
Lecture 10: examples and differentiability

Calculus I, section 10

October 5, 2023

Before moving to differentiability, let’s work through some more examples of the chain
rule and practice combining different rules.

Consider f(x) = 1
(1−x)5

. If g(x) = 1
x5 and h(x) = 1 − x, then f(x) = g(h(x)), so

f ′(x) = g′(h(x))h′(x) = − 5
(1−x)6

· (−1) = 5
(1−x)6

.

Another, more complicated example is something like d
dx
x sin(x3). We want to apply the

product rule here, viewing this as the product of x and sin(x3); but to do so we need to know
the derivatives of both terms, and while the first is easy (the derivative is just 1) the second
is harder. We apply the chain rule: d

dx
sin(x3) = cos(x3) · 3x2, so the overall derivative is

d

dx
x sin(x3) = sin(x3) + x · cos(x3 · 3x2 = sin(x3) + 3x3 cos(x3).

We can also apply our knowledge of derivatives of inverse functions for a few more no-
table cases. We saw last time that d

dx
tan−1(x) = 1

x2+1
; we can also compute d

dx
sin−1(x) =

1
cos(sin−1(x))

, which by a similar argument to last time is 1√
1−x2 . Similarly d

dx
cos−1(x) =

1
− sin(cos−1(x))

= − 1√
1−x2 .

This is interesting in that the derivatives of sin−1(x) and cos−1(x) are almost the same,
namely negatives of each other. In particular this implies that d

dx
(sin−1(x) + cos−1(x)) = 0

(by linearity). The only functions we’ve seen before whose derivative is everywhere zero are
constant functions, and in fact it turns out to be true that those are the only such functions,
so it follows that sin−1(x)+cos−1(x) is some constant c, independent of x. Plugging in x = 0,
we get that c = sin−1(0) + cos−1(0), which for our standard choice of domain and codomain
for these inverse functions is 0 + π

2
= π

2
, i.e. sin−1(x) + cos−1(x) = π

2
for every x. In other

words, if θ is an angle such that sin(θ) = x, i.e. θ = sin−1(x), then cos−1(x) = π
2
− θ, i.e.

cos(π
2
− θ) = x = sin(θ). This recovers the relation cos(π

2
− θ) = sin(θ), which we know from

trigonometry.
We recall also the idea of implicit differentiation: say x and y are related by x4 + y4 = 1,

which looks like a slightly squared-off circle.

1



x

y

(1
2
,

4√15
2
)

−1 1

−1

1

To compute the slope at a given point (1
2
,

4√15
2
), we use implicit differentiation: d

dx
x4 +

d
dx
y4 = 4x3 + 4y3 dy

dx
= d

dx
1 = 0, so dy

dx
= −x3

y3
, which at our point is − 1/23

153/4/23
= −15−3/4 ≈

−0.1312.
We now know how to find formulas for the derivatives of a wide variety of functions; but

the derivative is defined by a limit, and while we spent a lot of time worrying about whether
various limits exist we haven’t really talked about when the derivative exists.

Certainly it does not always exist. For example, if f(x) = 1
x
, then f ′(x) = − 1

x2 and so
f ′(0) does not exist. This is not surprising, as f(0) doesn’t exist either.

Similarly, consider the function

f(x) =

{
1 x ≥ 0
−1 x < 0

.

For x < 0 or x > 0, this is a constant function near x and so the derivative is just 0; but at
x = 0, f(x) has a jump discontinuity and so we don’t expect the derivative to exist, since
even if x changes only a very small amount f(x) can still change by a large amount. Indeed,

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

1− 1

x
= 0,

but

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

−1− 1

x
→ +∞.

Therefore f ′(x) does not exist at x = 0.
This suggests a criterion: in order for f(x) to be differentiable at a point a, it must at

least be continuous at a. This is true: if f(a) doesn’t exist, then the derivative

lim
x→a

f(x)− f(a)

x− a

can’t exist either, and if it exists but is different from limx→a f(x) (or this limit doesn’t exist)
then the numerator of the limit defining the derivative either won’t go to zero as x → a or
won’t exist at all in the limit; in either case we can’t hope to have the limit converge.
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Okay, so differentiable functions are continuous. Is the converse true, i.e. if f(x) is
continuous at a, does that imply that it’s differentiable at a as well?

No! The standard counterexample is

f(x) = |x|.
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At the point x = 0, we have

lim
x→0+

|x| − |0|
x− 0

= lim
x→0+

x

x
= 1,

but

lim
x→0−

|x| − |0|
x− 0

= lim
x→0−

−x

x
= −1.

This conforms to our intuitions about derivatives and tangent lines: the tangent line to the
graph from the right has slope 1, but from the left has slope −1. The problem here is the
“pointiness” of f(x) at x = 0: there isn’t a single tangent line, and so the derivative doesn’t
make sense.

Another example is
f(x) = x1/3 = 3

√
x.
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This is continuous for all real numbers, with no obvious pointiness. But if you look closely
near x = 0, you might guess that the slope is getting almost vertical; and indeed this is what
happens. We have

f ′(x) =
d

dx
x1/3 =

1

3
x−2/3 =

1

3x2/3
,

3



which is undefined at x = 0.
So what we’ve seen is: all differentiable functions are continuous, but not all continuous

functions are differentiable. How can we check if a function is differentiable at a given point?
First, we can check if it’s defined and continuous at that point: if not, it can’t be

differentiable either. Next, we can check directly to see if the limit exists, like we did for |x|,
or we can use a formula for the derivative (if we have one) and then check if it makes sense
at that value, like we did for 1

3x2/3 . You’ll get a little more practice on this on the homework.
Finally, let’s just look at some stranger examples of functions, to get a little better

intuition for differentiability. A famous example is the Weierstrass function: it was generally
believed that for an everywhere-continuous function, it could only fail to be differentiable at
“a few” points in some sense, like with our examples above. However, Weierstrass produced
an example of a function which is actually not differentiable at any real number, despite
being continuous everywhere. It looks like this:1

You can see how it’s sort of “fractally pointy”: at any point, no matter how smooth it may
seem, you can zoom in enough to a point where it will look similar to the whole thing, and
again become pointy at every point.

Another fractal-like example, this time in a different direction, is Cantor’s function. It
works like this. Consider just the interval from 0 to 1 for simplicity, though one can do it
for all real numbers. Divide the interval into thirds, and draw in the middle third halfway
between 0 and 1:

1Eeyore22, Public domain, via Wikimedia Commons.
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For the first and last thirds, repeat the process:
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Repeating indefinitely, this eventually comes to look like this:2

Miraculously, it is continuous, and its derivative exists at “almost every point” in a particular
sense; when it exists, it is always 0! But infinitely often throughout this region the derivative
fails to exist, despite the continuity of the function.

2CantorEscalier.svg: Theon derivative work: Amirki, CC BY-SA 3.0 https://creativecommons.org/

licenses/by-sa/3.0, via Wikimedia Commons.
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