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September 15, 2022

Last time, we introduced limits and saw a formal definition, as well as the limit laws.
Today we’ll review limit laws and look at some one-sided limits, and introduce the squeeze
theorem.

The limit laws essentially say that subject to reasonable conditions, you can split up
limits in a variety of ways: addition, multiplication, subtraction, division. These “reasonable
conditions” are that, in order to say that e.g.

lim
x→a

f(x)g(x) = lim
x→a

f(x) · lim
x→a

g(x),

we need both limits on the right to exist. In the case of division, to have

lim
x→a

f(x)
g(x)

= limx→a f(x)
limx→a g(x)

,

we also need the denominator to be nonzero, or else the right-hand side can fail to exist even
if the left-hand side is reasonable.

We could combine limit laws in certain ways to get similar statements. For example,

lim
x→a

f(x)2 =
(

lim
x→a

f(x)
)2

so long as limx→a f(x) exists, by the multiplication limit law. We could keep going like this
to see that

lim
x→a

f(x)n =
(

lim
x→a

f(x)
)n

for any n.
One very powerful limit law we haven’t talked about before is about function composition.

If limx→a g(x) exists and is equal to some number L, then

lim
x→a

f(g(x)) = lim
y→L

f(y).

For example, to compute

lim
x→2

log2

(
x2 − 4
x− 2

)
,

this limit law tells us that we can first compute

lim
x→2

x2 − 4
x− 2

= lim
x→2

(x− 2)(x+ 2)
x− 2

= lim
x→2

x+ 2 = 4,

and then our limit is
lim
y→4

log2(y) = log2(4) = 2.
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This lets us think about complicated limits piece-by-piece, which is very useful, but we
have to be careful. For example, we might be tempted to say that we can use it to compute
limits of the form

lim
x→a

x · f(x),

by first computing limx→a f(x) = L (if it exists) and then limx→L xL = L2. But this is
generally not true: for example, if f(x) = 1, so L = 1, then

lim
x→0

xf(x) = lim
x→0

x = 0 6= L2 = 1.

What went wrong? The expression xf(x) might look like a function composition, since
we’re feeding f(x) into a machine to produce a new number. But actually this expression
doesn’t only depend on f(x): it also depends on the original x! (This is now a multi-variable
function, which might come up if you take through calculus 3, but definitely not in this class,
and it won’t have this nice behavior that composition of one-variable functions does here.)
So the important thing to keep in mind when using the composition rule is to make sure
that your expression is actually a composition of functions!

Even if the inside limit doesn’t exist, we can still take advantage of this law if it goes to∞
or −∞. In this case we do treat∞ as a number: if limx→a g(x) =∞, then limx→a f(g(x)) =
limy→∞ f(y), and similarly for −∞. For example, to compute

lim
x→0

2−
1

x2 ,

we first compute
lim
x→0
− 1
x2

= −∞.

We then plug it in:
lim
x→0

2−
1

x2 = lim
y→−∞

2y = 0.

You might complain at this point that last time I told you you don’t have to worry about
saying a limit goes to ∞ or −∞, any such limit can just be said not to exist. That’s true,
and you could evaluate this limit without writing these symbols: just observe that as x goes
to 0, 1

x2
gets larger and larger, so 2−

1
x2 = 1

21/x2 gets smaller, since 2 to the power of a large
number is big and the inverse of a big number is small. This notation with the ∞ symbols
is just a way of keeping track of this sort of calculation, which you may find makes it easier
for you; if it doesn’t make it easier, feel free not to use it.

Next, let’s come back to another concept we touched on last class: one-sided limits. We
discussed before how if limx→a f(x) = L, this means that f(x) approaches L as x goes to a
from either direction, i.e. whether x is slightly less than a or slightly more than a we should
have f(x) close to L. We could instead weaken this requirement to only needing it to be
true as x goes to a from one side or the other. We write

lim
x→a+

f(x)
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for the limit as x goes to a from above, and

lim
x→a−

f(x)

for the limit as x goes to a from below. If limx→a f(x) exists, then these one-sided limits must
both exist and be the same; but it’s possible that even if the total limit fails to exist, one or
both of the one-sided limits may still exist (and if they both do, they may be different).

For example, consider the function

f(x) =
{

1 x ≥ 0
−1 x < 0 ,

whose graph looks like this.

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

As x→ 0 from above, the function is always 1, and so limx→0+ f(x) = 1. But as x→ 0 from
below, the function is −1, so limx→0− f(x) = −1.

Another common application of one-sided limits is to functions which do not exist on the
whole domain and so can only be evaluated from one side. We saw an example last time
involving logarithms; another example is

lim
x→0

√
x.

Strictly speaking, even though we can plug in x = 0 to get
√

0 = 0, this limit does not
exist! This is because we can’t approach it from below, only above, since

√
x doesn’t make

sense for negative numbers.1 If we replace the limit with a one-sided limit, limx→0+
√
x, then

everything is as expected: this exists and is equal to 0.
A more complicated example is

lim
x→0+

√
x√

x+ 1− 1
.

1Again, if you allow complex numbers, you solve this problem at the price of introducing new ones.
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Similarly, we need to require that the limit is only from above, since we can’t plug in negative
values to

√
x. Does this make the limit exist?

Well, the first thing to do is to get the square root out from the bottom, which we can
do by conjugation:

√
x√

x+ 1− 1
=

√
x√

x+ 1− 1
·
√
x+ 1 + 1√
x+ 1 + 1

=
√
x
√
x+ 1 +

√
x

x
.

Canceling a factor of
√
x, this is √

x+ 1 + 1√
x

,

and now as we take the limit as x → 0 from above we see that this will blow up: the
numerator goes to

√
1 + 1 = 2 while the denominator goes to 0.

Our final idea for the day is the squeeze theorem. This is based on the idea the limits
respect inequalities: if f(x) ≤ g(x) ≤ h(x), then (assuming all the limits exist)

lim
x→a

f(x) ≤ lim
x→a

g(x) ≤ lim
x→a

h(x).

In particular, suppose that we know that limx→a f(x) = limx→a h(x) = L. Then

L ≤ lim
x→a

g(x) ≤ L

and so limx→a g(x) must also be equal to L.
In fact, the squeeze theorem is a little stronger: we don’t need to assume that the inner

limit exists. If we have f(x) ≤ g(x) ≤ h(x), at least for x sufficiently close to a, and
limx→a f(x) = limx→a h(x) = L, then it follows that limx→a g(x) = L. (The same thing
works for one-sided limits.)

To see why such a thing might be useful, let’s go back to the example I mentioned last
class,

f(x) = sin(x)
x

.

I’m going to make two claims: at least for x small, sin(x)
x
≥ cos(x) and sin(x)

x
≤ 1. Assuming

everything is positive for simplicity, these are the same thing as tanx ≥ x and sin(x) ≤ x.
To check that these are actually true, we can look at the unit circle:
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sin(x)

cos(x)

1 x

1

1

The length of the vertical line (sinx) must be less than the length of the curved line (x), so
sin(x) ≤ x.

1

x
tan(x)

1

1

If we instead look at a larger triangle, the area of the whole triangle is 1
2 tan(x), while the

area of the wedge is x
2π of the area of the whole unit circle, which is π, and so the area of

the wedge is x
2 . Since the triangle contains the wedge, it follows that x

2 ≤
1
2 tan(x), and so

tan(x) ≥ x.
We could do the same thing for negative values (and take one-sided limits each way to

see that they agree), or just add on absolute value signs.
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Now that we know these bounds, so cos(x) ≤ sinx
x
≤ 1, we can apply the squeeze theorem:

taking the limit as x→ 0, we have

lim
x→0

cos(x) = cos(0) = 1

and
lim
x→0

1 = 1,

so without doing essentially any real limit work we get for free

lim
x→0

sinx
x

= 1.

This is, a priori, a very difficult statement!
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