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December 2, 2024

1. The isomorphism of the Lubin–Tate and Drinfeld towers

Last time, we introduced the stack BunG together with the Hecke stack

Hckµ

BunG BunG×Div1

for each minuscule cocharacter µ, giving rise to Hecke operators by pull-push. Today, we’ll
specialize to the case G = GL2 and look at the simplest nontrivial piece of the Hecke
correspondence, parametrizing modifications of the trivial GL2-bundle O2.

We first recall the situation in the p-adic case, which is closely analogous. The simplest
minuscule modification we could ask for is of type µ = (1, 0), which corresponds to an
injection O2 → E which is an isomorphism everywhere except at a fixed point ∞ on the
Fargues–Fontaine curve where it has cokernel of length 1, giving a flag, i.e. a point of
Flµ = P1

Cp
. Away from the Qp-points, this forces E to in fact be O(1/2) as it has degree 1

and rank 2, and so we get a morphism

MDrinf,∞ = {O2 ↪→ O(1/2)} → Flµ \Flµ(Qp) = Ω1,

with base Drinfeld’s upper half-plane. This is the Drinfeld tower at infinite level, and as
the projection can be viewed as forgetting the choice of isomorphism E ≃ O(1/2) it is a
Aut(O(1/2)) ≃ D×-torsor, where D/Qp is the corresponding quaternion algebra. (Over
P1(Qp), the bundle E is trivial, which for our purposes is a somewhat degenerate case.)

On the other hand, we can also view the objects on the left as modifications of O(1/2)
of type µ−1 = (0,−1), which by forgetting the choice of isomorphism of the modified vector
bundle with O2 gives a projection

{O2 ↪→ O(1/2)} → {O2 ↪→ O(1/2)}/Aut(O2)).

Since Aut(O2) is just GL2(Qp), this is a GL2(Qp)-torsor, and the base is then the flag variety

FlD
×

µ for D× (with respect to µ−), equivalently its Severi–Brauer variety, which since we work
over Cp we identify with P1

Cp
. This is the Lubin–Tate tower at infinite level

MLT,∞ = {O2 ↪→ O(1/2)} → FlD
×

µ = P1
Cp
.

The identification of the source here and above is the isomorphism of the Lubin–Tate and
Drinfeld towers, and gives a correspondence

MLT,∞ ≃ MDrinf,∞

P1
Cp

P1
Cp

\ P1
Cp
(Qp)

f

g
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2 THE MODULAR CURVE

with commuting actions of GL2(Qp) and D× on the source making f a GL2(Qp)-torsor and
g a D×-torsor, with residual D×-action on the left and GL2(Qp)-action on the right.

Exactly the same logic applies in the archimedean setting, replacing the Fargues–Fontaine
curve by the twistor P1, GL2(Qp) by GL2(R), and D by H, and being careful to take locally
analytic groups.1 We can make this precise as follows.

Theorem 1. Let M be the stack sending a totally disconnected C-algebra A to the anima
of fiberwise injective maps i : O2

XR,A
↪→ OXR,A(1/2).

(a) The cofiber of i gives a degree 1 divisor on XR,A, yielding a morphism M → Div1.

(b) The space of modifications of O2 of type (1, 0) at a degree 1 divisor is Fl♢µ = P1,♢
R . Over

(Flµ \Flµ(R))♢ ≃ H±,♢, the modified bundle is locally isomorphic to O(1/2), giving an
H×,la-torsor

g : M → (Flµ \Flµ(R))♢.2

(c) The space of modifications of O(1/2) of type (0,−1) at a degree 1 divisor is FlH
×,♢

µ ,
giving a GL2(R)la-torsor

f : M → FlH
×,♢

µ .

In our language from last time, M is the fiber of Hckµ over (O2,O(1/2)) ∈ BunG×BunG,
so the map to Div1 is induced by that from Hckµ and the actions of GL2(R)la and H×,la are
induced from the actions on these points of BunG.

One could also view M as parametrizing pairs of sections of O(1/2), subject to open in-
jectivity conditions, making M an open subspace of BC(O(1/2))2 ≃ A4,an, which in principle
can be made explicit so that one could write down all of the maps above concretely.

2. The modular curve

Let Γ ⊂ GL2(Z) be a sufficiently small congruence subgroup and consider the modular curve

XΓ = Γ\(Flµ \Flµ(R)).

To fully use our tools, it is convenient to pass to its diamondization

X♢
Γ = Γ\(Flµ \Flµ(R))♢.

The H×,la-torsor M → (Flµ \Flµ(R))♢ then gives a H×,la-torsor

X̃Γ := Γ\M → Γ\(Flµ \Flµ(R))♢ = X♢
Γ ,

where Γ acts on M via its inclusion into GL2(R)la.

1Note that in this case the Severi–Brauer variety FlH
×

µ is actually the twistor P1 again; but this is
coincidental, bearing no (apparent) relation to its appearance as the archimedean Fargues–Fontaine curve,
so we avoid writing it as XR.

2Scholze’s notes have all of Fl♢µ as the target here, but I’m guessing this is a typo as on the whole space
this map isn’t surjective.
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2 THE MODULAR CURVE

We can interpret this H×,la-torsor as a morphism X♢
Γ → ∗/H×,la. The target embeds into

BunGL2 , and in fact recall we have a map BunGL2 → ∗/GL2 via pulling back the GL2-torsor
on the twistor P1 along the point at infinity, so we can compose these to get a map

X♢
Γ → ∗/H×,la → BunGL2 → ∗/GL2,

corresponding to a rank 2 vector bundle V on X♢
Γ .

On the other hand, XΓ is equipped with a universal elliptic curve fΓ : EΓ → XΓ, whose
first relative cohomology R1fΓ,∗O is a rank 2 vector bundle on XΓ, and the same thing holds
after diamondization, i.e. R1f♢

Γ,∗O is a rank 2 vector bundle on X♢
Γ . We claim that these

agree:

Theorem 2. There is an isomorphism V ≃ R1f♢
Γ,∗O of vector bundles on X♢

Γ .

There is actually something very surprising about this: the vector bundle V comes from
a vector bundle on the curve XR, while the pushforward of diamond structures has to do
with the mirror curve Div1; and modifications of vector bundles (corresponding to M) are
allowed to be over varying points, while the filtrations involved in the variations of Hodge
and twistor structures we saw were fixed at the point at infinity.

Proof. Let A be a totally disconnected C-algebra with a map AnSpecA → X♢
Γ . This is

equivalent to a degree 1 Cartier divisor Z ⊂ XR,A together with a map Z → XΓ, which
corresponds to an elliptic curve EZ → Z.

In general in this situation where we have an abstract family of twistor P1’s (here XR,A)
together with a degree 1 divisor and an object over it, we can construct a version of prismatic
cohomology, via the analytic prismatization. This is still in progress in general, though I
would like to understand more, but we explain the construction only in the relevant case:

(EZ/XR,A)
∆ is a stack over XR,A, defined as follows.

For a test object AnSpecB → XR,A, we define an analytic stack X ′
R,B which is de-

fined exactly as XR,B except that the fixed point AnSpecCont(S(B),C) → XR ×AnSpecR
AnSpecCont(S(B),C) is via the product of AnSpecCont(S(B),C) → AnSpecB → XR,A →
XR with the identity, rather than via the point at infinity. Similarly to the usual twistor P1

in families, this can be understood via a universal property: it is the initial family of twistor
P1’s whose fiber at this point admits a map from AnSpecB. In particular it follows that the
map AnSpecB → XR,A factors through X ′

R,B.

Now we can define (EZ/XR,A)
∆ over XR,A to be the stack sending AnSpecB → XR,A to

the anima of maps
X ′

R,B ×XR,A Z → EZ

over Z, which we can think of as sections of the universal elliptic curve over Z after pullback
to X ′

R,B; a priori this is over XC,A but one can check that it descends. If we base change
along the canonical map AnSpecA → XR,A, i.e. we require that AnSpecB → XR,A factors
through AnSpecA at the point at infinity, then this is classifying degree 1 divisors Z ⊂ XR,A
factoring through AnSpecA together with maps Z → XΓ (corresponding to the elliptic
curve EZ → Z) together with a section of the elliptic curve, which is to say a map Z → EΓ
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2 THE MODULAR CURVE

factoring Z → XΓ. Thus we have a Cartesian diagram

E♢
Γ ×X♢

Γ
AnSpecA AnSpecA

(EZ/XR,A)
∆ XR,A

.

We claim that the first relative cohomology of the bottom map (EZ/XR,A)
∆ → XR,A is

a rank 2 vector bundle on XR,A which is locally isomorphic to O(1/2), so that varying A
and the A-point of X♢

Γ we get a map X♢
Γ → Bunb

GL2
≃ ∗/H×,la. This corresponds to the

same H×,la-torsor as V ; we’ll justify this a little more below. Then by the above Cartesian
diagram, as A varies the relative cohomology of the bottom map is given by that of the top
map, which is R1f♢

Γ,∗O as desired.
To complete the proof, we want to study this prismatic cohomology. Given AnSpecA →

X♢
Γ corresponding to Z and EZ as above, given AnSpecB → XR,A we saw that it factors

through X ′
R,B → XR,A, along which we can pull back Z. Translating the Cont(S(B),C)-

point to infinity (which introduces an ambiguity of the stabilizer group O(2)Betti), this gives
a degree 1 divisor AnSpecB → Div1 /O(2)Betti; in fact since the resulting divisor maps to Z,
this lifts to AnSpecB → Z♢/O(2)Betti. Letting B vary, we get a map XR,A → Z♢/O(2)Betti.
On the other hand we have a natural map E♢

Z /O(2)Betti → Z♢/O(2)Betti, and taking the
fiber product we get a stack sending B to maps from the pullback of Z to X ′

R,B to EZ , which

is precisely the definition of (EZ/XR,A)
∆, i.e. we have a Cartesian diagram

(EZ/XR,A)
∆ XR,A

E♢
Z /O(2)Betti Z♢/O(2)Betti

.

Therefore it suffices to understand the relative cohomology of the bottom map. We can view
this as the Galois descent of E♢

Z /U(1)Betti → Z♢/U(1)Betti, and we recall that Y ♢/U(1)Betti

classifies variations of Hodge structures on Y , so this is the variation of real Hodge structures
cohomology; in particular the first cohomology is a rank 2 vector bundle with determinant
the Tate twist in degree 1, and so must be locally O(1/2).

We can understand the H×,la-torsor on X♢
Γ as via the diagram

X♢
Γ FlH

×,♢
µ /H×,la Div1× ∗ /H×,la Div1×BunGL2

∗/Γ ∗/GL2(R)la BunGL2

s

r

t

u id×ib

a i1

where the rectangle is Cartesian and FlH
×,♢

µ /H×,la ≃ M/(GL2(R)la ×H×,la) can be thought
of as the piece of the Hecke stack after quotienting by the relevant automorphism groups, so
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2 THE MODULAR CURVE

parametrizing modifications E ↪→ E ′ where E is isomorphic to O2 and E ′ to O(1/2) but with-
out requiring the data of these isomorphisms, and the maps to BunGL2 and Div1×BunGL2

are the resulting Hecke correspondence. In particular the canonical H×,la-torsor FlH
×,♢

µ over

FlH
×,♢

µ /H×,la pulls back to (M/GL2(R)la) ×∗/GL2(R)la ∗/Γ ≃ Γ\M = X̃♢
Γ . This Cartesian

diagram is the archimedean analogue of Zhang’s (in general conjectural) Cartesian diagram

Sh♢
Kp Grµ

IgsKp BunG

,

which I hope to elaborate on next time.
In particular, the fact that the diagram commutes implies that the map X♢

Γ → ∗/H×,la

which we constructed over the course of the proof corresponds to the torsor arising as the
pullback of the torsor FlH

×,♢
µ → FlH

×,♢
µ /H×,la, equivalently a modification of the GL2(R)la-

torsor corresponding to X♢
Γ → ∗/Γ → ∗/GL2(R)la parametrized by the flag variety, which

is to say M/GL2(R)la. Its pullback to X♢
Γ is therefore just Γ\M = X̃Γ, the torsor corre-

sponding to V above.
The Cartesian diagram also implies a version of Matsushima’s formula relating the coho-

mology of XΓ to automorphic forms. Let πΓ = a!(1), which we think of as a version of the
space of cusp forms of level Γ. We write p : Div1×BunGL2 → Div1 for the projection, and
q : XΓ → ∗ for the structure map so that we have the induced map q♢ : X♢

Γ → Div1. For
each algebraic representation ρ of GL2, pulling back along the canonical map

X♢
Γ → ∗/GL2

as above we get a vector bundle Vρ on X♢
Γ ; since the above map factors through ∗/H×,la

we also get a locally analytic representation of H×, which by an abuse of notation we also
denote by ρ.

Taking the relative cohomology

RΓc(X
♢
Γ , Vρ) := q♢! Vρ

gives an object of D(Div1). On the other hand, the Hecke correspondence Tµ : D(BunGL2) →
D(Div1×BunGL2) lets us send the object πΓ ofD(∗/GL2(R)la), after embedding intoD(BunGL2),
to an object of D(Div1×BunGL2). Via the diagram above, we can view this as

Tµ(πΓ) = (id×ib)!u!t
∗i1!a!(1).

By proper base change along the Cartesian square,

t∗i1!a!(1) ≃ r!s
∗(1) ≃ r!(1)

so this is the !-pushforward along the composite map X♢
Γ → Div1×BunG. To get something

just on Div1, we’ll take the pushforward along p.
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3 JACQUET–LANGLANDS/LOCAL LANGLANDS

We were previously interested in the cohomology just of Vρ, so this pushforward is not
quite right: we modify it by taking the “ρ∨-isotypic piece,” i.e.

p!(Tµ(πΓ)⊗ (1⊠ ib!ρ)) ≃ p!((1⊠ ib!ρ)⊗ (id×ib)!u!r!1)

≃ p!(id×ib)!((1⊠ ρ)⊗ u!r!1)

≃ p!(id×ib)!u!r!(r
∗u∗(1⊠ ρ))

≃ q♢! Vρ.

Abbreviating the left-hand side, we arrive at the following theorem:

Theorem 3. There is an isomorphism

RΓc(X
♢
Γ , Vρ) ≃ p!(Tµ(πΓ)⊗ ρ)

in D(Div1).

3. Jacquet–Langlands/local Langlands

Classically, the main reason to care about the Lubin–Tate or Drinfeld towers is that they give
spaces with compatible actions of the Weil group of Qp and of GL2(Qp) or the quaternion
group D×, which in some sense realizes the local Langlands correspondence in a way similar
to how the cohomology of modular curves realizes the global Langlands correspondence for
GL2. From this point of view, the isomorphism of the Lubin–Tate and Drinfeld towers can
be viewed as a statement about the relationship between local Langlands for GL2(Qp) and
for D×. Explicitly, if π is a suitable irreducible representation of GL2(Qp) over Qℓ, via the
GL2(Qp)-torsor

MLT,∞ → P1
Cp

we can construct a sheaf Fπ on P1
Cp

whose stalks are π, which is equipped with D×-

equivariance and a Weil descent datum giving actions of WQp × D× on H∗(P1
Cp
,Fπ). (Ex-

plicitly, Fπ is the pullback of π, viewed as a vector bundle on ∗/GL2(Qp), along the map
P1
Cp

→ ∗/GL2(Qp) corresponding to the torsor MLT,∞.)
On the other hand, associated to π we have the Jacquet–Langlands correspondence JL(π),

an irreducible D×-representation, and the local Langlands correspondence LLC(π), a two-
dimensional WQp-representation. A theorem of Deligne states that together these give the
above construction, up to a Tate twist:

Theorem 4. If π is a discrete series irreducible representation of GL2(Qp), then H∗(P1
Cp
,Fπ)

is concentrated in degree 1, where it is isomorphic to JL(π)⊗ LLC(π)(−1/2).

Our goal is to develop and prove a real analogue of this result, giving a cohomological
realization of the local Langlands and Jacquet–Langlands correspondences.

In fact, one can show an analogous result for GLn in place of GL2. However for our real
analogue we will need to restrict to groups with Shimura varieties, so we restrict ourselves
to GL2.

Using the machinery of the previous sections, it is not hard to see how to adapt the
setup to the archimedean place: the GL2(Qp)-torsor MLT,∞ → P1

Cp
is replaced with the
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4 INFINITESIMAL CHARACTER

GL2(R)la-torsor M → FlH
×,♢

µ . Via the isomorphism of the two towers we have a composite
projection

FlH
×,♢

µ /H×,la ≃ (Flµ \Flµ(R))♢/GL2(R)la → ∗/GL2(R)la

so that any GL2(R)la-representation π pulls back to a sheaf Fπ on FlH
×,♢

µ /H×,la, or equiv-

alently to a H×-equivariant sheaf which we again denote by Fπ on FlH
×,♢

µ , with stalks iso-
morphic to π. In our diagram above, we could think of this as

Fπ = t∗i1!π.

Now recall we have the projection

u : FlH
×,♢

µ /H×,la → Div1× ∗ /H×,la,

which is cohomologically smooth and proper. We are interested in

Ru∗Fπ ∈ D(Div1× ∗ /H×,la).

Via our interpretation of Fπ as a pullback, this is essentially the simplest Hecke operator Tµ

applied to π, after restricting to the ∗/GL2(R)la- and ∗/H×,la-loci in BunGL2 . We define this
operation to be the Jacquet–Langlands/local Langlands functor

π 7→ JLL(π) = Ru∗Fπ.

This is our version of the assignment

π 7→ H∗(P1
Cp
,Fπ)

in the p-adic case; here we explicitly retain the quaternion algebra action and the Weil group
action (via Div1).

Theorem 5. If π is a discrete series irreducible representation of GL2(R), then

JLL(π) ≃ JL(π)⊗ LLC(π)[−1](−1/2).

Here LLC(π) is a rank 2 vector bundle on Div1 corresponding to the L-parameter of π,
JL(π) is an irreducible finite-dimensional H×-representation, and the twist (−1/2) denotes
a positive square root of the norm character | · | on WR.

We can think of this theorem as giving a cohomological realization of the local Langlands
correspondence for GL2 on the archimedean Lubin–Tate tower, analogous to the p-adic case;
more generally a similar construction should be possible for any group admitting a Shimura
variety. The main goal of the rest of today’s talk will be to prove Theorem 5.

4. Infinitesimal character

Similar to how we approached Beilinson–Bernstein localization, we first note that each of
D(∗/GL2(R)la) and D(∗/H×,la) is naturally linear over the Harish–Chandra center U(h)W

where h ⊂ gl2 is the Cartan subalgebra. The first question is then whether the functor JLL
preserves this action, i.e. preserves infinitesimal characters. We claim the answer is yes:

7



4 INFINITESIMAL CHARACTER

Proposition 6. The functor JLL is naturally U(h)W -linear.

The most difficult part is when the modification in the Hecke operator occurs at ∞.
Away from ∞, we can make a more general statement:

Proposition 7. For any reductive real group G with Cartan algebra h, the category D(BunG)
is naturally linear over U(h)W , and away from ∞ the Hecke operators

Tµ|Div1 \{∞} : D(BunG) → D(BunG×Div1)

are naturally U(h)W -linear.

Proof. Recall that we have a Cartesian diagram

BunG (BunG)Betti

∗/Gan
C ∗/G(C)Betti

so in particular BunG descends along the map ∗/Gan
C → ∗/G(C)Betti, and away from ∞ the

Hecke operators descend as well. Thus it suffices to prove the lemma below.

Lemma 8. For any analytic stack X → ∗/G(C)Betti, let X̃ = X×∗/G(C)Betti
∗/Gan

C . Then the

category D(̃) is naturally U(h)W -linear, compatibly with all operations.

Here “operations” should I think be understood as integral transforms against some kernel
along self-correspondences. In particular in the case of the proposition we have compatibility
with the Hecke operators.

Proof. Via the correspondence

X ×∗/G(C)Betti
∗/Gan

C ×∗/G(C)Betti
∗/Gan

C

X ×∗/G(C)Betti
∗/Gan

C X ×∗/G(C)Betti
∗/Gan

C

using the two possible projections, we get an action of D(∗/Gan
C ×∗/G(C)Betti

∗/Gan
C ) on D(X̃)

by kernels, compatibly with all operations. The kernel sheaf ∆!1 acts as the identity for

∆ : ∗/Gan
C → ∗/Gan

C ×∗/G(C)Betti
∗/Gan

C

the diagonal, so D(X̃) is End(∆!1)-linear as desired. But the infinitesimal character gives
an action of U(h)W on ∆!1, so the composition is the desired action.

Proof of Proposition 6. The idea is to spread out the linearity over Div1 \{∞} from Propo-
sition 7 to all of Div1.
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4 INFINITESIMAL CHARACTER

Consider the correspondence

FlH
×,♢

µ /H×,la

∗/GL2(R)la Div1× ∗ /H×,la

t′
u

where t′ is via the isomorphism of the two towers as above. We have JLL(π) = Ru∗t
′∗π. We

could also however view JLL as the integral transform along

∗/GL2(R)la ×Div1× ∗ /H×,la

∗/GL2(R)la Div1× ∗ /H×,la

pr1

pr2

with respect to the kernel K = (t′ × u)!1, as

R pr2∗(K ⊗ pr∗1 π) = R pr2∗((t
′ × u)!1⊗ pr∗1 π) ≃ R pr2∗(t

′ × u)!(t
′ × u)∗ pr∗1 π ≃ Ru∗t

′∗π.

Via the contributions of each classifying stack we get two U(h)W -actions on K, and the
U(h)W -linearity of the integral transform against K is then the identification of these two
actions.

Recall that for a maximal compact subgroup K ⊂ G, the inclusion

∗/(K la ⊂ Gla)† → ∗/Gla

classifies the realization of locally analytic representations as (analytic) (g, K)-modules.
Since the U(h)W -actions depend only on the Lie algebra actions, we can study the actions
on K after pullback to

∗/(K la ⊂ GL2(R)la)† ×Div1× ∗ /(K la
H ⊂ H×,la)†

where K ⊂ GL2(R) and KH ⊂ H× are maximal compact subgroups. By analytic Riemann–
Hilbert and base change along the resulting Cartesian diagram

M(C)/K ×KH FlH
×,♢

µ /H×,la

∗/(K la ⊂ GL2(R)la)† ×Div1× ∗ /(K la
H ⊂ H×,la)† ∗/GL2(R)la ×Div1× ∗ /H×,la

we can understand this pullback as the relative compactly supported cohomology of a sheaf
on M(C)/K ×KH. Thus we want to show that for any K ×KH-invariant compact subsets
Z ⊂ M(C), the ∗-pushforward of (the restriction of) this sheaf along

(Z ⊂ M)†/(K la ⊂ GL2(R)la)†×(K la
H ⊂ H×,la)† → ∗/(K la ⊂ GL2(R)la)†×Div1×∗/(K la

H ⊂ H×,la)†

the two U(h)W -actions agree.
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5 PROOF VIA LOCAL-GLOBAL COMPATIBILITY

Since this is the pushforward of a quasicoherent sheaf along the inclusion of a compact
subset, it is concentrated in degree 0, and since it is a continuous condition it can be checked
on the dense open subset

∗/(K la ⊂ GL2(R)la)† × (Div1 \{∞})× ∗/(K la
H ⊂ H×,la)†.

But here it follows from Proposition 7.

5. Proof via local-global compatibility

We can now give a proof of Theorem 5 via local-global compatibility. Assume for simplicity
that π has trivial central character; otherwise we can fix a central character and make
essentially the same argument. Let Vλ be the finite-dimensional representation of GL2 with
highest weight λ with the same infinitesimal character as π; by Proposition 6, JLL(π) also
has the infinitesimal character of Vλ. One can check in general that Hecke operators preserve
central characters, so JLL(π) has trivial central character and so descends to the compact
group (H×/R×)la. Since it is compact, the representations of H×/R× with infinitesimal
character λ are generated by Vλ viewed (as above) as a representation of (H×/R×)la, so it
suffices to compute the Vλ-isotypic component of JLL(π) as an object of D(∗/(H×/R×)la ×
Div1).

The idea is then to globalize π and use Theorem 3. Let D/Q be a quaternion algebra
split at ∞, and set G = D×/Gm with Γ ⊂ G(Q) ⊂ PGL2(R) a congruence subgroup. We
write πΓ = Cω(PGL2(R)/Γ) for the space of real-analytic automorphic forms of level Γ,
and πΓ,λ its localization at infinitesimal character λ. Since this is over the bounded part of
Z(U(g)) ≃ U(h)W , we can equivalently view it as an admissible (pgl2, K)-module, which (for
suitable Γ) contains (the (pgl2, K)-module corresponding to) π, so we can find some global
cuspidal automorphic representation with multiplicity 1 and component at infinity given by
π.

Let
XΓ = Γ\(Flµ \Flµ(R)),

which is defined over R. The relative cohomology RΓc(X
♢
Γ , Vλ) is isomorphic by Theorem

3, in our more recent language, to the Vλ-isotypic component of JLL(πΓ), i.e. JLL(πΓ,λ),
compatibly with Hecke operators. After taking Hecke eigenspaces, this gives an isomorphism
between JLL(π) and the corresponding eigenspace in RΓc(X

♢
Γ , Vλ).

On the other hand, Vλ is a vector bundle on X♢
Γ , which we know we can think of as a

“variation of ♢-structures,” some generalization of a variation of Hodge structures, and so
so is its cohomology in each degree; one can compute that the Hecke eigenspace (cutting out
the LLC(π)-component) has dimension 2 and write down the Hodge numbers, so the only re-
maining thing is to identify the character of the cohomology in degree 1 with LLC(π)(−1/2).
For π a discrete series, its L-parameter as a rank 2 representation of WR is explicit, and so
the claim follows from the following lemma.

Lemma 9. Let V be a rank 2 vector bundle on Div1 whose restriction to Div1C has trivial
monodromy and corresponds to a C-Hodge structure of type ((p1, q1), (p2, q2)) with p1 ̸= q1.
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6 LOCAL PROOF

Then p2 = q1 and p1 = q2, the vector bundle V is irreducible, and is given as the pullback
along

Div1 → ∗/W la
R

of the locally analytic WR-representation

IndWR
C× (z 7→ zp1zq1).

Proof. The conditions on V together with our previous descriptions of vector bundles on Div1

and Div1C ensure that V must be the pushforward of the line bundle on Div1C corresponding
to the C-Hodge structure of type (p1, q1), from which the rest of the description follows.

6. Local proof

The above proof is not totally satisfying, in that most of the theory as well as the statement
of Theorem 5 is purely local but the proof is not. We sketch a purely local proof.

The functor JLL is a composite of a cohomologically smooth proper pushforward and a
cohomologically smooth pullback, and hence has good formal properties; in particular one
can write down its left adjoint

D(∗/H×,la) → D(∗/GL2(R)la ×Div1)

(shifting the Div1 around) via pull-push along essentially the same correspondence, up to
shift and twist, again using the isomorphism of the two towers. For example the trivial
representation of H×,la corresponds to the !-pushforward of the structure sheaf along

(Flµ \Flµ(R))♢ → Div1

with the residual GL2(R)la-action. Away from ∞, this is the compactly supported coho-
mology of Flµ \Flµ(R) ≃ H±, which by Poincaré duality is a 2-dimensional vector space
concentrated in degree 2, with the natural action of GL2(R); at ∞, it is the compactly
supported Hodge cohomology. By analytic Beilinson–Bernstein (and the Matsuki correspon-
dence and its consequences), RΓc(Flµ \Flµ(R),O) is given by the discrete series representa-
tion π with trivial infinitesimal character, while RΓc(Flµ \Flµ(R),Ω1) contains (via the map
∇ : O → Ω1) the discrete series π as a subrepresentation, with cokernel the two-dimensional
representation described above. We can perform similar calculations for other representa-
tions ρ of H×; as in the previous section it suffices to describe the ρ-isotypic components.

One can see in this way that JLL(π) is the tensor product of some ρ (understood as JL(π))
with a rank 2 vector bundle on Div1, which we want to identify with LLC(π). As with Lemma
9, it suffices to understand it after pullback to Div1C, where it amounts to understanding the
C×-action; a suitable description should follow from unraveling the computations.
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