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1. !-descent

The goal of this talk is to define (and say something about) a geometric category of analytic
stacks, in which we can do a version of analytic geometry subsuming and extending algebraic
geometry but with application to “analytic” situations, e.g. formal schemes, adic spaces, or
archimedean/nonarchimedean analytic geometry.

Just as in classical algebraic geometry, our stacks should be some sort of sheaves on
the opposite category of analytic rings (which we discussed last time). The first and most
important question is: which Grothendieck topology should we put on AnRingop? This
should be some topology allowing us to glue together the affine objects AnSpecA to global
ones in a way compatible with the various special cases that analytic stacks are supposed to
subsume, going back to topological spaces as (light) condensed sets.

One very natural desideratum is that we should have the following structure sheaf: if
A = (A▷,D(A)) is an analytic ring, we have a natural assignment A 7→ D(A). We would
like this to form a sheaf of ∞-categories for our topology, i.e. we should get an ∞-category
D(X) for any analytic stack X by descent. Further X 7→ D(X) should underlie a six functor
formalism, which most simply are pairs of adjoint functors ⊗, RHom, −∗, −∗, and (in certain
cases) −!, −! satisfying various compatibilities, e.g. base change and a projection formula.

To give a little more detail about what “certain cases” means, recall how !-functors are
usually defined, say on (derived) étale sheaves. We first assume we have a “four-functor
formalism,” i.e. a symmetric monoidal structure and internal Homs together with a base
change functor −∗ and its right adjoint −∗. Consider a map f : X → Y . There are two
relevant special cases: if f is proper, then the right adjoint f∗ has a further right adjoint f !;
and if f is an open immersion, f ∗ has a further left adjoint f!. (In fact, this is true for all f
smooth, but in general it will be a different functor from the one we’re looking for.) In the
first case, we let f! = f∗, the left adjoint of f

!; in the second we let f ! = f ∗, the right adjoint
of f!, so that in both cases we have an adjoint pair (f!, f

!).
More generally, we can try to define f! for any map f which can be written as a com-

posite of open immersions and proper maps. A particularly natural way is via (relative)
compactifications: if f factors as

X
j−→ X

f−→ Y

with j an open immersion and f proper, then we set f! = f ∗j!. A priori this depends on the
choice of compactification, but one can generally show that the result is independent of it.

However, one should not expect all maps to be able to be written in this form—for one
thing open immersions and proper maps are both separable, so f must be separable as well;
it should also have finite type. More abstractly, one could say following Scholze that it
should be “compactifiable”; more abstractly yet, one can notice that this really just requires
isolating two classes of maps I and P (in our case above open immersions and proper maps)
such that for f ∈ I the pullback f ∗ has a left adjoint f! and for f ∈ P the pushforward f∗
has a right adjoint f !, and then using these to define (f!, f

!) for maps which can be written
as a composite of these. Using the formalism of Lucas Mann (refining Liu–Zheng), one can
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verify that this gives a well-defined pair of adjoint functors (f!, f
!) fitting into a six functor

formalism (so e.g. satisfying base change and a projection formula).
So in our case, we would like to have some notion of what open immersions and proper

maps should be. These will both be notably different from the usual geometric notions;
instead we will take the cohomological desiderata and try to directly define classes of maps
(between affine analytic stacks) with these properties, which will not always align with the
classical versions.

One property that proper maps should have is that they should satisfy a projection
formula on ∗-pushforward: f∗(F ⊗ f ∗G) ≃ f∗F ⊗G. Given a full six functor formalism, this
is because this should be true in general for !-pushforward, and for f proper we have f! = f∗.
However we can also take it as a definition of sorts: for f a map of (affine) analytic stacks,
we say that it is proper if it satisfies f∗(F ⊗ f ∗G) ≃ f∗F ⊗ G naturally in F and G.

This is, by design, significantly weaker than the usual notion of properness, as we’ll see
shortly: maps of affine schemes are proper only if they’re finite, and we want more general
maps for our cohomological properness.

For any f : AnSpecB → AnSpecA corresponding to a map of analytic rings A→ B, the
map of underlying condensed rings A▷ → B▷ together with the analytic ring structure on A
gives a map to the induced analytic ring structure A → BA/ factoring A → B. We claim
that f is proper if and only if the induced BA/ → B is an isomorphism, i.e. if B has the
induced analytic ring structure.

Before we look at the proof, we observe that this already gives a much larger class of
proper maps than we would have naively: for discrete rings, if we equipped them with the
trivial analytic ring structure than for any map of discrete rings A→ B the trivial analytic
structure on B is induced from that on A and so every map of affine schemes, viewed in this
way as affine analytic stacks, is proper! However this notion of properness does agree with
that of Huber for adic spaces.

To prove the claim, let M ∈ D(A), N ∈ D(B); we want to know whether f∗(f
∗M ⊗B N)

is the same thing as M ⊗A f∗N , i.e. whether (M ⊗A B) ⊗B N , viewed as an A-module by
restriction, is the same thing as M ⊗A N |A. If B has the induced analytic ring structure,
then we can view the tensor product as the one in D(A), and so this is formal. Conversely,
assume it holds, and take N = B▷, so tensoring with it over B is the identity; then this is
the statement that M⊗AB ≃M⊗AB

▷ for any M ∈ D(A), and therefore B has the induced
analytic ring structure: taking M = A▷ gives A▷ ⊗A B ≃ A▷ ⊗A B▷ which in the category of
analytic rings gives B ≃ BA/. In particular, the class of proper maps is stable under base
change, and there is a proper base change formula.

Consider for example AnSpec(Z[T ],Z)□ → AnSpecZ□. A priori, this is the Z-solid affine
line and so we would not expect it to be proper in the classical sense; but in our sense it will
be, since (Z[T ],Z)□ has the analytic ring structure induced from Z□.

Similarly, we’ll define open immersions to be maps j : AnSpecB → AnSpecA such that
j∗ admits a left adjoint j! satisfying a projection formula j!(F ⊗ j∗G) ≃ j!F ⊗G naturally in
F and G. Notably open immersions in algebraic geometry are not open immersions in this
sense, unless they are also closed immersions (they have the right cohomological properties
on e.g. étale sheaves but not quasi-coherent sheaves). Again however in adic geometry the
definitions are compatible: e.g. Gm → A1 in the algebraic setting is not an open immersion
in our sense, but AnSpecZ[T±1]□ → AnSpecZ[T ]□ is an example. A slightly more subtle
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example is j : AnSpecZ[T ]□ → AnSpec(Z[T ],Z)□ is an open immersion. Indeed, for M ∈
D((Z[T ],Z)□), j∗j∗M is its Z[T ]□-solidification, which is RHomZ[T ]([Z[T ] → Z((T ))],M).
The left adjoint should satisfy Hom(j!j

∗M,N) = Hom(j∗M, j∗N) = Hom(M, j∗j
∗N) and

so by tensor-hom adjunction should be M ⊗L
(Z[T ],Z)□ [Z[T ] → Z((T ))], compatibly with the

projection formula j!j
∗M ≃ j!O ⊗M , with j!O = [Z[T ] → Z((T ))]. We think of this as

“compactly supported” regular functions in the sense of vanishing near ∞. In general, we
again get a class of open immersions stable under base change.

We can plug these classes into the Mann–Liu–Zheng machinery to produce a class of
!-able maps which can be written as composites of these proper maps and open immersions,
checking some basic compatibilities. By construction these satisfy a projection formula and
base change (extending proper base change). For example, AnSpecZ[T ]□ → AnSpecZ□ is
neither an open immersion nor proper; however via our examples above we can factor it as

AnSpecZ[T ]□ → AnSpec(Z[T ],Z)□ → AnSpecZ□

with the first map an open immersion and the second map proper; this is a version in this
setting of compactification.

Returning to the question of the choice of Grothendieck topology, the idea is that the
covers should be maps that satisfy ∗-universal descent and !-universal descent. What does
this mean? For ? ∈ {∗, !}, a map f : Y → X satisfies ?-descent if the resulting map

D(X)
f?

−→ lim
∆

(
D(Y ) D(Y ×X Y ) · · ·

p?1

p?2

)

is an isomorphism, and satisfies ?-universal descent if the same holds after any base change.
This seems like a lot to ask for; fortunately we have to check much less. It turns out

that if f satisfies !-descent, then it satisfies universal ∗- and !-descent, and so it suffices to
take covers to be !-able maps satisfying !-descent (and finite disjoint unions thereof). This
includes for example all countably presentable faithfully flat maps and quotients by nilpotent
ideals; more surprisingly it includes all h-covers (i.e. universally submersive maps, including
fppf covers and proper maps of finite presentation which are isomorphisms away from a
closed substack), and restricted to Noetherian schemes this is equivalent to the h-topology.

The goal of having this powerful topology is to compare different constructions which we
expect to recover the same analytic stack; we’ll see some examples later. This is essentially
the strongest topology on which we’ll have this kind of descent.

2. Analytic stacks

An analytic stack is then a(n accessible) functor X : AnRing → Anima commuting with
finite products such that for any hypercover AnSpec(A•)→ AnSpec(A) for which

D(A) ≃ lim!D(A•)

we have
X(A) ≃ limX(A•),
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where lim! denotes the limit of the simplicial diagram as above induced by !-pullbacks. This
should be thought of as establishing an ∞-topos between !-sheaves (where the condition is
automatic) and !-hypersheaves (where we would not require it); we’ll come back to why this
is a good choice later. A simple example is analytic rings by the Yoneda embedding, with
AnSpec(A) sending B 7→ Hom(A,B). Small colimits of affine analytic stacks likewise give
(accessible) analytic stacks.

Restricting to discrete rings (via equipping them with the trivial analytic structure)
generates a fully faithful functor from schemes, and in fact derived schemes, to analytic
stacks. (The full faithfulness of this functor is nontrivial to prove, and uses Bhatt’s Tannaka
duality, an identification

Hom(X, Y ) ≃ Funex
⊗ (Dperf(Y ), Dperf(X)) ≃ Funcocont

⊗ (D(Y ), D(X))

for X and Y algebraic spaces with Y qcqs.)
Another example is given by adic spaces: for a Huber pair (A,A+), one can define an

analytic ring (A,A+)□, for which roughly the complete modules are the A-modules which are
A+

□-complete. Thus each sheafy affine adic space Spa(A,A+) gives an affine analytic stack
AnSpec(A,A+)□, and by descent we get a functor from adic spaces to analytic stacks.

Note that there are two functors from schemes to adic spaces, given on affine schemes by
SpecR 7→ Spa(R,R) and SpecR 7→ Spa(R,Z), which give different results under passing to
analytic stacks.

This actually gives us three functors from schemes to analytic stacks: one with trivial
analytic structure SpecR 7→ AnSpecR, one with the analytic ring structure induced from the
solid structure on Z, SpecR 7→ AnSpec(R,Z)□, and one with the solid structure SpecR 7→
AnSpec(R,R)□. All give fully faithful embeddings, so we need to distinguish between these
various incarnations of schemes in the analytic world. The relative solid structure over Z
can be viewed as base change −×AnSpecZAnSpecZ□. More generally, this construction gives
for any analytic ring A a base change functor from derived schemes over A▷(∗) to analytic
stacks over A.

Another especially relevant case for us is complex analytic spaces, which can be incarnated
as analytic stacks over Cgas, the gaseous structure on C. We think of the affine pieces as
compact Stein subspaces and the structure sheaf as the sheaf of overconvergent functions, i.e.
with values on a disk D given by the colimit of holomorphic functions on strictly larger disks.
This gives a “dual nuclear Frechet” space (and C-algebra), which is formally a gaseous C-
algebra; this then gives an analytic stack locally over Cgas, and globally by gluing. A similar
story works for real manifolds, including on smooth/k-differentiable/continuous functions
with more care, recovering real or complex manifolds of the appropriate type.

A different sort of specialization is to condensed sets, or let’s say (light) condensed anima.
In fact this already exists on usual stacks: send a profinite set S to SpecCont(S,Z), which
for S finite is just finitely many disjoint copies of SpecZ and so in general is a limit of such
things. Then we can map back into analytic stacks: S 7→ AnSpecCont(S,Z).

Now we can justify our choice of this intermediate ∞-topos between sheaves and hyper-
sheaves: (light) condensed anima are by definition hypersheaves of anima on light profinite
sets for the standard Grothendieck topology, so for this functor any hypercover of light
profinite sets should be mapped to something for which we enforce descent. It definitely
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is mapped to a hypercover; the extra condition that we impose is just that descent in fact
holds. (The lightness condition here is necessary to ensure that a surjection S ′ ↠ S induces
a countably presentable faithfully flat map Cont(S,Z)→ Cont(S ′,Z).)

Just as there are multiple embeddings of schemes into analytic stacks, we likewise have
multiple ways of embedding (say topological) manifolds. One is, as above, to look at the
algebra of continuous functions, treat it as an analytic ring, and take its spectrum (and
glue); the other would be to just view the manifold as a topological space and take its
condensification, and then embed the resulting condensed set. This gives something different,
which is actually defined over Z. There is however a map between the two. Consider the
example of the sphere S2 as a topological manifold. This gives an (gaseous) analytic space,
in this case just AnSpecCont(S2,C)gas (working with complex coefficients here).

On the other hand, we could take S2 viewed as a real-analytic manifold, still over Cgas,
given by AnSpecCω(S2,C)gas, where Cω denotes real-analytic functions.

Going further, we could view S2 as a complex-analytic space, where in fact it is isomor-
phic to the projective line P1

Cgas
. This is no longer affine: it is glued from two copies of

AnSpecO(D)†, the spectrum of overconvergent functions on a disk.
Even further, we could take the algebraic P1

Cgas
, i.e. the image of the schematic P1 over

Cgas, viewed as glued from two copies of AnSpecC[T ]gas.
Finally, we could take S2 as a topological space and thence as a condensed set, and base

change to Cgas. Here we take locally constant functions, which don’t exist naively but do
after profinite covers. The inclusions of locally constant functions into regular functions
into overconvergent functions into (restrictions of) real-analytic functions into continuous
functions gives a series of maps

(S2)top man
Cgas

→ (S2)R -an
Cgas
→ (S2)C -an

Cgas
= (P1

C)
an
Cgas
→ (P1

C)
sch
Cgas
→ (S2)condCgas

.

A version of GAGA says that the third map is an isomorphism of analytic stacks! We will
often use this sort of GAGA statement to pass between algebraic and analytic incarnations
of complex-analytic objects.

More generally, if X is a locally compact Hausdorff space with finite dimension and A is
an analytic ring, there is an isomorphism

D(Xcond × AnSpecA) ≃ Sh(X,D(A)).

This is one of the key properties of the Betti stack; let’s say something more about it before
we try to prove the above equivalence.

Given X as above, say compact, we can find a profinite set T0 surjecting onto X. This
gives a simplicial diagram

X ← T0 T1 · · ·

inducing a similar diagram on SpecCont(Ti,Z); we write XBetti for the colimit

XBetti ← SpecCont(T0,Z) SpecCont(T1,Z) · · · .

The key fact about the Betti stack is a special case of the above: the quasi-coherent sheaves
on XBetti = Xcond are sheaves of abelian groups on X.
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We can also ask what the functor of points description of XBetti should be. We claim
that for an analytic ring R, maps AnSpecR → XBetti should be equivalent to symmetric
monoidal colimit-preserving D(Z)-linear functors F : Sh(X,D(Z)) → D(R) such that !-
locally the image of any connective object is connective.

The first claim above, D(XBetti × AnSpecR) ≃ Sh(X,D(R)), is now relatively straight-
forward given the strength of !-descent. Consider first the case where X is a point. Then
XBetti ≃ SpecZ and so this is just the identity D(AnSpecR) = Sh(∗,D(R)) = D(R), which
is true essentially by definition. Since everything is compatible with finite disjoint unions,
we get the result for X finite as well; and by descent along light profinite covers we get it
for light profinite sets as well.

Finally, forX arbitrary with a simplicial profinite cover T• → X as above, we get a !-cover
SpecCont(T•,Z) = TBetti

• , which we know satisfies D(TBetti
• × AnSpecR) ≃ Sh(T•,D(R)).

Thus we can descend both sides to get the desired statement.
Given this description, one direction of the statement about the functor of points is now

easy: given a map AnSpecR→ XBetti, we get a pullback functorD(XBetti) ≃ Sh(X,D(Z))→
D(R), which one can check has the desired properties. To go the other direction, take a
hypercover T• → X; this induces a simplicial complex of the pushforwards along πi : Ti → X
of the constant sheaves

Z→ π0∗Z π1∗Z · · ·

on X, which is the co-Čech nerve of Z → π0∗Z. Applying F gives an F (Z) = R▷-algebra
F (π0∗Z), and equipping it with the induced analytic structure from R gives an analytic R-
algebra R′, whose co-Čech nerve maps (after taking AnSpec) to that of SpecCont(T0,Z)→
XBetti. One can show that R → R′ is a !-cover (in fact proper, though this takes some
nontrivial work) and so this induces a map AnSpecR→ XBetti as desired.

A particularly important example of an analytic stack that we’ll see in the rest of the
course is the classifying stack of a (real) Lie group: for a Lie group G, i.e. a group object
in real-analytic manifolds, we let Gla denote the corresponding group object in analytic
stacks via realizing G as a real-analytic manifold as for S2 above. Then we can look at
∗/Gla = AnSpec(Rgas)/G

la. The quotient map f : ∗ → ∗/Gla induces two maps f ∗, f ! :
D(∗/Gla) → D(∗) = D(Rgas), which both have image in G-equivariant objects, i.e. gaseous
G-representations. These correspond to the maximal and minimal globalizations, which we’ll
discuss more in a couple of weeks.
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