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Our goal for this talk is to introduce the twistor P1, and argue that this is a good analogue
at the archimedean place of the Fargues–Fontaine curve at p. Several key desiderata for
such an analogue with respect to geometrizing the local Langlands correspondence will be
discussed in future lectures, e.g. the Weil group action, L-parameters, and twistor and Hodge
structures, but we can study some first properties which we’ll see agree with what we’d want.
Importantly, just as for the p-adic Fargues–Fontaine curve the twistor P1 should better be
understood as relative to a test object A, i.e. a family of twistor P1’s; to understand this
we’ll need to introduce a good category of test spaces, which give archimedean analogues of
perfectoid (or nil-perfectoid) rings.

1. The absolute twistor P1

By the twistor P1, we mean the inner form XR of P1
R given by descending the complex

projective line P1
C along z 7→ −1

z
. We enumerate some of its properties:

(i) The curve XR has no real points: the residue field at each closed point is isomorphic
to C.

(ii) The points 0,∞ ∈ P1
C glue to a (C-valued) point ∞ ∈ XR, which we treat as a

distinguished point.

(iii) The automorphism group of XR is H×/R×, with O(2) the stabilizer of ∞, acting on
the residue field by the component map O(2) → Z/2 ≃ Gal(C/R).

(iv) The vector bundles on XR decompose as direct sums of stable vector bundles, which
are classified by their slopes λ ∈ 1

2
Z and either rank 1 (for integer λ) or rank 2 (for non-

integer λ). If we write ν : P1
C → XR for the natural cover, we have ν∗OXR(1) ≃ OP1

C
(2)

and ν∗OP1
C
(1) ≃ OXR(1/2).

We compare to some properties of the (p-adic) Fargues–Fontaine curve XQp,C (for a fixed
algebraically closed nonarchimedean field C):

(a) The residue fields of closed points in XQp,C are given by algebraically closed nonar-
chimedean fields (namely untilts of C♭).

(b) There is a distinguished C-point xC of XQp,C , such that XQp,C \{xC} is an affine curve.

(c) The vector bundles on XQp,C decompose as direct sums of stable vector bundles, which
are classified by their slopes λ ∈ Q. If E/Qp is an extension of degree d and ν : XE,C →
XQp,C the induced map, then ν∗OXQp,C

(1) ≃ OXE,C
(d) and ν∗OXE,C

(1) ≃ OXQp,C
(1/d).

In particular let’s think briefly about alternatives to our definition of XR. The splitting
behavior suggests that we should be looking at something like the projective line, so the most
natural alternate choice would be just P1

R. Here point (i) fails: P1
R has many real points.
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1 THE ABSOLUTE TWISTOR P1

More problematically point (iv) (compare (c) in the p-adic case) fails: the indecomposable
bundles are all line bundles, but since we have a degree 2 extension C/R we should expect
a parallel to the Fargues–Fontaine curve to have indecomposable rank 2 bundles such as
O(1/2).

There are two further properties we can study, which are slightly more complicated and
which we’ll have more to say about in a few weeks:

(v) There is an equivalence of categories between U(1)-equivariant semistable vector bun-
dles on XR (“U(1)-equivariant twistor structures”) and pure R-Hodge structures.

(vi) For any linear group G over R, the set of isomorphism classes of G-torsors on XR is in
bijection with Kottwitz’s set B(R, G).

Point (v) is analogous to the parametrization of p-adic Hodge structures via the Fargues–
Fontaine curve, and we’ll discuss it much more in a few weeks. Point (vi) is directly analogous
to the parametrization of G-torsors on the Fargues–Fontaine curve; in the p-adic case, Kot-
twitz’s set can be described in terms of isocrystals, and I hope to talk more about the
archimedean analogue. By translating Hodge structures into twistor structures, one can
translate Shimura data into the language of local Shimura data (G, b, µ) for a suitable group
G, a minuscule cocharacter µ, and a basic element b ∈ B(R, G); it is very interesting to
ask about the corresponding local Shimura variety, its relationship with the global Shimura
variety, and how this might generalize the classical case. In the p-adic case local Shimura
varieties exist under much weaker hypotheses than global ones, and it seems that this should
be true here as well, but it is so far unclear how this generality might globalize. In any
case we’ll have much more to say about (vi) when we talk about BunG near the end of the
semester.

Recall from our general framework that our goal for a reductive group G over R is to
define a stack BunG, which should parametrize G-torsors on XR in a suitable sense, whose
derived category enlarges D(∗/G(R)la) via an open embedding

∗/G(R)la ↪→ BunG,

with other analogous loci for inner forms of G. In particular the trivial G-torsor on XR
should have automorphism group G(R)la.

(It’s worth mentioning here that this means that the category of sheaves we’ll study
on BunG is just quasicoherent sheaves, whereas in the p-adic case we use (a version of)
ℓ-adic sheaves or in the geometric setting we might use D-modules. The difference can be
resolved by viewing our BunG as the transmutation of a more direct analogue Bun′

G to that
of Fargues–Scholze, so that quasicoherent sheaves on BunG can be understood as something
like D-modules or étale sheaves on Bun′

G.)
For G = Ga, the trivial Ga(R)la = Rla-torsor on any analytic stack X has automorphism

group simply the global sections of the structure sheaf of X (as an abelian group). This is
then supposed to be isomorphic to Rla. To see what this means, we need to think of each
side as a functor: Rla is already an analytic stack, sending an analytic ring A to Rla(A),
while the global sections of XR means the functor sending A to the global sections of the
relative curve XR,A.
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2 TEST CATEGORIES OF Rgas-ALGEBRAS

The most naive thing is to setXR,A = XR×AnSpecRAnSpecA. But then the global sections
will be A, and so this functor is represented by the algebraic affine line. More generally for
this version we would get the algebraic group G as the automorphism group of the trivial
G-torsor, rather than the analytic group G(R)la.

In fact, this problem already occurs in the p-adic world: we need the global sections of
XQp to be Qp rather than A1. There, the solution is by using a less naive notion of a relative
Fargues–Fontaine curve: for suitable test objects, namely perfectoid spaces in characteristic
p, the relative Fargues–Fontaine curve XQp,S is defined using the p-adic geometry of S, and
does not agree with XQp × S (at least naively).

This suggests a two-part solution to our problem: first, we need to find a category of test
objects replacing characteristic p perfectoid spaces in the archimedean setting; and second,
after restricting to these we need to define families of archimedean Fargues–Fontaine curves
in a more sophisticated way. Once this is accomplished, we can then try to check if our
definition satisfies the above desideratum, i.e. the “real Banach–Colmez space” sending a
test object A to the global sections of its relative archimedean Fargues–Fontaine curve is
given by Rla.

2. Test categories of Rgas-algebras

Let A be a gaseous R-algebra. Our goal is to define a chain of subsets

Nil†(A) ⊂ A◦◦ ⊂ A◦ ⊂ Abd ⊂ A

satisfying various properties; we can then use these to define certain properties of gaseous
R-algebras. For example, we’ll say A is bounded if Abd = A.

The most straightforward approach is to work via a norm map: indeed, for each f ∈ A(∗)
defines a map |f | : AnSpecA→ [0,∞], and we can say f is bounded if this map takes image
in [0,∞), or has norm 0 if it has image in {0}, etc. The bounded elements give a subring,
and the norm 0 elements an ideal of this ring. Unfortunately this definition doesn’t directly
extend to A(S) for arbitrary light profinite sets S. Our first goal is to give such an extension.

We fix a light profinite set S. The functor A 7→ A(S) can be viewed as the “S-dimensional
affine space” AS

R over Rgas, and is represented by AnSpecR[N[S]]gas. We will define subfunc-
tors

AS,†
R ⊂ AS,◦◦

R ⊂ AS,◦
R ⊂ AS,an

R ⊂ AS
R.

In the case S = ∗, these are the preimages under the norm map of

{0} ⊂ [0, 1) ⊂ [0, 1] ⊂ [0,∞) ⊂ [0,∞].

We can write R[N[∗]]gas = R[T ]gas. Recall we have a method of forcing the variable

T to be topologically nilpotent: we set R[T̂ ]gas = R[N ∪ {∞}]/(∞), so rather than just
parametrizing sequences {T i} we now parametrize sequences converging to 0. In a similar
way by forming the one-point compactification N[S] ∪ {∞} of each N[S] we can force the

generators to be topologically nilpotent, leading to the algebra R[N̂[S]] = R[N[S]∪{∞}]/(∞),
whose spectrum we think of as a version of the S-dimensional unit disk

DS
R = AnSpecR[N̂[S]] → AnSpecR[N[S]] = AS

R.
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2 TEST CATEGORIES OF Rgas-ALGEBRAS

We have a scaling action of λ ∈ R on AS
R, which for |λ| ≤ 1 preserves the subspace DS

R
and in general takes it to a disk of radius λ. One can then define the following subspaces of
AS

R:

(i) the intersection of all positive-radius disks

AS,†
R = lim

λ>0
λDS

R,

which we think of as a disk of infinitesimal radius;

(ii) the union of all disks of radius less than 1

AS,◦◦
R = colim

0<λ<1
λDS

R,

which we think of as the open disk of radius 1;

(iii) the intersection of all disks of radius greater than 1

AS,◦
R = lim

λ>1
λDS

R,

which we think of as the overconvergent disk of radius 1;

(iv) the union of all positive-radius disks

AS,an
R = lim

0<λ<∞
λDS

R.

To check that this actually gives rise to well-defined subspaces of AS
R requires checking that

the corresponding rings are idempotent R[N[S]]gas-algebras, which is a computation yet to
be written down.

We have been thinking of these spaces as functors on gaseous R-algebras, for each fixed
light profinite set S. We now reverse our point of view: given a gaseous R-algebra A, we
can view each of these spaces as sending a light profinite set S to AS,?

R (A), giving condensed
objects in the appropriate category. By studying the structures on the various affine space
objects, we find the appropriate structures for these condensed objects: AS,an

R is a subring

object of AS
R, A

S,◦
R is a sub-multiplicative monoid, and AS,†

R is an ideal object in the ring
object AS

R or in fact AS,an
R . We can therefore define our chain of subsets

Nil†(A) ⊂ A◦◦ ⊂ A◦ ⊂ Abd ⊂ A

sending a light profinite set S to

AS,†
R (A) ⊂ AS,◦◦

R (A) ⊂ AS,◦
R (A) ⊂ AS,an

R (A) ⊂ AS
R(A),

such that Abd ⊂ A is a condensed (and in fact gaseous) subalgebra and Nil†(A) ⊂ Abd is a
gaseous ideal. One can also formulate properties of A◦◦ and A◦, but they are more compli-
cated and less relevant for us. Notably though the ring map Abd → A induces isomorphisms
on each of the subspaces Nil†(−), −◦◦, −◦, and −bd, so in particular −bd is idempotent.
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2 TEST CATEGORIES OF Rgas-ALGEBRAS

We say that A is bounded if Abd = A. In this case, we say that its †-reduction is
A† -red = A/Nil†(A), and that A is †-reduced if A = A† -red, or equivalently if Nil†(A) = 0.

We can now use these structures to define our test objects. The idea is something like
this: the simplest test spaces we could ask for are Cont(S,C) for light profinite sets S. For
these for example we could hope to define families of twistor P1’s simply by base change
from the absolute case. However this kind of space is not enough for our purposes: we need
some larger test category in order to recover a good category of stacks. We will broaden it
by allowing objects which are infinitesimally close to this kind of space, i.e. recover these
spaces after †-reduction. In fact we’ll allow ourselves to be even a little more general for
convenience, though we’ll see the difference doesn’t matter too much.

We proceed a little more carefully. We say that a gaseous animated C-algebraA (note that
we’re now working over C) is totally disconnected if it is bounded and for each s ∈ π0A

▷(∗),
the resulting bounded C-algebra

As = colim
U∋s

A(U)

has †-reduction A† -red
s ≃ C. Globally, this means that for a totally disconnected C-algebra

A, we get a profinite set
S = π0A

▷(∗) = Hom(A,C)
and a map A → CS whose kernel is Nil†(A). In fact the map A → CS factors as a map of
condensed C-algebras through Cont(S,C), yielding an injection

A† -red → Cont(S,C).

We say that A is strongly totally disconnected if this map is an isomorphism, or equivalently
if A→ Cont(S,C) is surjective. This is the †-deformation of Cont(S,C) we discussed above;
strongly totally disconnected C-algebras are also referred to in some places as nil-perfectoids,
and fulfill a similar role to perfectoid spaces in p-adic geometry.

The difference between totally disconnected and strongly totally disconnected spaces is
not too significant:

Proposition 1. Let A be a totally disconnected C-algebra such that S = Hom(A,C) is light.
Then there is a descendable map A→ Ã with Ã strongly totally disconnected and the induced
map S → S̃ = Hom(Ã,C) an isomorphism. In particular each tensor product Ã⊗A · · · ⊗A Ã
is strongly totally disconnected.

Much like in the semiperfectoid case, the tensor products involved here are generally very
hard to compute and may not be concentrated in degree 0 even when all rings involved are.
Nevertheless we can generally avoid working with them so this doesn’t present many issues
in practice.

Proof sketch. For A totally disconnected, we have a map A → Cont(S,C) where S =
Hom(A,C). The claim is that we can reduce to the case where A = colimiCont(Si,C)
for S = limi Si a presentation by finite sets. In this case each Cont(Si,C) → Cont(S,C)
splits and so the sequential limit is descendable.

The reduction to this case is supposed to be via base change: A 7→ S = Hom(A,C) takes
colimits to limits, so the claim is stable under base change. It is not however clear to me
why every A is the base change of something of this form...
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3 STACKS ON TOTALLY DISCONNECTED RINGS

In particular every totally disconnected C-algebra has a cover by a strongly totally dis-
connected C-algebra, and so we can mostly restrict to the latter (we’ll say more about this
in the next section). These two classes of rings will give us our test category. Before we
say more about the general theory of stacks on this category, let’s observe that we can now
define the twistor P1 in families.

Let A be a totally disconnected C-algebra, with S = Hom(A,C). Recall the absolute
twistor P1 from the previous section, which we write as XR. We define the relative curve to
be the pushout

AnSpec(Cont(S,C)) XR ×AnSpecR AnSpecCont(S,R)

AnSpecA XR,A

∞

.

We make a few observations about this definition:

• The top map is given by the base change of∞ : AnSpecC → XR to AnSpecCont(S,C).
In particular we are using that Cont(S,C) descends canonically to Cont(S,R) over R,
which of course is not true for all C-algebras; this partially motivates the category of
test objects.

• If A ≃ Cont(S,C), i.e. with trivial †-deformation, then the left vertical map is an
isomorphism and so XR,A ≃ XR ×AnSpecR Cont(S,R) is just the base change of XR to
(the descended version of) A. In particular for A = C we recover the absolute curve
XR,C ≃ XR.

• More generally, away from ∞ the relative curve is just the base change to Cont(S,R);
in particular this does not actually depend on A but only on S = π0A

▷(∗). The data
of A itself gives the gluing data at the point at infinity.

• At least if A is strongly totally disconnected, this gives rise to a universal prop-
erty for XR,A: one can define an ∞-category of “abstract families of twistor P1’s”
as profinite sets S together with †-thickenings of XR ×AnSpecR AnSpecCont(S,R).
Taking the fiber at ∞ gives a functor to strongly totally disconnected spaces, of
which AnSpecA 7→ XR,A is the left adjoint; so XR,A is the universal †-thickening
of XR ×AnSpecR AnSpecCont(S,R) with fiber at ∞ given by AnSpecA.

3. Stacks on totally disconnected rings

We can now define families of twistor P1’s as desired, but only relative to certain special test
objects, namely totally disconnected C-algebras. This is not a shortcoming of the theory:
indeed it is exactly what we should expect parallel to the p-adic case, where our test objects
are (covered by) totally disconnected affinoid perfectoid spaces. It does however present a
technical problem: the functor sending A to e.g. the global sections or space of G-torsors on
XR,A is, at least naively, not an analytic stack, since it is only defined on this subcategory
of analytic rings. We will see that this does not present a major issue, but let’s first make
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3 STACKS ON TOTALLY DISCONNECTED RINGS

precise what this sort of object is: we define TotDisc to be the ∞-category of countably
presented totally disconnected C-algebras, and TDStack the category of functors

X : TotDisc → Ani

commuting with finite products such that for every !-hypercover AnSpecA• → AnSpecA
satisfying !-descent, the map

X(A) → limX(A•)

is an isomorphism. (The restriction to countably presented algebras A is to ensure that the
resulting profinite set S = Hom(A,C) is light.)

For A ∈ TotDisc, we get a corresponding object TDSpec(A) ∈ TDStack sending B 7→
Hom(A,B).

Since A is also an analytic ring, we could instead take its analytic spectrum AnSpecA, giv-
ing an analytic stack. This operation gives the pullback of a map of ∞-topoi AnStackCgas →
TDStack, which more generally assigns to any object of TDStack an analytic stack over Cgas.
We sometimes refer to this as the analytic realization. In particular, via this construction
we can recover analytic stacks from objects defined a priori only on totally disconnected
C-algebras, which is a good sign for problems defined over our relative Fargues–Fontaine
curve.

Since we have observed that every totally disconnected C-algebra has a cover by a strongly
totally disconnected one, we might hope that we can restrict to the subcategory StrTotDisc ⊂
TotDisc of strongly totally disconnected C-algebras. This is true up to size issues: the
corresponding strongly totally disconnected algebras are not necessarily countably presented.
However any totally disconnected A is the ℵ1-filtered colimit of countably presented totally
disconnected Ai, so we can extend a stack X ∈ TDStack to all totally disconnected A by

X(A) := colim
i

X(Ai).

Then using this definition objects of TDStack are determined by their restriction to strongly
totally disconnected C-algebras. To go the other way, given a moduli problem on strongly
totally disconnected algebras it suffices to check that it commutes with ℵ1-filtered colimits
to get an object of TDStack.

It remains to see that our test category is large enough to give covers of suitable analytic
stacks. This follows from the following proposition, applied to overconvergent algebras on
compact Stein spaces:

Proposition 2. For A a countably presented bounded gaseous C-algebra, assume that there
exists a finite-dimensional metrizable compact Hausdorff space S and a map

AnSpecA→ SBetti,

determined by idempotent A-algebras AZ for each closed Z ⊂ S, such that each point has a
neighborhood including a connective and bounded closed subset Z ⊂ S, and for each s ∈ S
the stalk As satisfies A† -red

s ≃ C. Then for any light profinite cover S̃ → S the fiber product

AnSpecA×SBetti
S̃Betti

is isomorphic to AnSpec Ã for some totally disconnected algebra A, and the map A → Ã is
descendable. Further each tensor product Ã⊗A · · · ⊗A Ã is totally disconnected.
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3 STACKS ON TOTALLY DISCONNECTED RINGS

The proof is relatively straightforward from the hypotheses, and we omit it for time.
In particular, for A satisfying the conditions of the proposition, we get a functor on

TotDisc sending B 7→ Hom(A,B). If A were itself totally disconnected this would just
be TDSpec(A), but in general such an object is not defined a priori, though we abusively
denote it by TDSpec(A). Instead, we get an object of TDStack whose pullback toAnStack is

AnSpec(A); indeed, we have a cover TDSpec(A) → TDSpec(Ã) with Ã as in the proposition,
and the Čech nerve agrees in analytic rings and totally disconnected algebras. This is the
pushforward of AnSpecA along the map of topoi AnStack → TDStack.

We mention some other examples:

• The functor on totally disconnected algebras sending A 7→ A(∗) realizes to the analytic
stack A1,an

Cgas
. Indeed, since each totally disconnected algebra is bounded the realization

maps into the analytic affine line, and after restriction to compact Stein spaces this map
is an isomorphism by the observation above that TDSpec(A) realizes to AnSpec(A)
for A the overconvergent algebra of compact Stein spaces.

Notably if we studied the same functor on analytic rings we would obtain the algebraic
affine line A1

Cgas
instead!

• The functor on totally disconnected algebras sending A 7→ (Nil†(A))(∗) realizes to
A1,†

Cgas
, as it is the TDSpec of the ring of germs of holomorphic functions at 0.

Finally, we can reinterpret the Betti functor in terms of TDStack: it is the pullback along
a morphism of topoi π : TDStack → Cond(Ani), taking a light profinite set S to

π∗S = TDSpec(LocConst(S,C))

which realizes to the analytic stack SBetti. In the context of totally disconnected stacks,
we also have the functor A 7→ Hom(A,C), commuting with finite limits and covers and so
defining another morphism of topoi ψ : Cond(Ani) → TDStack, which is a section of π with
ψ∗ = π∗.

For X ∈ TDStack, the unit transformation gives a map X → π∗ψ∗X = (ψ∗X)Betti, so
we can think of ψ∗X as the “underlying condensed anima.” This is the sheafification of
the functor S 7→ X(Cont(S,C)) (note this is a very transmutation-like formula!). Similarly,
for any condensed anima X the functor A 7→ X(Hom(A,C)) gives an object of TDStack,
whose analytic realization recovers XBetti, as this is the composite pullback AnStack →
TDStack → Cond(Ani).

We can now reinterpret analytic Riemann–Hilbert as the following statement.

Proposition 3. There is a short exact sequence of sheaves on TotDisc sending strongly
totally disconnected A to

0 → Nil†(A) → A→ Cont(Hom(A,C),C) → 0,

which realizes to the exact sequence in AnStackCgas

0 → A1,†
Cgas

→ A1,an
Cgas

→ CBetti → 0.
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Proof. For totally disconnected A, we have an injective map A → Cont(Hom(A,C),C)
with kernel Nil†(A), so it suffices to show that this map becomes an isomorphism after
sheafification. We know that it is an isomorphism for strongly totally disconnected algebras
and that any A has a cover by such an algebra, so this holds; the final statement follows
from our discussion of the definitions of these stacks.

Now Riemann–Hilbert for A1 is just the identification of A1,an/A1,† ≃ CBetti, and in
general follows by transmutation.

4. Real Banach–Colmez spaces

Recall our main goal in all this was to find a version of the twistor P1 which works well in
families, in the sense that its global sections functor should recover Rla rather than A1 or
similar. We now have a definition in families, so the question is whether we’ve achieved our
goal.

More generally, we can study the following archimedean analogue of Banach–Colmez
spaces: fix a coherent sheaf M on XR, and consider the object of TDStack

A 7→ Γ(XR,A,M |XR,A).

This is the Banach–Colmez space BC(M). It is valued in D≥0(Rgas), but we forget the
condensed structure to view it as an animated R-vector space object in TDStack.

Proposition 4. The realization of BC(OXR) as an analytic stack over Cgas is Rla.

Proof. If A is strongly totally disconnected with S = Hom(A,C), then Γ(XR,A,O) is the
fiber product over Cont(S,C) of A with

Γ(XR ×AnSpecR AnSpecCont(S,R),O) = Cont(S,R).

This can be understood as the “real part” of A under the map A → Cont(S,C) = A† -red;
in other words if we write Im : Cont(S,C) → Cont(S,R) for the imaginary part, then
BC(OXR)(A) is the kernel of the composite map

A→ A† -red ≃ Cont(S,C) Im−→ Cont(S,R).

Taking realizations, this becomes

A1,an
Cgas

→ CBetti
Im−→ RBetti.

The kernel of this map is in turn

A1,an
Cgas

×CBetti
RBetti,

which is the real line inside of C viewed as a complex manifold, i.e. R viewed as a real-analytic
manifold. But this is just Rla.
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