
Lecture 9: chain rule
Calculus I, section 10

October 6, 2022

Before the midterm, we introduced derivatives and saw a number of ways to compute
them. We can directly use the limit definition, or in some cases we have rules to compute
them, such as the power rule; if our function is formed as a sum, difference, product, or
quotient of two functions whose derivatives we know, we can compute the derivative using
linearity or the product or quotient rules.

Let’s take some time to review these, since it’s been a little and we didn’t have a lot of
examples before. Consider a function like f(x) = x2 sin(x) + tan(x). By linearity,

f ′(x) = d

dx
x2 sin(x) + d

dx
tan(x),

so let’s take the terms one at a time. For the first term, we have two factors, each of which
we know how to differentiate, so we apply the product rule:

d

dx
x2 sin(x) =

(
d

dx
x2

)
· sin(x) + x2 ·

(
d

dx
sin(x)

)
= 2x sin(x) + x2 cos(x).

For the second term, we could remember

d

dx
tan(x) = sec(x)2.

Personally I can never remember any of the derivatives of trigonometric functions except
sine and cosine, so let’s use those plus the quotient rule:

d

dx
tan(x) = d

dx

sin(x)
cos(x)

= sin′(x) cos(x)− sin(x) cos′(x)
cos(x)2

= cos(x)2 + sin(x)2

cos(x)2

= 1
cos(x)2

= sec(x)2.

Therefore in total
f ′(x) = 2x sin(x) + x2 cos(x) + sec(x)2.

We’re slowly progressing towards our goal of being able to differentiate any function we
can write down. However, we’re not there yet: we still don’t know what to do with a function
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like f(x) = sin(x2). It’s a trigonometric function, sort of, but not one of the ones we know,
and we can’t make it into a product or quotient, so none of our tricks apply.

What should we do? Well, the only thing to do is go back to the definition:

f ′(x) = lim
h→0

sin((x+ h)2)− sin(x2)
h

.

We could expand out (x+ h)2 = x2 + 2hx+ h2 and then apply the angle addition formulas
again, multiple times; maybe at the end of this we’ll get something reasonable.

This is going to be very painful, and it’s easy to break this sort of method: what if
instead we had something like sin(2x)? Instead, let’s pause to think about what we’re doing,
heuristically.

The derivative, as the notation df
dx

suggests, is supposed to be the ratio of the change in f
to the change in x, as this change goes to 0. The situation that we’re in here is that instead
of a reasonably simple function f , into which we can plug x, we have a reasonably simple
function g, into which we plug another reasonably simple function h: f(x) = g(h(x)). If we
write y = h(x), so f(x) = g(y), then df

dx
could be thought of as the ratio of the change in g

to the change in y, corrected by the change in y relative to the change in x:

f ′(x) = dg

dx
= dg

dy
· dy
dx

= g′(y)dy
dx

= g′(h(x))h′(x).

This is purely heuristic: dg
dy

and so on are not literally fractions and so we can’t literally
cancel in this way; nevertheless this is a good way of thinking of it, and it’ll turn out to be
true.

In our example, we can take g(x) = sin(x) and h(x) = x2. First, we differentiate the
outer function: sin′(x) = cos(x). We want to evaluate this not at x, but at y = h(x), so
cos(x2). Finally, we correct by the derivative of the inner term to get 2x cos(x2).

Warning: it is very easy to get confused with all these steps, and end up with something
like 2x cos(x) (evaluating at x, instead of h(x)) or cos(x2) (forgetting the correcting factor
h′(x)). We need all the parts for this to be true!

But why is it true? We have to go back again to the limit definition of the derivative.
Let’s change notation a little and try to compute

d

dx
f(g(x)).

The key idea is to use the derivative as a linear approximation: g(x + h) ≈ g(x) + hg′(x).
Thus

d

dx
f(g(x)) = lim

h→0

f(g(x+ h))− f(g(x))
h

= lim
h→0

f(g(x) + hg′(x))− f(g(x))
h

= lim
j→0

f(g(x) + j)− f(g(x))
j/g′(x)
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where j = hg′(x), so that (so long as g′(x) is nonzero) h going to zero is the same thing as
j going to zero. Then this is

lim
h→0

f(g(x) + j)− f(g(x))
h

· g′(x) = f ′(g(x))g′(x).

Thus we’ve proven the chain rule:

d

dx
f(g(x)) = f ′(g(x))g′(x).

If you were watching carefully, you might have noticed that we assumed g′(x) 6= 0 to do
our limit switch, so you might be worried this isn’t true if g′(x) = 0. However, if g′(x) = 0,
then the second row above becomes

d

dx
f(g(x)) = lim

h→0

f(g(x))− f(g(x))
h

= 0,

which agrees with the chain rule if g′(x) = 0, so the formula always works.
Let’s look at some more examples. What about something like f(x) = tan(x)4 +

3 tan(x)2 + tan(x)− 3? We could calculate the derivative using our knowledge of the deriva-
tive of tan(x) together with linearity and the product rule, but it would be difficult. Much
easier is to set g(x) = x4 + 3x2 + x− 3 and h(x) = tan(x), so that f(x) = g(h(x)). Then

f ′(x) = g′(h(x))h′(x) = (4 tan(x)3 + 6 tan(x) + 1) sec(x)2.

A trickier example is our old enemy

f(x) = sin
(

1
x

)
.

If g(x) = sin(x) and h(x) = 1
x
, then

f ′(x) = cos
(

1
x

)
· − 1

x2
= −

cos( 1
x
)

x2
,

which (unsurprisingly) fails badly to exist at x = 0.
We’ll sometimes encounter polynomials of the form f(x) = (2x+3)4−x2 or similar, where

we could expand everything out and apply linearity or the power rule, but not without great
unpleasantness. Alternatively, we can apply the chain rule: let g(x) = x4 and h(x) = 2x+ 3.
Then f(x) is not quite g(h(x)), but g(h(x)) +x2. We can apply linearity and then the chain
and power rules: f ′(x) = g′(h(x))h′(x) + 2x = 4(2x+ 3)3 · 2 + 2x = 8(2x+ 3)3 + 2x.

Another interesting example is f(x) = sin(2x). This is a straightforward application of
the chain rule: the derivative of the inside is 2, the derivative of the outside is cos(y), so the
whole thing is f ′(x) = 2 cos(2x).

On the other hand, we could also use trigonometry and the product rule: you might recall
that the double angle formula states that sin(2x) = 2 sin(x) cos(x). Therefore its derivative
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is 2(cos(x)2 − sin(x)2). Comparing these two formulas gives the double angle formula for
cosine:

cos(2x) = cos(x)2 − sin(x)2.
We can also look back at some rules we’ve seen before. For example, we saw from the

quotient rule that
d

dx

1
f(x)

= − f
′(x)

f(x)2

(the reciprocal rule). We can also see it as the consequence of the chain rule: if g(x) = 1
x
,

then
d

dx

1
f(x)

= d

dx
g(f(x)) = g′(f(x))f ′(x) = − 1

f(x)2
· f ′(x) = − f

′(x)
f(x)2

.

(In fact, we could then derive the quotient rule again from this reciprocal rule together with
the product rule.)

Another kind of application is called implicit differentiation. Sometimes we have some
kind of relationship between x and y that cannot be expressed neatly as a function (or which
is more convenient not to), whether because it is not a function (such as y2 = x) or because
solving analytically is difficult or impossible (such as y5 +x+ y = 1). We might still want to
know dy

dx
, i.e. the rate of change of y with respect to x at a given point; this could look like

finding the slope of a graph, even if it’s not the graph of a function, or more abstract things.
The idea here is that, analogous to algebraic equations, we differentiate both sides with

respect to x. For example, take the example y2 = x, which we could also write as y = ±
√
x

(so this is not a function, but still something we can describe explicitly).

x

y

−1 1 2 3 4

−2

−1

1

2

Then differentiating both sides gives
d

dx
y2 = d

dx
x.

Since y depends on x in some way, we apply the chain rule on the left:
d

dx
y2 =

(
d

dy
y2

)
· d
dx
y = 2y · dy

dx
= 2yy′,
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and the right-hand side is simply
d

dx
x = 1.

Therefore we have
2yy′ = 1,

and so
y′ = 1

2y
.

Thus if we want to find the slope of a particular point, say x = 2, y = −
√

2, then we plug
in these values to get

dy

dx

∣∣∣∣
(2,−
√
2)

= 1
2 · (−

√
2)

= − 1
2
√

2
= −
√

2
4
.

x

y

−1 1 2 3 4

−2

−1

1

2

This is the idea of implicit differentiation: even if we don’t know what y is as a function of
x (or even if globally it isn’t a function of x), we treat it as if it’s one and then solve for y′
at the end, instead of solving for y at the beginning (which may not be possible).

Notice, by the way, that in the previous example if we choose the positive branch y ≥ 0,
so that y =

√
x, then the implicit differentiation spits out

d

dx

√
x = 1

2
√
x
,

which is a formula we’ve seen before using the power rule for n = 1
2 . But here we only had

to use the power rule for positive integers (namely 2), as well as the chain rule.
In fact, we can do this trick in general for fractional powers. Let’s start with things of

the form y = x1/n = n
√
x. Then in particular we have yn = x, so differentiating both sides

and applying the chain rule we get
nyn−1y′ = 1
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and so
y′ = d

dx
x1/n = 1

nyn−1 = 1
n
x

1
n
−1,

exactly as the power rule predicts.
Now we can use the chain rule to get all fractional exponents: xm/n = (x1/n)m, so

d

dx
xm/n = m(x1/n)m−1 · d

dx
x1/n = mx

m−1
n · 1

n
x

1
n
−1 = m

n
x

m
n
−1

as desired.
We can also do something quite powerful with implicit differentiation which is useful

even just for regular functions: we can differentiate inverse functions. Recall that if f(x) is
a function R → R, its inverse function f−1(x) (not to be confused with f(x)−1 = 1

f(x)) is a
function such that f(f−1(x)) = f−1(f(x)) = x for all x. Such a function may or may not
exist, or may exist only after restricting the domain and/or codomain.

Suppose that f does have an inverse function f−1, and let’s say that we understand the
derivative of f and want to understand the derivative of f−1. Then we can do essentially the
same operation as above. If y = f−1(x), then x = f(y) by the definition of inverse functions;
so instead of differentiating y = f−1(x) directly, we instead differentiate x = f(y), and then
we’ll try and solve at the end. We get

d

dx
x = d

dx
f(y).

As above, the left-hand side is just 1; and on the right-hand side we apply the chain rule to
get f ′(y)y′. Therefore

y′ = d

dx
f−1(x) = 1

f ′(y)
= 1
f ′(f−1(x))

.

A simple example is one we’ve already seen several times, now from yet another angle:
√
x

is the inverse function of x2 (after restricting the domain and codomain) and the derivative
of x2 is 2x, so

d

dx

√
x = 1

2
√
x
.

A more complicated example uses trigonometric functions. Consider

f(x) = tan−1(x),

the inverse function of the tangent. We know from above that tan′(x) = sec(x)2, so the
formula above gives

d

dx
tan−1(x) = 1

sec(tan−1(x))2
.

This is still a pretty messy formula, but we can simplify it, using a similar technique to
one of your homework problems. If we start with the identity sin(θ)2 + cos(θ)2 = 1 and
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divide everything by cos(θ)2, we get tan(θ)2 + 1 = sec(θ)2, so if θ = tan−1(x) then sec(θ)2 =
tan(tan−1(x))2 + 1 = x2 + 1. Therefore we conclude that

d

dx
tan−1(x) = 1

x2 + 1
,

which is very far from obvious!
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