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November 25, 2024

Last time, we looked at the stacks

X♢ → X♢/U(1)Betti ← Xtw

for real or complex manifolds X, and claimed that vector bundles on these stacks corre-
sponded to variations of Hodge structures on the middle term; variations of twistor struc-
tures on the right; and “variations of vector bundles on Div1C” (or Div1 after Galois descent)
on the left. Our first goal today is to justify these claims.

1. The analytic Hodge–Tate stack

Last time, we studied the open subset X♢ ×Div1C
C×

Betti, which we saw was isomorphic to its

Betti stack X(C)Betti × C×
Betti. One way of saying this is that over this locus of Div1C, X

♢ is
uniform: indeed we proved this by observing that away from 0 and∞, every degree 1 divisor
of XC,A is isomorphic to AnSpecCont(S,R).

By contrast, over 0 and ∞ we have gluing data involving A, and so the degree 1 divisors
supported over these points can be more complicated. Once again the stories at 0 and ∞
are symmetric (and interchanged under complex conjugation), so for concreteness we study
the fiber over ∞. This is the analytic Hodge–Tate stack: XHT is the functor sending A to
the anima of maps

XC,A ×XC,∞ AnSpecCgas → X.

Locally near ∞, XC,A is given by gluing AnSpecA to A1
C ×AnSpecCgas AnSpecCont(S,C)

along AnSpecCont(S,C) via the point at infinity; this is the affine analytic stack given by
the spectrum of

Cont(S,C)[T ]×Cont(S,C) A

with fiber at infinity given by evaluating at T = 0. Naively, this is just A; but we should
take the fiber in the derived sense, giving

Ã = (Cont(S,C)[T ]×Cont(S,C) A)/
LT.

This maps to A, with fiber Nil†(A)[1]; the inclusion Cont(S,C) → Cont(S,C)[T ] induces a
section, making this a split extension.1 We can think of this as a sort of deformation of A;
when A is “perfectoid,” i.e. nil-reduced so that A ≃ Cont(S,C), then in fact Ã ≃ A.

This is analogous to the following phenomenon in the p-adic situation: if X is a p-adic

formal scheme, an R-point of its prismatization X∆ is a Cartier–Witt divisor I → W (R)

together with a map SpecW (R)/I → X, and the Hodge–Tate stack XHT ⊂ X∆ is the locus
on which I → W (R) factors through the Verschiebung operator V : W (R) → W (R). To

each R-point of X∆ we can associate the “untilt” W (R)/I; when R is (integral) perfectoid

1I don’t follow this very well, so don’t take this too literally unless you know animated rings better than
I do and can verify.
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2 T -CONNECTIONS AND TWISTOR STRUCTURES

in characteristic p, i.e. a perfect Fp-algebra, this can almost be made literal, and the Hodge–
Tate “untilt” W (R)/I is just the original ring R. One however can take much more general
test objects R, and in general W (R)/VW (R) does not agree with R. Next week, we’ll briefly
mention an analogue of prismatization in our setting, which presumably should fit into an
analogous picture with the analytic Hodge–Tate stack.

Proposition 1. There is a natural map XHT → X which is a gerbe for T †
X where TX is the

tangent bundle. In fact this gerbe is split, giving an isomorphism XHT ≃ BT †
X .

Proof. SinceX is a complex manifold, it is locally isomorphic to An,an, maps fromXC,A×XC,∞

AnSpecCgas to which are equivalent to n-tuples of elements of Ã, i.e. A-points of (An,an)HT

are n-tuples of points of Ã. Since Ã is an extension of A by Nil†(A)[1], we can locally view
these as †-torsors for the trivialized tangent complex TAn,an over A, i.e. A-points of BT †

An,an .
These local isomorphisms glue, and the fact that the gerbe is split follows from the fact that
Ã is a split extension.

This is parallel to the Hodge–Tate gerbe in the p-adic setting, though there are some
differences; there T †

X is replaced by TX{1}♯, the PD-hull of the Breuil–Kisin-twisted tangent
bundle. I’m not sure how much of the difference reflects the analytic rather than algebraic
setting and how much is due to the archimedean vs. nonarchimedean distinction.

As a consequence we get the following description:

Corollary 2. Vector bundles on XHT are equivalent to Higgs bundles on X, i.e. vector
bundles E on X together with a map θ : E → E ⊗ Ω1

X such that θ ∧ θ : E → E ⊗ Ω2
X

vanishes.

Proof. Locally, T †
X is isomorphic to (G†

a)
n for some n, so vector bundles on XHT ≃ BT †

X are
locally equivalent to representations of (G†

a)
n, which is to say vector bundles on X together

with n commuting endomorphisms. This can be massaged into the data of Higgs bundles.

2. T -connections and twistor structures

Last time, we studied the diagram

X♢ → X♢/U(1)Betti ← Xtw

obtained by base change from the “absolute” case

Div1C → Div1C /U(1)Betti ← P1
C,

as well as its real analogue, and observed that on the locus over C×
Betti ⊂ Div1C (“away from

the poles”) the diamondization has a simple description: X♢×Div1C
C×

Betti is isomorphic to its

Betti stack, which is X(C)Betti × C×
Betti. Now that we understand the fiber XHT of X♢ over

the point at infinity, our next goal is to extend this description to the neighborhood of ∞,
where we’ve seen that the absolute diagram is locally

A1,an/U(1)† → A1,an/U(1)la ← A1,an.
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On this locus, the map U(1)† → U(1)la does induce a lift of A1,an → A1,an/U(1)la to
A1,an/U(1)†, though this fails globally.

Suppose first that X = An,an, and choose coordinates U1, . . . , Un. The action of U(1)la ⊂
Gan

m on Gan
a by conjugation preserves G†

a, which lets us form the semidirect product (G†
a)

n ⋊
U(1)la. This acts naturally on An+1,la via (u1, . . . , un, t)·(U1, . . . , Un, T ) = (U1+u1T, . . . , Un+
unT, tT ). This is analogous to the action of Zn

p ⋊ Z×
p in p-adic Hodge theory, with the

additive group acting on the “geometric” variables and the multiplicative group acting on
the “arithmetic” variable.

Proposition 3. There is a Cartesian diagram

An+1,an/(G†
a)

n ⋊ U(1)la A1,an/U(1)la

(An,an)♢/U(1)Betti Div1C /U(1)Betti

.

In particular, pulling back to P1
C and its neighborhood near ∞, we get an isomorphism

(An,an)tw ×P1
C
A1,an ≃ An+1,an/(G†

a)
n,

where the action of (G†
a)

n on An+1,an is by specializing the formula above at t = 1, i.e.

(u1, . . . , un) · (U1, . . . , Un, T ) = (U1 + u1T, . . . , Un + unT, T ).

Proof. The claim is that there is a surjective map An+1,an ≃ An,an × A1,an → (An,an)♢ ×Div1C

A1,an which, after quotienting by U(1)Betti, induces the claimed equivalence relation. We
first construct this map: locally near ∞, as discussed in the previous section XC,A is given
by AnSpec(Cont(S,C)[T ]×Cont(S,C) A)

2 which via the inclusion Cont(S,C)→ Cont(S,C)[T ]
maps to AnSpecA. Thus every degree 1 divisor Z ⊂ XC,A away from 0 is equipped with a
morphism Z → AnSpecA, and so composing with this morphism gives a map from A-points
of a manifold X to Z-points of X. Allowing Z to vary (with support away from 0) and
specializing to X = An,an gives a map

An,an × A1,an/U(1)† → (An,an)♢ ×Div1C
A1,an/U(1)†.

Since other maps AnSpec(Cont(S,C)[T ] ×Cont(S,C) A) → AnSpecA at worst factor through
quotients of A, in fact every Z-point arises in this way and so this map is surjective. One
can also eliminate the quotient by U(1)† if desired, but for our purposes it’s better to further
take the quotient by U(1)Betti to obtain the quotient by U(1)la as in the diagram.

It remains to understand the fiber, which amounts to understanding the fiber of each
map Z → AnSpecA. Using our description of Ã from last section, if I is the ideal sheaf of
Z ⊂ XC,A one can compute that A→ O(Z) has cofiber Nil†(A)[1]⊗ I/I2, so that as I varies
this is the action of the group stack corepresented by An,an(Nil†(A)), i.e. (G†

a)
n. Unwinding

definitions gives the claimed formulas.

2Scholze’s notes actually say XC,A is locally a subset of this affine analytic stack; this might just be an
ambiguity of “neighborhood,” or maybe I’m misunderstanding something.
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Gluing affine pieces, we arrive at the following description.

Corollary 4. Let X be a complex manifold. Vector bundles on

Xtw ×P1
C
A1,an

are equivalent to vector bundles E on X×A1,an together with a flat T -connection, i.e. a map

∆ : E → E ⊗OX
Ω1

X

such that ∆ ∧∆ = 0 and
∆(fv) = f∆(v) + T∆(f)v.

In particular, gluing the above at 0 and ∞ lets us describe vector bundles on Xtw as
pairs of vector bundles with T -connections on X ×A1,an for complementary affine loci (with
one copy of T given by the inverse of the other), whose restrictions agree: the restrictions to
X×Gan

m give, by analytic Riemann–Hilbert, a Gm-family of local systems on X, which agree
after twisting one family by complex conjugation. This is, for our purposes, a variation of
C-twistor structures on X.

We note that the connection is purely in the “geometric direction,” i.e. on X rather than
on the “arithmetic” A1,an.

Taking U(1)la-equivariant objects in the above description, we can study vector bundles
on X♢/U(1)Betti. We know that over C×

Betti ⊂ Div1C, X
♢ is isomorphic to its Betti stack

X(C)Betti×C×
Betti, so quotienting by U(1)Betti on this open piece C×

Betti/U(1)Betti ≃ R×
>0,Betti we

find thatX♢/U(1)Betti is isomorphic toX(C)Betti×R>0,Betti, which since R>0 is contractible is
(at least for the purposes of vector bundles) justX(C)Betti and so vector bundles on it are just
local systems on X(C). Extensions to the poles give filtrations on this local system as above,
which now must be stable under the T -connection; this amounts to Griffiths transversality.
Thus we obtain the following result:

Corollary 5. Vector bundles on X♢/U(1)Betti ×Div1C /U(1)Betti
A1,an/U(1)la are equivalent to

local systems L on X together with a (separated, exhaustive) filtration Fil•(L⊗C OX) of the
corresponding vector bundle satisfying Griffiths transversality.

In particular, gluing the descriptions at 0 and∞, we find that vector bundles onX♢/U(1)Betti

are precisely variations of C-Hodge structures. Taking Galois descent, we find that vector
bundles on the real version of X♢/U(1)Betti for real manifolds X gives variations of real
Hodge structures.

Since moduli of variations of Hodge structures are given by Hermitian symmetric domains,
this suggests interpreting the latter as spaces of vector bundles on X♢/U(1)Betti for various
manifolds X, or U(1)Betti-equivariant vector bundles on X♢. In the case X = ∗, we recover
vector bundles on Div1, the space of which is our candidate stack of L-parameters.

It is possible to get a similar description of vector bundles on X♢ itself, but these no
longer have a classical description; they can be thought of as combining a T -connection
in the geometric direction (as for vector bundles on Xtw) and another in the “arithmetic”
direction, i.e. along A1,an. These do not commute; they satisfy conditions corresponding
to the noncommutative group (G†

m)
an ⋊ U(1)†. If we divide by T to think about these as
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3 BunG

connections with logarithmic singularities, we can be more explicit: a vector bundle on X♢

should be equivalent to two vector bundles on X ×A1,an (with complementary coordinates)
with connections with logarithmic singularities, whose restrictions to X × Gan

m define the
same local system on X(C)× C×.

Each of our operations−♢, −♢/U(1)Betti, and−tw are functorial, and given a morphism of
manifolds pushforward of the resulting maps gives relative cohomology of variations of Hodge
and twistor structures. These functors preserve cohomological smoothness and properness,
and so for f proper and smooth f♢ and f tw preserve perfect complexes. Under suitable
assumptions, they should also preserve vector bundle objects in each degree, but this is not
yet known.

3. BunG

We now turn to the stack BunG, in a sense the core of the geometrization program. Our first
goal is to describe its stratification, analogous to the decomposition of Pic by degree; in the
next section we’ll introduce Hecke operators, which are how we’ll access the most interesting
features of BunG. For today we’ll speak in generalities, and next week we’ll look into the
simplest nontrivial example, which we’ll see is closely related to the modular curve.

With our machinery set up, the definition is easy: let G be a real reductive group. Then
BunG is the totally disconnected stack sending A to the anima of G-bundles on XR,A. (We
will sometimes conflate it with its analytic realization, when it is more convenient to talk
about analytic stacks.) The proof that this is in fact a stack is essentially the same as for
Pic = BunGm .

Since XR,A is defined by a pushout diagram, the stack of G-bundles on it is defined by a
pullback diagram:

Proposition 6. The diagram

BunG (BunG)Betti

∗/Gan
C ∗/G(C)Betti

is Cartesian.

Here the left vertical arrow is given by taking the fiber at∞ : AnSpecA→ XR,A and the
right vertical arrow is the Betti stack functor applied to this map.

This lets us prove our first key result about BunG:

Proposition 7. The natural map ∗/G(R)la → BunG, induced by the trivial bundle ∗ → BunG

together with its automorphism group G(R)la, is an open immersion, with image the locus of
G-bundles which are fiberwise trivial.

Proof. As with the inclusion ∗/R×,la → Pic, injectivity is clear, and the description of the
image is essentially tautological. The main thing to prove is that the map is an open
immersion. By Proposition 6, it suffices to prove that it is after taking Betti stacks, i.e. that

∗/G(R)Betti → (BunG)Betti
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3 BunG

is an open immersion, since then in the diagram

∗/G(R)la ∗/G(R)Betti

BunG (BunG)Betti

∗/Gan
C ∗/G(C)Betti

the bottom square and outer square are Cartesian so so is the upper square and so ∗/G(R)la →
BunG is the pullback of ∗/G(R)Betti → (BunG)Betti. Since we know this is an inclusion and
we can describe its image, the remaining problem can be stated as follows: if S is a light
profinite set and A = Cont(S,C), for any G-bundle E on XR,A, the locus of s ∈ S for which
Es is trivial is open in S, and if it is all of S then E is in fact trivial.

First, suppose G = GLn. The openness of the subset of S on which Es is trivial follows
from the semicontinuity of the Newton polygon, whose proof is similar to the p-adic case;
this apparently largely amounts to the properness of projectivized Banach–Colmez spaces,
which we have nearly already seen and which is easier in this setting than p-adically.

Next, we want to show that if this set is all of S, then E is trivial; so assume that
Es is trivial for all s. The cohomology V = RΓ(XR,A, E) is (over Cont(S,R)) a perfect
complex concentrated in degrees 0 and 1; since each Es is trivial, H

1(XR,A, E) vanishes (as
previously) and so this is actually a vector bundle over Cont(S,R). Pulling back to XR,A,
we get a (trivial) vector bundle V ⊗ROXR,A with a natural map to E, which on each fiber is
an isomorphism and hence is an isomorphism globally, so E itself is trivial.

For a general reductive group G, we have an embedding G ↪→ GLn with affine smooth
quotient GLn /G. Viewing the G-torsor E as a GLn-torsor via this map, via the previous
paragraph we know the relevant results for GLn, so we may as well assume that E is trivial
as a GLn-torsor; choosing a trivialization, the data of a G-torsor together on XR,A with
a GLn-trivialization is equivalent to a map XR,A → GLn /G, where the target is smooth
and affine. Referring back to the definition of XR,A, we deduce that this is equivalent
to a map SpecCont(S,R) → GLn /G, which in turn is equivalent to a continuous map
S → (GLn /G)(R). The locus on which E is trivial corresponds to the image of GLn(R)→
(GLn /G)(R), which is a submersion of real manifolds and hence has open image. If the
image of S is inside this image, we can lift it to GLn and so the underlying G-bundle E is
globally trivial since its GLn-lift is.

Recall that G-bundles on the absolute curve XR are classified by Kottwitz’s set B(R, G)
(this is discussed in Chapter 5 of Jaburi’s master’s thesis). As for Pic, this gives a point
∗ → BunG for every b ∈ B(R, G); we write Bunb

G for the image of this map. For the
trivial element b = 1, this is the open substack Bun1

G ≃ ∗/G(R)la. When b is basic, the
corresponding G-bundle Eb is semistable and its automorphism group Gb is an inner form
of G.

Theorem 8. The inclusion Bunb
G ⊂ BunG is the pullback of (Bunb

G)Betti ⊂ (BunG)Betti, which
is a locally closed substack. As b varies, the (Bunb

G)Betti give a locally finite stratification of
(BunG)Betti, and therefore the Bunb

G give a locally finite stratification of BunG.
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4 HECKE OPERATORS

Proof. The first statement amounts to the claim that for a strongly totally disconnected
C-algebra A, S = Hom(A,C), and E a G-bundle on XR,A, if E is isomorphic to Eb on
XR×AnSpecRAnSpecCont(S,R) then it is isomorphic to Eb globally. This amounts to lifting
an isomorphism of G-torsors along A→ Cont(S,C), which is a henselian thickening so this
is formal.

Via the Harder–Narasimhan filtration by semistable G-bundles, we can reduce to under-
standing Bunb

G for b basic and show that this covers the semistable locus. The argument
above shows that to classify semistable G-bundles up to isomorphism, we can reduce to the
case A = Cont(S,C), in which case they are just those coming from the absolute case and so
are classified by the basic b; since here the automorphism group is Gb(R)la, we can describe
Bunb

G as ∗/Gb(R)la, and repeating the argument for Proposition 7 for Gb in place of G and
identifying BunGb

≃ BunG by shuffling the inner forms (and the Kottwitz set more generally)
we conclude that this is also open in BunG. Letting b vary gives the semistable locus.

In the p-adic setting, each connected component of BunG contains a unique semistable
stratum, which for some purposes lets us restrict attention to the basic case. This does not
occur here: components may have either multiple semistable strata or none. In particular,
while we saw that all semistable strata are open, the converse does not necessarily hold.

4. Hecke operators

The general strategy to define Hecke operators over a curve X is as follows: first, we define a
Hecke stack HckG → BunG×BunG×X, parametrizing some sort of modifications of vector
bundles; next, we find a version of geometric Satake associating to representations V of Ĝ
some sheaf SV on HckG; and we use the resulting sheaf as a kernel on the correspondence
defined by the Hecke stack to define the Hecke operator associated to V .

This is the strategy we will carry out, replacing X by Div1, except that we want to avoid
discussing geometric Satake (at least for now). We’ll therefore restrict to (representations
corresponding to) minuscule cocharacters, for which we can take the structure sheaf on the
stratum Hckµ.

It remains to understand what a modification should mean in this context. We generally
think of this as an isomorphism away from a divisor: at that divisor we might have a map
which fails to be an isomorphism in one direction or the other, or a correspondence or so
forth, depending on the bounding cocharacter. An archetypical example is for a map of
vector bundles which is injective everywhere but fails to be surjective at one point, with
some finite length cokernel, say length 1; then at that point instead we have a parabolic
subgroup stabilizing the partial flag preserved by the modification. We can actually think
of modifications like this in general, at least for modifications of the trivial vector bundle:
we keep track of flags at certain points of certain types, and these essentially determine a
modification of the trivial bundle at those points. Thus the stack of modifications of the
trivial vector bundle should classify divisors of the curve (of suitable degree) together with
flags at those points.

We can actually make this precise in our language, though it won’t be enough to pin
down the full Hecke stack: for a fixed minuscule cocharacter µ, the Grassmannian Grµ
should classify degree 1 divisors Z ⊂ XR,A together with a type µ flag at Z, i.e. a Z-point
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4 HECKE OPERATORS

of the flag variety Flµ = G/Pµ. In the language above, this is the isomorphism Grµ ≃ Fl♢µ .

(In general for non-minuscule µ, we would expect to have a map Grµ → Fl♢µ , but not for it
to be an isomorphism; making this precise would require giving a precise definition of Grµ
independent of this result, which we prefer to avoid.)

Thinking of the Grassmannian as classifying modifications E1 99K E ′ of the trivial bundle
E1, we get a projection Grµ → BunG. More generally, we allow both bundles to vary: we
define the Hecke stack Hckµ to send a test ring A to the space of G-bundles E on XR,A; degree
1 divisors Z ⊂ XR,A; and sections Z → E ×G Flµ of the projection E ×G Flµ → E → XR,A
over Z. We think of this as the space of modifications E 99K E ′, and therefore we have two
projections Hckµ → BunG, sending the above data to either E or E ′, as well as the projection
to Div1 sending it to Z. Note that the fiber of the first projection over E = E1 is precisely
Fl♢µ ≃ Grµ, while the other fibers are twisted versions of the flag variety.

Thus we get a correspondence

Hckµ

BunG BunG×Div1

with both projections cohomologically smooth and proper, and so we can define the pull-push
along this correspondence to be the Hecke operator

Tµ : D(BunG)→ D(BunG×Div1).

Note that by properness and cohomological smoothness it doesn’t matter (up to twist)
whether we take ∗- or !-functors.

By further projecting along Div1 → ∗/W la
R —which we’ve seen is, though not an equiv-

alence, reasonably close to one, and we might guess induces an equivalence in this case as
happens p-adically—we can replace the target by D(BunG× ∗ /W la

R ) ≃ D(BunG)
BW la

R , so
Hecke operators give objects equivariant for the Weil group.

We note that Hecke operators incorporate three disparate themes of the talks so far:
locally analytic G-representations, as sheaves on BunG; L-parameters, as vector bundles on
Div1; and variations of Hodge and twistor structures, via the fiber Fl♢µ and its twists.

We now have all of the necessary objects in hand to say what the categorical archimedean
local Langlands conjecture should be. However, we are still missing some key points. First
let’s sketch what we expect to be true: let LocSysĜ be the stack of Ĝ-local systems on Div1.
Then, parallel to the nonarchimedean case, we expect that we should have an equivalence of
∞-categories between the subcategory of compact objects in D(BunG) and the subcategory
of bounded objects with suitable support conditions (e.g. quasicompact, nilpotent singular)
in D(LocSysĜ). We hesitate however to write down a precise statement, not only due to
the technical question of working out these conditions but because we lack a spectral action:
the equivalence should depend on a choice of Whittaker data (with the structure sheaf on
LocSysĜ corresponding to the Whittaker sheaf on BunG) and be equivariant for the action of
something like Perf(LocSysĜ), which encodes the action of the Hecke operators on each side.
This would necessitate having a more complete theory of geometric Satake in our setting; I
don’t know of any deep obstruction to this, but I don’t think it’s been developed thus far.
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As a final remark, let’s sketch the connection between Hecke operators and the action
of Perf(LocSysĜ), though a more complete explanation is more complicated. The Hecke
operators (once we have a complete geometric Satake picture) should give a family of functors

Rep(Ĝ⋊W la
R )I → End(D(BunG)

ω)

for finite sets I which is exact, monoidal, and linear over Rep(W la,I
R ). On the other hand,

suppose we have a family of functors Rep(Ĝ ⋊ W la
R )I → Perf(LocSysĜ)

BW la,I
R with simi-

lar properties; then an action of Perf(LocSysĜ) on D(BunG)
ω would induce the action of

the Hecke operators by precomposition. Indeed we have such a family, induced via tensor
products from the case I = {∗}, where the functor

Rep(Ĝ⋊W la
R )→ Perf(LocSysĜ)

BW la
R

is equivalent, via the Tannakian formalism, to a W la
R -equivariant Ĝ⋊W la

R -torsor on LocSysĜ:

the latter stack parametrizes Ĝ-torsors on S × Div1 for a test space S, and so there is a
universal Ĝ-torsor on LocSysĜ×Div1 which as above gives rise to aW la

R -equivariant Ĝ⋊W la
R -

torsor on LocSysĜ.
Next time, we’ll specialize to the simplest nonabelian case, corresponding to the modular

curve, and see how the Hecke operators let us produce a version of the correspondence.
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