

For example, to compute

$$
\lim _{x \rightarrow 2} \log _{2}\left(\frac{x^{2}-4}{x-2}\right)
$$

this limit law tells us that we can first compute

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2} x+2=4
$$

and then our limit is

$$
\lim _{y \rightarrow 4} \log _{2}(y)=\log _{2}(4)=2
$$

This lets us think about complicated limits piece-by-piece, which is very useful, but we have to be careful. For example, we might be tempted to say that we can use it to compute limits of the form

$$
\lim _{x \rightarrow a} x \cdot f(x)
$$

by first computing $\lim _{x \rightarrow a} f(x)=L$ (if it exists) and then $\lim _{x \rightarrow L} x L=L^{2}$. But this is generally not true: for example, if $f(x)=1$, so $L=1$, then

$$
\lim _{x \rightarrow 0} x f(x)=\lim _{x \rightarrow 0} x=0 \neq L^{2}=1
$$

What went wrong? The expression $x f(x)$ might look like a function composition, since we're feeding $f(x)$ into a machine to produce a new number. But actually this expression doesn't only depend on $f(x)$: it also depends on the original x ! (This is now a multi-variable function, which might come up if you take through calculus 3 , but definitely not in this class, and it won't have this nice behavior that composition of one-variable functions does here.) So the important thing to keep in mind when using the composition rule is to make sure that your expression is actually a composition of functions!

Even if the inside limit doesn't exist, we can still take advantage of this law if it goes to ∞ or $-\infty$. In this case we do treat ∞ as a number: if $\lim _{x \rightarrow a} g(x)=\infty$, then $\lim _{x \rightarrow a} f(g(x))=$ $\lim _{y \rightarrow \infty} f(y)$, and similarly for $-\infty$. For example, to compute

$$
\lim _{x \rightarrow 0} 2^{-\frac{1}{x^{2}}}
$$

we first compute

$$
\lim _{x \rightarrow 0}-\frac{1}{x^{2}}=-\infty
$$

We then plug it in:

$$
\lim _{x \rightarrow 0} 2^{-\frac{1}{x^{2}}}=\lim _{y \rightarrow-\infty} 2^{y}=0
$$

You might complain at this point that last time I told you you don't have to worry about saying a limit goes to ∞ or $-\infty$, any such limit can just be said not to exist. That's true, and you could evaluate this limit without writing these symbols: just observe that as x goes to $0, \frac{1}{x^{2}}$ gets larger and larger, so $2^{-\frac{1}{x^{2}}}=\frac{1}{2^{1 / x^{2}}}$ gets smaller, since 2 to the power of a large number is big and the inverse of a big number is small. This notation with the ∞ symbols is just a way of keeping track of this sort of calculation, which you may find makes it easier for you; if it doesn't make it easier, feel free not to use it.

Next, let's come back to another concept we touched on last class: one-sided limits. We discussed before how if $\lim _{x \rightarrow a} f(x)=L$, this means that $f(x)$ approaches L as x goes to a from either direction, i.e. whether x is slightly less than a or slightly more than a we should have $f(x)$ close to L. We could instead weaken this requirement to only needing it to be true as x goes to a from one side or the other. We write

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

for the limit as x goes to a from above, and

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

for the limit as x goes to a from below. If $\lim _{x \rightarrow a} f(x)$ exists, then these one-sided limits must both exist and be the same; but it's possible that even if the total limit fails to exist, one or both of the one-sided limits may still exist (and if they both do, they may be different).

For example, consider the function

$$
f(x)=\left\{\begin{array}{cc}
1 & x \geq 0 \\
-1 & x<0
\end{array}\right.
$$

whose graph looks like this.

As $x \rightarrow 0$ from above, the function is always 1 , and so $\lim _{x \rightarrow 0^{+}} f(x)=1$. But as $x \rightarrow 0$ from below, the function is -1 , so $\lim _{x \rightarrow 0^{-}} f(x)=-1$.

Another common application of one-sided limits is to functions which do not exist on the whole domain and so can only be evaluated from one side. We saw an example last time involving logarithms; another example is

$$
\lim _{x \rightarrow 0} \sqrt{x}
$$

Strictly speaking, even though we can plug in $x=0$ to get $\sqrt{0}=0$, this limit does not exist! This is because we can't approach it from below, only above, since \sqrt{x} doesn't make sense for negative numbers ${ }^{1}$ If we replace the limit with a one-sided limit, $\lim _{x \rightarrow 0^{+}} \sqrt{x}$, then everything is as expected: this exists and is equal to 0 .

A more complicated example is

$$
\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{x+1}-1}
$$

[^0]Similarly, we need to require that the limit is only from above, since we can't plug in negative values to \sqrt{x}. Does this make the limit exist?

Well, the first thing to do is to get the square root out from the bottom, which we can do by conjugation:

$$
\frac{\sqrt{x}}{\sqrt{x+1}-1}=\frac{\sqrt{x}}{\sqrt{x+1}-1} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}=\frac{\sqrt{x} \sqrt{x+1}+\sqrt{x}}{x} .
$$

Canceling a factor of \sqrt{x}, this is

$$
\frac{\sqrt{x+1}+1}{\sqrt{x}}
$$

and now as we take the limit as $x \rightarrow 0$ from above we see that this will blow up: the numerator goes to $\sqrt{1}+1=2$ while the denominator goes to 0 .

Our final idea for the day is the squeeze theorem. This is based on the idea the limits respect inequalities: if $f(x) \leq g(x) \leq h(x)$, then (assuming all the limits exist)

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x) \leq \lim _{x \rightarrow a} h(x)
$$

In particular, suppose that we know that $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$. Then

$$
L \leq \lim _{x \rightarrow a} g(x) \leq L
$$

and so $\lim _{x \rightarrow a} g(x)$ must also be equal to L.
In fact, the squeeze theorem is a little stronger: we don't need to assume that the inner limit exists. If we have $f(x) \leq g(x) \leq h(x)$, at least for x sufficiently close to a, and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then it follows that $\lim _{x \rightarrow a} g(x)=L$. (The same thing works for one-sided limits.)

To see why such a thing might be useful, let's go back to the example I mentioned last class,

$$
f(x)=\frac{\sin (x)}{x}
$$

I'm going to make two claims: at least for x small, $\frac{\sin (x)}{x} \geq \cos (x)$ and $\frac{\sin (x)}{x} \leq 1$. Assuming everything is positive for simplicity, these are the same thing as $\tan x \geq x$ and $\sin (x) \leq x$. To check that these are actually true, we can look at the unit circle:

The length of the vertical line $(\sin x)$ must be less than the length of the curved line (x), so $\sin (x) \leq x$.

If we instead look at a larger triangle, the area of the whole triangle is $\frac{1}{2} \tan (x)$, while the area of the wedge is $\frac{x}{2 \pi}$ of the area of the whole unit circle, which is π, and so the area of the wedge is $\frac{x}{2}$. Since the triangle contains the wedge, it follows that $\frac{x}{2} \leq \frac{1}{2} \tan (x)$, and so $\tan (x) \geq x$.

We could do the same thing for negative values (and take one-sided limits each way to see that they agree), or just add on absolute value signs.

Now that we know these bounds, so $\cos (x) \leq \frac{\sin x}{x} \leq 1$, we can apply the squeeze theorem: taking the limit as $x \rightarrow 0$, we have

$$
\lim _{x \rightarrow 0} \cos (x)=\cos (0)=1
$$

and

$$
\lim _{x \rightarrow 0} 1=1,
$$

so without doing essentially any real limit work we get for free

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

This is, a priori, a very difficult statement!

[^0]: ${ }^{1}$ Again, if you allow complex numbers, you solve this problem at the price of introducing new ones.

