
Lecture 7: introduction to derivatives

Calculus I, section 10

September 26, 2023

In the worksheet for today’s class, we looked at the example from the very beginning of
the course, where we asked about the speed of a ball one second after being thrown upwards,
i.e. the slope of the line tangent to this graph at t = 1:
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We found that this slope, or speed, is given by

lim
t→1

f(t)− f(1)

t− 1
,

where f(t) = −16t2 + 48t+ 4, and then evaluated the limit to be 16.
We might write this as f ′(1), the instantaneous velocity at t = 1. More generally, for any

value t0 we can find the instantaneous velocity at t0 by a similar formula:

f ′(t0) = lim
t→t0

f(t)− f(t0)

t− t0
.

This is the derivative!
There are a few ways we can usefully think about derivatives. One, as we’ve seen, is the

instantaneous rate of change: when the function f(t) is measuring position with respect to
time, then this rate of change is the speed. In general, it can be other things; for example, if
f is measuring speed, then the rate of change of the speed is the acceleration. Either way, we
can find this formula by thinking about measuring the slope of a line connecting (t0, f(t0))

and (t, f(t)), which (as rise over run) is f(t)−f(t0)
t−t0

, and then take the limit as t → t0 to get
the slope of the tangent line at t0.

Alternatively, we could think of it as giving a formula for “first-order approximation.”
To say what this means, let’s pose another question: if we know the value of f at some point
x0, how can we approximate f(x) for x very near x0?
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The simplest approximation—called the “zeroth-order approximation”—would be to sim-
ply say: if x is very near x0, then (so long as f is continuous at x0) we expect that f(x)
should be near f(x0), i.e. f(x) ≈ f(x0).

A better approach would be to take into account the rate of change near x0. In other
words, if we said that near x0, our function is approximated by some line y = mx+ b, then
since f is approximately linear f(x) − f(x0) is approximately m(x − x0) and so we get the
“first-order approximation” (also called linear approximation) f(x) ≈ f(x0) +m(x− x0).

x

y

−3 −2 −1 1 2 3

−2

−1

1

2

y = f(x)

x0
x

y = mx+ b

(This is called a first-order approximation because the right-hand side is a degree 1 poly-
nomial in x, or more precisely in x − x0; taking the constant (zero-order) term gives
f(x) ≈ f(x0), the zeroth-order approximation.)

In order for this to be useful, we need some way of finding this number m. To find it, we
just solve for m in the approximation above:

m ≈ f(x)− f(x0)

x− x0

.
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This approximation gets better and better as x gets closer to x0, so to remove the dependence
on x (to make sure m is a constant) we take the limit:

m = lim
x→x0

f(x)− f(x0)

x− x0

,

which is the same as the formula we found before for f ′(x0), the derivative of f at x0.
Therefore the full first-order approximation formula is

f(x) ≈ f(x0) + f ′(x0)(x− x0).
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The notation f ′(x0) suggests that we can think of the derivative at a point x0 as a value
of a whole new function f ′, which we form from f . This is true: the derivative is an operation
that takes in a function f(x) and outputs a new function f ′(x). To avoid confusion with
x and x0, let’s introduce a new formulation: suppose give the distance between x and x0 a
name, say h = x − x0, so that we expect h to be very small. Then we could rewrite x as
x0 + h, so that the derivative is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

x0 + h− x0

= lim
h→0

f(x0 + h)− f(x0)

h
.

Since there’s now no x in the picture, just x0 and h, we can rename x0 to x to write

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

These two formulations for the derivative are equivalent; we’ll use whichever is more conve-
nient.

Let’s try some examples. Suppose f(x) = c is constant. Then

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

c− c

x− x0

= 0,
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so all constant functions have derivative everywhere 0.
Next, suppose we have a linear function f(x) = mx+ b. Then

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

mx+ b−mx0 − b

x− x0

= lim
x→0

m(x− x0)

x− x0

= m.

In particular if f(x) = x, then f ′(x) = 1.
Next take f(x) = x2. Let’s use the formulation with h this time:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2hx+ h2 − x2

h
= lim

h→0
(2x+ h)

= 2x.

We’re now in a position to apply our linear approximation framework: say we want to
approximate the value of 2.012. We know that 22 = 4, so we let x0 = 2 and x = 2.01; then
linear approximation tells us that

f(2.01) = 2.012 ≈ f(2) + f ′(2)(2.01− 2),

where f(x) = x2. We just computed that f ′(x) = 2x, so f(2) = 22 = 4 and f ′(2) = 2 · 2 = 4,
so this is

2.012 ≈ 4 + 4 · 0.01 = 4.04.

The true answer is 4.0401, so this is pretty good, and certainly significantly better than the
zeroth-order approximation 2.012 ≈ 22 = 4 (already not bad in this case).

Before computing more examples, let’s observe some properties of derivatives. We’ve
already said this is an operator on functions that takes in f(x) and produces f ′(x). For
convenience, it’s sometimes useful to have an “operator notation”: given a function f(x),
we write d

dx
f(x), or just df

dx
, for f ′(x), so d

dx
is the differentiation operator. Note that this is

not literally a fraction! It’s supposed to mean the ratio of an infinitesimal change df in f
relative to the corresponding infinitesimal change dx in x; but one cannot “cancel the d’s”
or treat it like a fraction in most ways, it’s purely notation.
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Now we can note two properties of the derivative. One is that for any function f(x) and
constant c, the derivative of c · f(x) is cḟ ′(x) (if it exists). So in operator notation:

d

dx
cf(x) = c · d

dx
f(x).

The second is that for any two functions f(x) and g(x), the derivative of f(x) + g(x) is
f ′(x) + g′(x) (if both exist). So in operator notation,

d

dx
(f(x) + g(x)) =

df

dx
+

dg

dx
.

These two properties together are called linearity: the operator d
dx

commutes with scalar mul-
tiplication and distributes over addition. One can check these properties from the definition
of the derivative, together with limit laws.

Note also that these two properties together imply some others not explicitly stated. For
example, we get a similar rule for subtraction, because

d

dx
(f(x)− g(x)) =

d

dx
(f(x) + (−1) · g(x))

=
df

dx
+

d

dx
(−1) · g(x)

=
df

dx
+ (−1) · dg

dx

=
df

dx
− dg

dx
.

For linear functions, this gives us another way to find the derivative:

d

dx
(mx+ b) =

d

dx
(mx) +

d

dx
b = m · d

dx
x+

d

dx
b,

so it’s enough to know that d
dx
x = 1 and d

dx
b = 0 for any constant b; then we get d

dx
(mx+b) =

m without any further computation.
Similarly, any quadratic function ax2 + bx + c is formed from x2, linear functions, and

scalar multiplication:

d

dx
(ax2 + bx+ c) = a · d

dx
x2 + b · d

dx
x+

d

dx
c = 2ax+ b.

Recall our starting problem y = f(t) = −16t2 + 48t + 4. We computed f ′(1) via a
particular limit, but now we can compute it in general:

y′ =
dy

dt
= f ′(t) = −32t+ 48.

Evaluating at t = 1 recovers f ′(1) = 16.
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Okay, so we know the derivatives of constants, of x, and of x2, and we can use these
(together with the linearity of the derivative) to compute derivatives of linear and quadratic
functions. To compute the derivatives of all polynomials, we’d need to know the derivatives
of xn for higher n. How can we do this?

Let’s start with an example: d
dx
x3. To compute this, we first expand out

(x+ h)3 = x3 + 3hx2 + 3h2x+ h3,

so

d

dx
x3 = lim

h→0

(x+ h)3 − x3

h

= lim
h→0

3hx2 + 3h2x+ h3

h
= lim

h→0
(3x2 + 3hx+ h2)

= 3x2.

This suggests a pattern:
d

dx
xn = nxn−1.

To determine if this pattern is correct, we need a more general version of the expansion
of (x+ h)3 above: the binomial theorem.

Theorem (Binomial theorem). For any real numbers x and y and any positive integer n,
we have

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn,

where
(
n
k

)
are the binomial coefficients.

To make use of this theorem, we need to know some things about the binomial coefficients(
n
k

)
. There is a formula for these:

(
n
k

)
= n!

k!(n−k)!
. It has a combinatorial interpretation:

(
n
k

)
is the number of ways of choosing k items out of n options, e.g. there are

(
4
2

)
= 6 ways of

choosing two students out of a group of four. They are the entries of Pascal’s triangle, with
n corresponding to the row and k the column:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

..
. ...

...
...

...
...

... ..
.
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There are many fun properties of these numbers (e.g. in Pascal’s triangle, each entry can
be formed as the sum of the two numbers above it, and of course everything is symmetric:(
n
k

)
=

(
n

n−k

)
), but for our purposes let’s just make a couple of observations:

(
n
0

)
= 1 and(

n
1

)
= n, for every n. These make sense combinatorially: there is only one way to pick no

objects, and exactly n ways to pick one out of n objects. With that in hand, the binomial
theorem tells us that

(x+ y)n = xn + nxn−1y + y2 · (· · · ),
where (· · · ) is some polynomial in x and y.

In our case of interest, we’re looking at (x + h)n where h is very small. Therefore h2

is so small as to be negligible, so the idea is that we’ll be able to approximate (x + h)n ≈
xn + nxn−1h. More precisely, we can compute:

d

dx
xn = lim

h→0

(x+ h)n − xn

h

= lim
h→0

nxn−1h+ h2(· · · )
h

= lim
h→0

(
nxn−1 + h(· · · )

)
= nxn−1

as h(· · · ) will tend to 0 as h → 0 no matter what (· · · ) is (as it’s a polynomial in x and h, so
will converge to some value as h → 0). This is the power rule: if f(x) = xn for some positive
integer n, then f ′(x) = nxn−1.

We’ve seen some special cases of this already. If n = 0, then x0 is just the constant 1
(ignoring the x = 0 discontinuity), and so its derivative is d

dx
x0 = 0 · x0−1 = 0, just as we

found earlier. If n = 1, then x1 = x and we have d
dx
x1 = 1 · x0 = 1, just as above; and if

x = 2 then d
dx
x2 = 2x1 = 2x again, and similarly d

dx
x3 = 3x2.

As it turns out, the power rule turns out to be true for all real numbers n, not just
positive integers. For example,

d

dx

√
x =

d

dx
x1/2 =

1

2
x−1/2 =

1

2
√
x
,

or
d

dx

1

x
=

d

dx
x−1 = −x−2 = − 1

x2
.

The proof above doesn’t really work more generally, but we’ll get some tools next time which
will help.

Just like for quadratics, knowing the derivatives of all the xn together with linearity lets
us differentiate all polynomials! For example, say f(x) = x7 − 4x3 + x+ 2. By linearity,

f ′(x) =
d

dx
x7 − 4 · d

dx
x3 +

d

dx
x+

d

dx
2,

which by the power rule is
f ′(x) = 7x6 − 12x2 + 1.
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We can also iterate differentiation: the second derivative f ′′(x) is the derivative of the
derivative, i.e. f ′′(x) = d

dx
f ′(x) = d

dx

(
d
dx
f(x)

)
, which is often written as d2

dx2f(x) (again,
purely notation). In our physics example before where y = f(t) is position and t is time, the

first derivative dy
dt

= f ′(t) is the velocity; the second derivative d2y
dt2

= f ′′(t) is the change in
velocity, i.e. the acceleration.

We’re now in a position where we can derive the equation of motion y = f(t) = −16t2 +
48t + 4 from some basic laws of physics. Newton’s second law is F = ma, where F is the
force exerted on our object (in this case the ball), m is its mass, and a is its acceleration. If
y = f(t) is the position of the ball, then we know that the acceleration a = f ′′(t) is given
by the second derivative, so using Newton’s second law we get f ′′(t) = F

m
. Our force is

gravity, which is proportional to the mass; on the surface of the earth, the ratio F
m

is always
a constant, about −32 feet per second squared (negative because gravity points down).
Therefore y = f(t) = −16t2 + 48t+ 4 because f(0) = 4 gives the initial position of the ball,
at four feet above the ground; f ′(t) = −32t + 48, so f ′(0) = 48, the initial velocity of the
ball at 48 feet per second upwards; and f ′′(t) = −32, so the ball is undergoing constant
acceleration of −32 feet per second squared downwards.
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