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November 18, 2024

Last time, we introduced the stack Div1 ≃ (A2,an \ 0)/W la
R and its double cover Div1C ≃

(A2,an \ 0)/C×,la, and observed that on the open locus G2,an
m /C×,la ≃ C×

Betti ⊂ Div1C vector
bundles are determined by their monodromy and correspond to representations of C×,la.
Our first goal today is to prove a result stated last time: every vector bundle on Div1 ≃
(A2,an \ 0)/W la

R extends uniquely to A2,an/W la
R , so that the zero section and the projection

to a point give an embedding of isomorphism classes of locally analytic WR-representations
into vector bundles on Div1, which is a bijection on semisimple objects. This justifies our
perspective that vector bundles, or more generally Ĝ-torsors, on Div1 should be our geometric
notion of L-parameters in this setting; we will see that this actually gives rise to some objects
not appearing in the classical picture, which makes the archimedean L-parameters better-
behaved.

Part of this will involve relating vector bundles on certain related stacks to vector bundles
with T -connection, which can be thought of as a variant of the de Rham stack construction.
This leads to an interpretation of vector bundles on Div1 in terms of Hodge structures. It
is then of interest to generalize this picture, to understand variations of Hodge structures in
this language; this is related to (the archimedean analogue of) diamondization, which time
permitting we will introduce, though a detailed study will have to wait until next time.

1. Vector bundles on Div1C

Last time, we saw that on the large open subset G2,an
m /C×,la ≃ C×

Betti ⊂ Div1C vector bundles
are given by representations of C×,la, classified by their monodromy α ∈ GLn which can
be described directly in terms of the representation in question. The difference between
G2,an

m /C× and Div1C ≃ (A2,an \ {0})/C×,la, which we think of as roughly a complex projective
line, is given by two copies of G2,an

m /C×,la, which we can think of as the points at 0 and ∞.
We look at adding back these missing points one at a time; but in fact they are interchanged
under complex conjugation (which recall on this version of the projective line is really z 7→
−1/z), so it suffices to look at a neighborhood of∞, i.e. adding back in the axis on the first
coordinate, so (A1,an×Gan

m )/C×,la, with the scalar action twisted by complex conjugation on
the second factor.

The action of C×,la on Gan
m is transitive, with stabilizer G†

m, so that the total quotient is

(A1,an ×Gan
m )/C×,la ≃ A1,an/G†

m.

Puncturing A1,an at the origin yields Gan
m /G†

m ≃ C×
Betti, the open subset we saw before. Thus

we want to understand vector bundles on A1,an/G†
m. If we were quotienting by G†

a instead,
this would be the analytic de Rham stack A1,an

dR , vector bundles on which are equivalent to
vector bundles on A1,an together with a connection; working through a similar argument
here, adjusting to complete at the multiplicative identity in A1,an rather than the additive
identity, gives the following result.
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1 VECTOR BUNDLES ON Div1C

Proposition 1. Vector bundles on A1,an/G†
m are equivalent to vector bundles E on A1,an

together with a T -connection, i.e. a map ∆E : E → E ⊗ Ω1 such that for f ∈ O and v ∈ E
we have

∆E(fv) = f∆E(v) + T∆(f)v

where T is the standard coordinate on A1,an.

The analyticity is encoded via working over A1,an and so these are also equivalent to
vector bundles on A1,an/Ĝm.

This is already enough to describe vector bundles on Div1C: this was for the neighborhood
around∞, but the same description applies to the neighborhood around 0, so vector bundles
on Div1C are equivalent to pairs of vector bundles with T -connection (E1,∆E1), (E2,∆E2)
on A1,an, whose restriction to the overlap G2,an

m /C×,la ≃ C×
Betti agree, i.e. with the same

monodromy around 0.
Given a filtration on the restriction of a vector bundle on Div1C to G2,an

m /C×,la, extending
the filtration to the whole space is then just taking the corresponding filtration on the Ei,
so every filtration on the restriction extends uniquely to the whole space. In particular the
decomposition of the category of vector bundles on G2,an

m /C×,la by the generalized eigenvalue
of the monodromy extends to the category of vector bundles on Div1C, with semisimple vector
bundles again corresponding to semisimple monodromy and vice versa.

In particular, when α is semisimple by taking direct summands and twisting we can
assume that it is trivial, so it is interesting to study vector bundles on Div1C with trivial
monodromy. We approach via the following result:

Proposition 2. The category of vector bundles on A1,an/G†
m with trivial monodromy, i.e.

vector bundles with T -connection on A1,an with trivial monodromy, are equivalent to vector
bundles on A1,an/Gan

m , and thence equivalent to filtered vector spaces (over Cgas).

Proof. The first part is the statement that having trivial monodromy is equivalent to de-
scending along the map

A1,an/G†
m → A1,an/Gan

m .

This map is a torsor under Gan
m /G†

m ≃ Gan
m,dR ≃ C×

Betti, and descent along a C×
Betti-torsor

is in fact equivalent to having trivial monodromy. Since vector bundles on A1/Gm (the
algebraic version) are known to be equivalent to filtered vector spaces (via the Rees module
construction), to finish the theorem it suffices to show that pullback along the map

A1,an/Gan
m → A1/Gm

induces an exact equivalence on vector bundles, which one can check by computing that the
irreducible objects on each side are line bundles for which pullback gives a bijection and that
the Hom and Ext groups agree.

Using this fact for the neighborhoods of 0 and ∞, we deduce that vector bundles on
Div1C with trivial monodromy are equivalent to complex vector spaces equipped with two
C-filtrations. These are precisely complex Hodge structures, and one can show (via a similar
stacky argument) that they all decompose into direct sums of one-dimensional complex
Hodge structures, which are then classified by the degrees (λ1, λ2) ∈ Z2 of the filtration.
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2 RELATION TO ADAMS–BARBASCH–VOGAN PARAMETERS

(Usually, we expect to identify one of these filtrations with the complex conjugate of the
other; this is the real version, induced here by Galois descent.) We can equivalently think of
these as complex numbers such that

exp(2πiλ1) = exp(2πiλ2) = 1,

which is precisely the statement that the monodromy α is trivial as expected.
Thus we have proven that vector bundles on Div1C with semisimple monodromy are direct

sums of line bundles which arise via pullback along

Div1C ≃ (A2,an \ {0})/C×,la → ∗/C×,la

from characters of C×. In particular since this projection factors through A2,an/C×,la, every
line bundle and thus every vector bundle with semisimple monodromy extends uniquely to
A2,an/C×,la.

Being a little more careful, one can show that the inclusion

Div1C ↪→ (A2,an ×A2 (A2 \ {0}))/C×,la

induces via pullback an exact equivalence of categories of vector bundles. On the right,
extension of vector bundles in the algebraic setting (over a codimension 2 subset) induces
an equivalence with vector bundles on A2,an/C×,la, so this extends the above to the non-
semisimple case. Finally everything descends along C/R, giving the result for vector bundles
on Div1 we claimed last time: every vector bundle on Div1 extends uniquely to A2,an/W la

R ,
and the zero section and projection to a point of A2,an induce a factorization of the identity

Rep(W la
R )

π∗
−→ Vect(A2,an/W la

R ) ≃ Vect(Div1)
s∗−→ Rep(W la

R )

so that π∗ is injective on isomorphism classes, and if a vector bundle V on Div1 is semisimple
then it has semisimple monodromy and therefore is in the image of π∗, so isomorphism classes
of semisimple W la

R -representations are in bijection with isomorphism classes of semisimple
vector bundles on Div1. Note that there do exist however non-semisimple vector bundles
which do not arise via pullback from ∗/W la

R .

2. Relation to Adams–Barbasch–Vogan parameters

Assume for simplicity that G/R is split, so that L-parameters are just maps WR → Ĝ(C).
Fix α ∈ Ĝ(C), and consider the moduli space of Ĝ-local systems on Div1 together with a
trivialization at the image of the point

1 ∈ C×
Betti ≃ G2,an

m /C×,la ⊂ Div1C

after taking the cover Div1C → Div1 and resulting monodromy α. On Div1C, this is a pair of
vector bundles whose restrictions to C×

Betti agree and correspond to a local system with mon-
odromy α; the Galois descent along C/R interchanges the vector bundles with T -connection,
so we are left with just a vector bundle with T -connection Λ on A1,an, or equivalently vector
bundle on A1,an/G†

m, whose restriction to Gan
m /G†

m ≃ C×
Betti is a local system with monodromy
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2 RELATION TO ADAMS–BARBASCH–VOGAN PARAMETERS

α; together with a Galois descent datum, which now just amounts to a square root y of the
monodromy α. Allowing α to vary, we arrive at a space of pairs (Λ, y) with the monodromy
of the restriction of Λ (as defined above) given by y2.

We now want to identify this space of pairs (Λ, y) with the geometric parameter space
of Adams–Barbasch–Vogan. We first need to introduce some notation: for any complex
reductive group H with Lie group h, for a semisimple element λ ∈ h and n ∈ Z we let

h(λ)n = {µ ∈ h : [λ, µ] = nµ},

the “λ-eigenspace” with eigenvalue n, and let

n(λ) =
∑
n

h(λ)n.

The canonical flat F(λ) through λ is the affine subspace

F(λ) = λ+ n(λ),

and write F(h) for the set of all canonical flats. These give a partition of the semisimple
elements of h, and the exponential map e : λ 7→ exp(2πiλ) is constant on each canonical flat,
so we can write e(Λ) = e(λ) where Λ = F(λ) since the result only depends on Λ and not the
choice of λ.

For G = GLn, we have seen before that the choice of a semisimple n× n matrix λ with
exp(2πiλ) = α can be viewed as a representation of C×,la which we can pull back to a vector
bundle on Div1C with monodromy α plus a Galois descent datum, and by unique extension
all such vector bundles arise in this way. We can do a version of this more generally for G:
working out the story analogously, for any semisimple element λ ∈ Ĝ(C) we get a Ĝ-local
system on Div1C with monodromy e(λ) plus a Galois descent datum, and all such objects

arise in this way. As above, this is equivalent to a Ĝ-local system on A1,an together with a
T -connection and a square root y of e(λ). Finally, we claim that the resulting object, like
e(λ), is independent of the choice λ ∈ Λ = F(λ); thus we get a natural bijection between

Ĝ-local systems on Div1 with semisimple monodromy and pairs (Λ, y) where Λ ∈ F(ĝ) and
y ∈ Ĝ(C) such that e(Λ) = y2, i.e. Adams–Barbasch–Vogan L-parameters. If we require

Λ to be contained within a single Ĝ-orbit of semisimple elements in ĝ, then this has the
structure of a smooth complex variety; in our generality we should view this as a component
of the stack of L-parameters. (In this nonsplit case, we have to be a little more careful about
the Langlands dual vs. the L-group, but the essential idea is the same.)

We digress briefly to discuss the motivation for these parameters. Last time, we men-
tioned that the standard notion of L-parameters in the archimedean setting do not behave
very well in families: representations which can be deformed into each other may have L-
parameters lying in different components of the parameter space. A more straightforward
issue is the existence of L-packets: for GLn, we have the pleasant phenomenon that the
local Langlands correspondence gives a bijection between suitable representations and L-
parameters, but for general groups G it is only finite-to-one, and we might speculate about
a refinement that might produce a genuine bijection. An early realization of Vogan is that
one should take all inner forms together (as we’ll see is realized by the decomposition of
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3 LOCAL DUALITY ON Div1

BunG). This already suggests parametrizing by classes in H1(GalF , G) (for any local field
F ), or more generally H1(E , G) for Galois gerbes E , i.e. extensions of GalF by some group u.
This gives rise to Kaletha’s refined local Langlands correspondence, taking either u trivial,
the finite adeles, or their integral subring; the last of these produces spaces of L-parameters
which can be identified with Adams–Barbasch–Vogan L-parameters in the real case, but
for our purposes the second is more natural, with the resulting gerbe corresponding to the
Tannakian category of isocrystals and H1(E , G) ≃ B(F,G). It seems very interesting to give
a full geometrization of this picture in the archimedean setting; in the p-adic setting this is
implicit in e.g. Kottwitz’s work with Hansen and Weinstein on the Kottwitz conjecture.

3. Local duality on Div1

Interpreting Weil group representations via Div1 has another benefit: it lets us give an
analogue of local Tate–Nakayama duality in the archimedean setting. For nonarchimedean
local fields F , we can think of this local duality as the statement that the Weil group WF

has cohomological dimension 2, acting on ℓ-adic vector spaces, and satisfies an analogue of
2-dimensional Poincaré duality. We can interpret representations of WF via the Fargues–
Fontaine curve (or more precisely via the (nonarchimedean) mirror curve Div1), which has
cohomological dimension 2 and for which this is essentially literal Poincaré duality.

At infinity, though, this fails classically: WR acting on R-vector spaces has cohomological
dimension 1, and does not have any apparent duality. Geometrically, though, we still have
Div1, and we get the following incarnation of duality:

Theorem 3. The analytic stack

f : Div1 → AnSpecCgas

is proper and cohomologically smooth, with f !1 ≃ | · |[2] where | · | is the line bundle on Div1

corresponding to the norm character | · | : WR → R>0, given on C× ⊂ WR by z 7→ zz.

It formally follows from the yoga of six functor formalisms that there is a perfect pairing
of finite-dimensional C-vector spaces

H i(Div1, E)×H2−i(Div1, E∨ ⊗ | · |)→ H2(Div1, | · |) ≃ C

for each vector bundle E on Div1 and 0 ≤ i ≤ 2, with higher cohomology vanishing.

Proof. There are three things to prove: properness, cohomological smoothness, and the
identification of the dualizing complex. For the first two we can work with Div1C ≃ (A2,an \
{0})/C×,la, and then pass to Div1 by Galois descent.

Thinking of Div1C again as a version of the projective line, we can cover it by two copies
of the overconvergent unit disk D† up to nil-scaling, i.e. D†/G†

m, glued along z 7→ 1/z. The
disks overlap along |z| = 1, i.e. the (analytic) circle group U(1)an, so the two covering spaces
D†/G†

m intersect at U(1)an/G†
m ≃ U(1)an/U(1)† ≃ U(1)Betti. Since D† → ∗ is proper, it

remains to show that p : ∗/G†
m → ∗ is proper, so that the composite D†/G†

m → ∗/G†
m → ∗

will be; and for this it in turn suffices to show that p!1 → p∗1 is an isomorphism. For
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4 HODGE STRUCTURES

q : ∗ → ∗/G†
m the (proper) quotient map, we have p!q∗1 = p!q!1 = id! 1 = id∗ 1 = p∗q∗1 and

1 is a quotient of q∗1, so the claim follows.
For properness, Div1C is locally A1,an/G†

m, whose cohomological smoothness follows from
that of A1,an and ∗/G†

m (shown in a previous lecture). In fact this even shows that the
cohomological dimension is 2, since it is for A1,an (together with the fact that ∗/G†

m has
cohomological dimension 0, also shown previously).

Finally, we know that the dualizing complex must live in degree 2, where it is given by a
character of WR or equivalently of its abelianization R×. Working out which character can
be done via some explicit computation of Ext groups; we observe that the norm character
is compatible (with respect to the projection Div1 → ∗/W la

R ) with the identification of the
dualizing complex of ∗/Gla with the modulus character of G for any real Lie group G.

4. Hodge structures

We saw above that vector bundles on Div1C with trivial monodromy after restriction were
equivalent to complex Hodge structures. More generally though vector bundles on Div1C
are more exotic objects, allowing for nontrivial monodromy. The centrality of the notion of
(variations of) Hodge structures suggests that we should see if we can find a modification of
Div1C where vector bundles are actually equivalent to Hodge structures.

Recall that XR admits an action of O(2) stabilizing the point at infinity, where it acts
on the residue field C by the component map O(2) → Z/2 ≃ Gal(C/R). In fact, it acts in
the relative setting as well: more precisely, the definition of XR,A descends to ∗/O(2)Betti.
This lets the whole theory descend to ∗/O(2)Betti, and in particular Div1C and Div1 descend
to ∗/O(2)Betti.

Note that AnSpec(Cgas)/O(2)Betti is a gerbe over AnSpecRgas banded by U(1)Betti (in
fact the trivial gerbe). We are used to working with C-coefficients rather than R, so we will
often only use the U(1)-part of the O(2)-action.

Working now with Div1C /U(1)Betti → ∗/U(1)Betti, we get an open subset C×
Betti/U(1)Betti ≃

R>0,Betti, which is (the realization of) a contractible manifold. Thus vector bundles on this
open subset are equivalent to finite-dimensional C-vector spaces. As previously, it remains
to study the neighborhoods of 0 and ∞, and we can take these one at a time (they will
be exchanged under the descent datum to R): in a neighborhood of ∞, Div1C is locally
A1,an/G†

m ≃ A1,an/U(1)†, so quotienting by U(1)Betti ≃ U(1)la/U(1)† gives A1,an/U(1)la.
This is an analytic version of A1/Gm, and an analogous argument to the algebraic case
shows that vector bundles on A1,an/U(1)la are equivalent to filtered C-vector spaces. Gluing
with the analogous argument near 0, we arrive at the following proposition:

Proposition 4. Vector bundles on Div1C /U(1)Betti are equivalent to finite-dimensional vector
spaces V equipped with two (separated, exhaustive, decreasing) filtrations Fil• V , Fil

•
V , i.e.

complex Hodge structures.

Similarly, after Galois descent we identify vector bundles on Div1 /U(1)Betti with real
Hodge structures.

In fact, the gluing description of this space via copies of A1,an/U(1)la also yields the
following isomorphism:
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4 HODGE STRUCTURES

Proposition 5. There is an isomorphism of analytic stacks

Div1C /U(1)Betti ≃ P1
C/U(1)

la

over Cgas.

If we took the full O(2)-action rather than just U(1), i.e. incorporating the Galois descent,
we would obtain

Div1 /U(1)Betti ≃ XR/U(1)
la.1

These justify our heuristics that Div1C is “close to” the projective line while Div1 is “close
to” the (absolute) twistor P1.

In particular this gives a familiar U(1)Betti-torsor Div
1
C → Div1C /U(1)Betti and further a

U(1)la-torsor P1
C → Div1C /U(1)Betti, which we will see is related to torsors. There is a map

U(1)la → U(1)Betti, along which we could push out the second torsor to get a U(1)Betti-torsor
over Div1C /U(1)Betti; we might guess that in fact this is Div1C, but while this is true locally
it turns out to fail globally: there is no map P1

C → Div1C inducing the expected map on
C-points (it would have to be holomorphic at ∞ and anti-holomorphic at 0). This can be
thought of as the failure of the archimedean Fargues–Fontaine curve (over C) to literally be
P1
C in families, necessitating our more subtle gluing definition.
The diagram

Div1C → Div1C /U(1)Betti ← P1
C

will be the model for a more general diagram

X♢ → X♢/U(1)Betti ← Xtw

for any complex manifold C, recovering the first diagram for X = ∗, where X♢ is analogous
to the diamondization construction in p-adic geometry and Xtw is a new object we might call
the “twistorization.” Vector bundles on these stacks should be given respectively by families
of vector bundles with two T -connections in a certain sense, generalizing vector bundles on
Div1C; variations of complex Hodge structures; and variations of complex twistor structures.
(In each case Galois descent provides real analogues, provided X descends to R.) In the
final section of today’s lecture we aim to explain how these stacks are constructed; a more
detailed investigation will be the first goal of next week’s talk.

In the p-adic situation, for a suitable adic space X the functor X♢ sends a characteristic
p perfectoid space S to the space of untilts S♯ together with maps S♯ → X. Thus for example
(SpaZp)

♢ classifies all untilts, while (SpaQp)
♢ classifies those in characteristic 0.

In our setting, we don’t have a notion of untilts. However, recalling that an untilt S♯ of
S over, say, Qp embeds into the Fargues–Fontaine curve as a degree 1 divisor, we do have an
analogue here: namely an “untilt” of a test object, here a totally disconnected C-algebra A,
should just be an A-point of Div1, i.e. a degree 1 divisor Z ⊂ XR,A. For simplicity we first
work over C: then for a complex manifold X (viewed as a totally disconnected stack), we
define X♢ to be the totally disconnected stack sending A to the space of degree 1 divisors
Z ⊂ XC,A together with a map Z → X.

1I think—this formula isn’t in Scholze’s notes so should be taken with a grain of salt.
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4 HODGE STRUCTURES

Remembering only the divisor Z gives a map X♢ → Div1C for every X. In fact, by
inspection Div1C ≃ (AnSpecCgas)

♢, and so this is just the diamondization of the projection
X → AnSpecCgas. When X descends to R, X♢ descends to Div1 and so we can think
of diamondization on real manifolds as classifying degree 1 divisors of XR,A over X, with
(AnSpecRgas)

♢ = Div1.
Beyond Galois descent, everything descends to (AnSpecCgas)/O(2)Betti as above; we

again restrict to the U(1)Betti-action. This gives a stack X♢/U(1)Betti → Div1C /U(1)Betti,
whose base change along Div1C → Div1C /U(1)Betti recoversX

♢. This in turn suggests carrying
out a similar base change on the other side: we set

Xtw = X♢/U(1)Betti ×Div1C /U(1)Betti
P1
C,

mapping via the second projection to P1
C. This gives us our diagrams

X♢ X♢/U(1)Betti Xtw

Div1C Div1C /U(1)Betti P1
C

as expected, with each square Cartesian. The real version, when X is a real-analytic mani-
fold, is then

X♢ X♢/U(1)Betti Xtw

Div1 Div1 /U(1)Betti XR

.

Note though that the appearance of the twistor P1 here, while not coincidental, is not the
same as the version in families: this does not tell us how to generalize the twistor P1 to
families, but instead how to generalize its transmutative properties, i.e. the relationship
between vector bundles on it and twistor structures.

Next time, we will study vector bundles on each of these stacks, and see that we ob-
tain variations of Hodge structure on the middle term (generalizing vector bundles on
Div1C /U(1)Betti and Div1 /U(1)Betti), variations of twistor structures on the right (gener-
alizing vector bundles on P1

C and XR), and a new notion on the left generalizing vector
bundles on Div1C and Div1 to the relative setting. For the moment, we can make the follow-
ing observation about X♢ away from 0 and ∞:

Proposition 6. The projection to the Betti stack yields an isomorphism

X♢ ×Div1C
C×

Betti
∼→ (X♢ ×Div1C

C×
Betti)Betti ≃ X(C)Betti × C×

Betti.

Proof. Away from 0 and ∞, the relative curve XC,A is just the relative punctured P1
C, i.e.

Gan
m,Cont(S,C) and so each degree 1 divisor is isomorphic to AnSpecCont(S,C), so the left-hand

side is the functor sending A to a point of C×
Betti(A) describing the location of the divisor

together with a map AnSpecCont(S,C)→ X, i.e. X(C)Betti × C×
Betti.
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4 HODGE STRUCTURES

Next time, we’ll study what happens over the missing points. Once we finish our discus-
sion of vector bundles on Div1 = ∗♢ and its relative versions X♢, we’ll introduce the stack
BunG and study its properties, especially the action of Hecke operators. This puts us in
position to sketch the statement of the main geometrized local Langlands conjecture over R.
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