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1. Introduction

The goal of this seminar is to understand Scholze’s recent work on the geometrization of the
local Langlands program at archimedean places. This is parallel to his work with Fargues
at nonarchimedean places, but requires new machinery coming from his work with Clausen
on condensed mathematics and analytic stacks. Speculatively, it is potentially the next step
in the road towards a geometrization of the global Langlands program, which should be
compatible with local Langlands at all places and so requires theories at finite and infinite
places that can be treated more or less uniformly.

We start with a very brief discussion of what we mean by the Langlands program. There
are roughly four settings in which the Langlands program can be discussed (as well as a large
number of generalizations and analogues which we will not get into), which we represent by
the following diagram:

Global arithmetic (number
fields, function fields over Fq)

Local arithmetic (p-adic
fields, R, C, Fq((t)))

Global geometric (function
fields over k = k)

Local geometric (local function
fields (k((t)) = k((t)))

completion base change

base change completion

At each level of the diagram on a field F (respectively global or local and arithmetic
or geometric) and for a reductive group G over F , the Langlands program considers two
objects: an “automorphic” object AG(F ) and a “Galois” object BǦ(F ), where Ǧ is the
Langlands dual group. At the global level, AG(F ) is a vector space of automorphic forms
for G over F , while BǦ(F ) is a space of Galois representations GalF → Ǧ.1 A famous
example for G = GL2 = Ǧ is the modularity theorem: suitable automorphic forms over
Q, corresponding to weight 2 modular forms, correspond to suitable Galois representations,
given by the Tate modules of elliptic curves over Q. This was proven by Wiles, Taylor–Wiles,
and Breuil–Conrad–Diamond–Taylor.

At the local arithmetic or global geometric levels, AG(F ) and BǦ(F ) should be cat-
egories: in the local arithmetic case, AG(F ) is essentially the category of smooth G(F )-
representations and BǦ(F ) representations of the Weil–Deligne group (i.e. L-parameters),
a modification of GalF , while in the global geometric case AG(F ) is a category of sheaves
(or D-modules or similar) on a stack BunG parametrizing G-bundles on the relevant curve,
and BǦ(F ) is a category of quasi-coherent sheaves on a stack LocǦ parametrizing Ǧ-local

1In general we should replace Ǧ with LG = Ǧ⋊GalF , but this is literally true for G split.
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systems. (The local geometric setting involves 2-categories and is a little more complicated
than I want to get into right now.) The Langlands program can be viewed as the statement
AG = BǦ, uniformly across settings.

Making precise exactly what this should mean and what kinds of objects AG and BǦ

should be is (part of) the goal of the relative Langlands correspondence, together with the
implications of this formulation re functoriality. For our purposes, the most interesting
observation from this formulation is that the local arithmetic setting is in a sense on the
same footing as the global geometric setting. This led Fargues to speculate [2] that it should
be possible to interpret local arithmetic Langlands at nonarchimedean places as geometric
Langlands on an “exotic curve,” the Fargues–Fontaine curve. As the geometric Langlands
program is significantly better-developed than the arithmetic one (e.g. otherwise it is, to the
best of my knowledge, not known how to give a general formulation of the local Langlands
conjectures for all groups!), this would be very helpful, e.g. giving a categorical formulation.

This was achieved in Fargues’s work with Scholze in 2021 [3], using large amounts of
p-adic geometry. We will (very) briefly review their geometrization in the next section.
However, this simultaneously raises the question of how to geometrize the archimedean case
and makes clear why we should expect it to be difficult: the p-adic geometry developed by
Scholze does not exist in the archimedean setting. Instead, we have the much more analytic
theories of real and complex geometry, which are less amenable to algebraic methods.

Recent work of Clausen and Scholze however makes this problem more approachable.
Via the methods of condensed mathematics [4], one can construct theories of analytic and
complex geometry [5], [6] with well-behaved categorical properties and so which can be
studied via the tools of algebraic geometry. Paralleling work of Rodŕıguez-Camargo in the
p-adic setting, it turns out that one can then find analogues of some of the key p-adic
constructions in [3], and build a similar picture in the archimedean setting.

2. The p-adic case

Let’s first say a little more about how Fargues–Scholze’s geometrization works. Let F be
a p-adic field. On the automorphic side, we can think of smooth representations of G(F )
(say with Qℓ-coefficients) as ℓ-adic sheaves on ∗/G(F ), or (passing to derived categories)
D([∗/G(F )],Qℓ). Making precise what we mean by this category is not trivial: if we take
the limit of categories with torsion coefficients, we get undesirable behavior (e.g. everything
is ℓ-adically complete, and if we take the category of condensed Qℓ-sheaves the resulting
category is too big. Instead, we take a solid subcategory of ℓ-adic sheaves, and then cut
out a lisse subcategory corresponding to smooth representations and recovering the good
behavior of étale sheaves when we take torsion coefficients. This is a fairly mild application
of condensed mathematics corresponding to the fairly mild presence of analytic information
in the p-adic setting.

On the Galois side, we can construct a stack of L-parameters ZF,Ǧ, which is in fact just
a scheme over Zℓ. The local Langlands conjectures for G can then be formulated as a fully
faithful functor Dlis([∗/G(F )],Qℓ) → Dqc(ZF,Ǧ/Ǧ), with classical smooth representations on

the left corresponding to skyscraper sheaves on the right supported at the Ǧ-conjugacy class
of the associated L-parameter.
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It is then natural to ask if we can upgrade this functor to an equivalence. Modulo
certain restrictions on the Galois side (e.g. following the geometric Langlands program we
should restrict to sheaves with nilpotent singular support and coherent cohomology), the
answer is (conjecturally) yes: there is a stack BunG such that [∗/G(F )] embeds into BunG,
and pushforward along this embedding gives an embedding D([∗/G(F )]) → D(BunG). The
same holds for inner twists Gb of G, giving other strata of BunG; thus considering BunG

instead of ∗/G(F ) corresponds to the strategy of studying the representation theory of all
inner twists simultaneously. After finding the right derived category Dlis(BunG,Qℓ) as above
and imposing suitable restrictions on the Galois side, the embedding above should then
upgrade to an equivalence Dlis(BunG,Qℓ)

ω ≃ Db,qc
coh (ZF,Ǧ/Ǧ).

To complete the story, we need to say what BunG is. Via our slogan that nonarchimedean
local Langlands should be geometric Langlands on the Fargues–Fontaine curve, what this
means is that BunG should parametrize G-bundles on the Fargues–Fontaine curve: for each
test object S, we associate to it a “curve” XS, so BunG(S) = {G-bundles on XS}. The
test objects S are characteristic p perfectoid spaces, and XS is constructed such that its
degree 1 divisors parametrize untilts of S modulo the Frobenius action. Equivalently, if Div1

is the stack parametrizing degree 1 divisors on the Fargues–Fontaine curve, then Div1 ≃
(Spd F̆ )/φZ.

Let me briefly try to make sense of the previous two sentences: there exist objects in p-adic
geometry called perfectoid spaces, which can exist either in characteristic 0 or characteristic
p, equipped with a tilting operation X 7→ X♭ taking a perfectoid space to a characteristic
p perfectoid space (which is the identity on characteristic p perfectoid spaces). An untilt of
S is a perfectoid space X together with an isomorphism X♭ ≃ S. We can bundle this data
as a functor S 7→ {(X,X♭ ≃ S)}, which we call SpdZp or (SpaZp)

♢. More generally, we
could additionally ask that X live over an adic ring R, in which case we call the functor
S 7→ {(X → SpaR,X♭ ≃ S)} SpdR or (SpaR)♢. The Frobenius of S acts on (SpdR)(S)

by (X,X♭ ≃ S) 7→ (X,X♭ ≃ S
φ−→ S), since φ is an isomorphism.

We want to consider untilts differing by Frobenius to be equivalent. Suggestively, we
observe that π1((Spec F̆ )/φZ) is exactly the Weil group WF , the preimage of Z ⊂ GalFq

under the natural surjection GalF → GalFq , so studying Div1 = (Spd F̆ )/φZ is already
interesting. Defining BunG via the Fargues–Fontaine curve means that the Hecke stacks
give correspondences between BunG and BunG×Div1, which via the WF -action maps to
BunG ×[∗/WF ]; thus Hecke operators give maps D(BunG,Qℓ) → D(BunG ×[∗/WF ],Qℓ) ≃
D(BunG,Qℓ)

BWF , i.e. WF -equivariant objects in D(BunG,Qℓ).
This shows us roughly what we need for an archimedean analogue: a suitable object

∗/G(R) and a good category of sheaves on it; a stack of L-parameters for the Galois side;
an object BunG admitting a suitable map from ∗/G(R), together with a good category of
sheaves on it; and in order to construct BunG, a replacement for the Fargues–Fontaine curve,
and a related replacement of Div1. Combining everything together, we should be able to
write down a conjecture of the same shape as in the p-adic case.
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3. Outline of the seminar

First of all, we’ll want to review what the classical real local Langlands program says, concen-
trating on the case of GL2 for concreteness; this will occupy our first talk next week (calling
this the zeroth talk). The next two talks will be concerned with reviewing the theory of
analytic rings and analytic stacks, which are the technical basis for most of what we’ll do in
the seminar. We’ll generally avoid most proofs and technical details where possible, trying
to just get enough definitions and intuition to work with these methods going forwards.

The core material of the seminar kicks off the following week with talk (4) on the
Riemann–Hilbert correspondence. The classical Riemann–Hilbert correspondence relates
regular holonomic D-modules to perverse constructible sheaves on a suitable space (say a
complex manifold). Scholze’s analytic Riemann–Hilbert correspondence passes through the
theory of transmutation: the philosophy is that many different types of cohomologies or
sheaf theories (de Rham cohomology and D-modules, prismatic/crystalline cohomology and
crystals, etc.) should be viewed as quasi-coherent cohomology/sheaves on a “transmuted”
stack: for example, D-modules on a complex manifold X are equivalent to quasi-coherent
sheaves on its de Rham space XdR. Scholze defines a version of the de Rham stack in the
analytic setting Xan

dR (following Rodŕıguez-Camargo [1]) as well as a “Betti stack” XBetti

whose transmutation corresponds to “Betti sheaves” on X. The analytic Riemann–Hilbert
correspondence is then an identification Xan

dR ≃ XBetti, which on categories of quasi-coherent
sheaves identifies D-modules with Betti sheaves; we can then view regular holonomic D-
modules and perverse constructible sheaves respectively as subcategories of each side which
are identified under this equivalence.

This will be important for our geometrization to translate between the kind of language
appearing in Fargues–Scholze (where we’re interested in categories more closely resembling
Betti sheaves and subcategories thereof) and the kind of machinery arising in real local
Langlands which tends to produce D-modules. In particular, we classically often study real
representations through the theory of (g, K)-modules (translating which into the language
of analytic stacks will largely occupy talk (5), and Beilinson–Bernstein localization (talk 6)
lets us translate these in turn into D-modules on the flag variety.

Now that we can turn the real representation-theoretic language into stacky language,
we turn to the meat of the geometrization program in this setting: talks (7) - (9) are
occupied with the construction of archimedean analogues of Fargues–Fontaine curves (as
families of twistor P1’s), Div1, and the stack of L-parameters respectively. Talk (10) relates
this theory to twistor structures and explains a notion of diamondization in this setting.
Talk (11) combines the material of the previous sections and defines BunG to complete the
geometrization, and in talk (12) we work out an example in the form of non-abelian real
Lubin–Tate theory, recovering for example a version of Matsushima’s formula.
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