
Lecture 20: applications of integration

Calculus I, section 10
November 28, 2023

Welcome to our last regular lecture of the semester! By now, we have a pretty good
understanding of definite and indefinite integrals, the relationship between them, and some
techniques to calculate indefinite (and thus definite) integrals. Today, we’ll switch focus a
little and think about some applications of integrals, now that we can calculate them. (As
with techniques of integration, this is only a small taste: calculus 2 or many other math or
physics classes, among others, give many more examples of applications.)

On the worksheet, we looked at a common type of example in physics: if position is x(t),
velocity is v(t) = x′(t), and acceleration is a(t) = v′(t) = x′′(t), then

v(t) = v(0) +

∫ t

0

a(s) ds

and

x(t) = x(0) +

∫ t

0

v(s) ds,

so if we know the initial position and velocity as well as the acceleration at all t we can
compute the velocity and position at every time t. The necessary input is then given by
Newton’s second law F = ma, so by understanding the forces acting on an object we can
understand its acceleration and thus its velocity and position. For example, if F and m are
constant (as in the gravitational example), so that a = a(t) = F

m
is constant, then

v(t) = v(0) +

∫ t

0

a ds = v(0) + at

and so

x(t) = x(0) +

∫ t

0

v(s) ds = x(0) +

∫ t

0

v(0) + as ds = x(0) + v(0)t+
1

2
at2.

In the example where a = F
m

= −g and x(0) = x0, v(0) = v0, this recovers

x(t) = −1

2
gt2 + v0t+ x0,

with g = 32 feet per second squared recovering −16t2 + v0t+ x0.
Another application related to this perspective of cumulative value is finding the aver-

age value. Suppose that a runner is running for one hour; sometimes they run faster and
sometimes slower, at a speed of v(t) = 8 + 2 sin(11πt).

1

x

y

1/4 1/2 3/4 1

1

2

3

4

5

6

7

8

9

10

What is the average speed of the runner over the hour?
We don’t really have good tools to think about averages of continuously changing quan-

tities. However, as it turns out we don’t have to: one simple way of measuring the average
speed would be to figure out how far the runner ran would be if we knew how far they ran,
and then we could simply divide the total distance by the total time (here one hour).

Fortunately, we just saw how to find the total distance they ran:

x(1)− x(0) =

∫ 1

0

v(t) dt =

∫ 1

0

8 + 2 sin(11πt) dt.

By linearity, this is

8 · (1− 0) + 2

∫ 1

0

sin(11πt) dt.

To conclude, we substitute u = 11πt, so du = 11π dt, so the integral becomes

8 + 2

∫ 11π

0

sin(u) · 1

11π
du = 8 +

2

11π
(− cos(11π) + cos(0)) = 8 +

4

11π
≈ 8.11575.

Another common application of integrals is what we originally introduced them for:
finding areas. We’ve looked at finding areas under a given curve, i.e. between the curve and
the line y = 0. Often, though, we’re really interested in finding areas of shapes which aren’t
easily thought of in this way. For example, how would you find the area of this shape?

x

y

y = cos(x)

y = − cos(x)

−2 −1 1 2

−1

1

2

It is not the area beneath a curve; instead, it is the area between two curves!
To solve our problem, we think about integrating the height of the region. After all, this

is what we’re usually doing, it’s just that the bottom of the region is usually at 0; this lets
us add up the heights as usual to get the total area. Thus whenever we want to find the
area between y = f(x) and y = g(x) on a certain region, if say f(x) is on top in that region
then we integrate f(x) − g(x). In this case, cos(x) is greater than − cos(x) in this region,
so we’re integrating cos(x) − (− cos(x)) = 2 cos(x). (We could also have guessed this by
observing that the x-axis divides the region into two identical regions, each of which looks
like the integral of cos(x).)

Finding the bounds can also be a little tricky with these kinds of problems; they’re not
always given to us. Here, we’re going between two points where the curves intersect, which
is also at y = 0; we have cos(x) = − cos(x) = 0 at π

2
, 3π

2
, 5π

2
, and so on, and also at −π

2
,

−3π
2
, and so on. Here, the relevant points are ±π

2
, so our total area will be∫ π/2

−π/2

2 cos(x) dx = 2 sin(π/2)− 2 sin(−π/2) = 4.

Another example is this: find the area of the shaded region.

x

y

y = x2

y = 2x− 1

1

1

We could try to do the same thing. Now, though, the lower bound is piecewise: up to x = 1
2

it’s just 0, but between 1
2
and the intersection of y = x2 and y = 2x− 1 (which we can find

is at x = 1) it’s y = 2x− 1. Thus we need to split the integral: the area is∫ 1/2

0

x2 dx+

∫ 1

1/2

x2 − 2x+ 1 dx =
1

3
x3

∣∣∣∣1/2
0

+

(
1

3
x3 − x2 + x

) ∣∣∣∣1
1/2

=
1

3

(
1

2

)3

+

(
1

3
· 13 − 12 + 1

)
−

(
1

3

(
1

2

)3

−
(
1

2

)2

+
1

2

)
=

1

3
+

1

4
− 1

2

=
1

12
.

3

Finally, let’s turn to the question of numerical approximation: how does one concretely
compute integrals numerically, in cases where there isn’t an exact answer or the exact answer
is too complicated to be useful? How does your computer or calculator compute integrals?

We’ve already seen one way to compute integrals: via (either left or right) Riemann sums,
which is how we defined them. Let’s say we’re trying to integrate something like x sin(x)
from 0 to π.

x

y

1 2 3

1

(This is possible to integrate exactly, but it’s beyond the methods we’ve seen in this class;
it would be done using integration by parts, and turns out to have value π.)

A four-step left Riemann sum would look like this:

x

y

1 2 3

1

with total area estimate ≈ 2.9784, while the right Riemann sum would look like this:

x

y

1 2 3

1

4

with the same area estimate (since both endpoints have value 0, so it’s just the same area
shifted).

For theoretical purposes, this is enough to define integrals, but for practical purposes we
might want to do better. As suggested on a homework problem, we could do this by using
nonzero slopes, i.e. replacing our rectangles with trapezoids. This is called the trapezoid
rule.

x

y

1 2 3

1

This is still imperfect, but we can see it looks much closer, even with the same number
of divisions. (In this case, as it turns out, it nevertheless actually gives exactly the same
area estimate as the Riemann sums! This is somewhat special to this case, but isn’t hugely
unusual either: even though in each section the trapezoidal area is much closer to the real
one, the errors in the Riemann sum method cancel out pretty well, so it’s closer than it
looks. Nevertheless in general the trapezoidal rule is much more reliable and converges much
faster.)

An even more sophisticated approach is via Simpson’s rule, which works by approximat-
ing the function by a quadratic interpolation between the endpoints, taking into account
differential data. By using any given number of approximations, one can find convenient
formulas; nevertheless in practice this turns out to be computationally more expensive than
using the trapezoid rule or similar and just taking more intervals, which usually works better.

Finally, it’s worth mentioning adaptive integration. Like for Newton’s method, when
we’re trying to approximate integrals up to a given precision, say using Riemann sums or
the trapezoid rule, we can just keep dividing into more and more intervals until the answer
seems to be stabilizing: if the answer at N intervals and at N + 1 intervals agree up to
the allowed error, it’s probably safe to stop. Adaptive integration takes this idea and goes
further with it: in addition to checking the total error, we can also check the error on each
interval. Thus if we’re doing Riemann sums, regions in which the function is pretty close
to constant don’t really need very many intervals to get a pretty good approximation; but
areas where the function is changing rapidly (i.e. has large derivative, in absolute value)
need many more intervals. Similarly for the trapezoid rule, if the function is pretty close to
linear the trapezoid rule will do pretty well even on relatively few intervals; but if it’s far
from linear, as near the maximum of x sin(x) above, it needs more subdivisions to get a good
approximation. In general, we can automate this process—and this is often what computers
do—by setting an error threshold for each interval, and dividing each interval only until it

5

reaches that threshold; that way we put our resources where they will be most useful, and
get a good approximation fastest.

One final application of integration, which we’ve touched upon before, is solving differ-
ential equations. As we’ve mentioned, this is a huge and complicated field; we’ll only look
at some simple examples. Nevertheless, integration (together with what we know about
differential calculus) lets us solve some differential equations that we otherwise would not be
able to solve. (These will not appear on the homework or exams.)

We can start by observing that simply finding antiderivatives is really already a kind
of differential equation: e.g. finding the antiderivative of 2x − 1 is the same as solving the
differential equation f ′(x) = 2x− 1, which of course we can solve by integration:

f(x) =

∫
f ′(x) dx =

∫
2x− 1 dx = x2 − x+ C.

Note that the solution is determined up to an additive constant, which is familiar to us. If
we wanted to specify one particular solution, we’d need some additional information; e.g. if
we said f ′(x) = 2x− 1 and f(0) = 1, then since f(0) = 02 − 0 + C = C taking C = 1 gives
the unique solution f(x) = x2 − x+ 1.

For a more complicated differential equation, recall the example f ′(x) = f(x), a function
which is its own derivative. You may recall from our differentiation unit that this is solved
by f(x) = ex; it’s also solved e.g. by f(x) = 0. Can we find all solutions in a systematic
way?

One way to do so is to divide both sides by f(x), so that we have f ′(x)
f(x)

= 1. This doesn’t
immediately look any easier, but we know a trick: logarithmic differentiation says that
d
dx

ln(f(x)) = f ′(x)
f(x)

(this is really a special case of the chain rule). So we have d
dx

ln(f(x)) =
f ′(x)
f(x)

= 1. Now we can integrate:

ln f(x) =

∫
1 dx = x+ C,

so f(x) = ex+C . Taking C = 0 recovers ex.
An interesting thing has happened here: the additive constant C has now gone from the

outside of the expression into the exponent. By the rules of exponentiation, ex+C = ex · eC ,
so if we define a new constant K = eC then we get f(x) = K · ex for a constant K; so now
instead of an additive constant, we have a multiplicative one. This sort of transformation
is typical in differential equations: the solution usually depends on a parameter (or even
multiple, for more complicated equations), but often in a more complex way than occurs for
antidifferentiation. We can specify particular solutions again by initial data: for example,
requiring f(0) = 1 gives Ke0 = K = 1, so f(x) = ex is the unique solution to f ′(x) = f(x)
and f(0) = 1.

Finally, there’s one other strange thing: f(x) = Kex is a full family of solutions, and all
solutions will be of this form. However, this includes examples which we couldn’t actually
have obtained in our original form f(x) = ex+C ! For example, taking K = 0 gives f(x) = 0,
which we mentioned before and which is clearly a solution to the differential equation. But
K = eC can never be zero! Similarly, negative values of K work just as well as positive ones;
but eC can never be negative.

6

This has to do with the fact that although it’s true that d
dx

ln(x) = 1
x
for x > 0, it can’t

be true for x < 0 simply because ln(x) is then not defined; so really we should take ln(|x|).
This then means taking K = ±eC , so that negative values are allowed. (This is also closely
related to complex numbers and Euler’s formula.) The case K = 0 then arises as a limit of
the other solutions.

As an exercise, if there’s time: try working out the solutions to f ′(x) = 1
f(x)

.

7

