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In this talk I am going to make a lot of unjustified statements, some of which are probably
false; please feel free to correct me, and don’t take anything I say too seriously. We’ll return
to some of this in future talks from a more “modern” viewpoint.

1. Real representation theory and (g, K)-modules

Let G = Galg(R) be a real Lie group (we’ll have GL2(R) in mind). We want to study
its representations, subject to suitable adjectives (smooth, admissible, . . . ). The study of
(continuous) one-dimensional representations is, in general, easy: these factor through one-
dimensional Lie groups, which (modulo some possible finite groups) are just R or S1 whose
characters are well-understood. For example, for G = GL2(R) the characters all factor
through the determinant map GL2(R) → R× and so are all given by either g 7→ | det g|s or
g 7→ sign(det g)| det g|s for some complex number s.

There are also some natural finite-dimensional representations: most obviously the 2-
dimensional standard representation Std and its symmetric powers, as well as their tensor
products with characters as above. In fact these completely classify the finite-dimensional
irreducible representations. Our main focus will be on infinite-dimensional representations,
which are more complicated.

We have a variety of decompositions of real groups, e.g. G = PK for a parabolic P =
MN , so we can inductively form further representations by parabolic induction. For example

in the G = GL2(R) case we can take M = R× × R× the diagonal torus, N =

{(
1 ∗

1

)}
,

so P = MN is the standard Borel subgroup of upper triangular matrices; for χ = χ1 ⊠ χ2 a
character of M , we can take the parabolic induction

IndG
P (χ) = {f : G → C|f(mng) = χ(m)f(g)}.

For this to make sense, we need to pin down what kind of functions we mean. There are a
few options: we could take any functions at all, which gives a very large space; continuous or
smooth functions, or even analytic functions; smooth or analytic distributions; etc. On the
other hand we should only really have one theory of parabolic induction, so it is inconvenient
to have so many options.

The standard workaround is to instead pass to the theory of (g, K)- or Harish-Chandra
modules, which as we’ll see is a much more algebraic theory and avoids these functional
analytic difficulties. It comes at the cost however of no longer working directly with G-
representations; for example it is harder to formulate an analogue to the p-adic situation,
where no such algebraization is necessary. (This is largely due to the fact that p-adically we
work with ℓ-adic coefficients, while here we’re working over a real field with real coefficients;
the better analogue would be p-adic Langlands, i.e. with p-adic coefficients, where analytic
difficulties do in fact arise.) The first hurdle we’ll encounter in a few weeks is how to work
directly with G-representations; this is where the condensed machinery is critical, allowing
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1 REAL REPRESENTATION THEORY AND (g, K)-MODULES

an algebraic treatment of the functional analysis (specifically giving a good derived category
of locally analytic representations).

For the moment, however, we focus on the classical theory; we’ll see later how to connect
it to the locally analytic theory. Let’s briefly recall the notion of a (g, K)-module.

Suppose (π, V ) is a representation of G. Its smooth vectors can be thought of as v ∈ V
such that g 7→ g · v is a smooth map G → V ; these form a dense subspace V ∞ ⊂ V , which
carries a natural action of g. For example on V = L2(G) the smooth vectors V ∞ consist of
L2-functions on G whose derivatives are all also L2.

On the other hand, let K be a maximal compact subgroup of G. For a representation V
of K, a vector v ∈ V is K-finite if K · v = {k · v|k ∈ K} is contained in a finite-dimensional
subspace of V ; we write V (K) for the K-finite vectors in V . Note that since K is compact, its
action on V is a direct sum of finite-dimensional irreducible representations, on each of which
it acts analytically, so the action on V is analytic. If the K-action extends to a G-action on
V , then V (K) is dense in V , and while it is not necessarily G-stable it is g-stable.

In particular, given a G-representation V we can pass to the dense subspace of vectors
which are both smooth and K-finite: V 7→ V ∞,(K) = V ∞ ∩ V (K). By construction this has
compatible well-behaved g- and K-actions. Abstracting these properties, we arrive at the
notion of a (g, K)-module: this is a C-vector space V equipped with actions of g and K,
such that

• the K-action is locally finite and continuous (equivalently analytic);

• the differential of the K-action agrees with (the restriction of) the g-action;

• for k ∈ K, X ∈ g, we have

k · (X · v) = (Ad(k) ·X) · (k · v).

Thus the above construction gives a functor from G-representations to (g, K)-modules; rep-
resentations with the same (g, K)-module are said to be infinitesimally equivalent.

We say that a G-representation V is admissible (or K-admissible) if the K-representation
V (K) has finitely many factors of each irreducible K-representation. We can make the same
definition for (g, K)-modules, and aG-representation is admissible if and only if its associated
(g, K)-module is. We often restrict to admissible representations, which have the following
nice property:

Proposition (Harish-Chandra). Suppose V is an admissible G-representation with associ-
ated (g, K)-module V ∞,(K). There is a one-to-one correspondence between closed subrepre-
sentations of V and sub-(g, K)-modules. In particular V is irreducible as a G-representation
if and only if V ∞,(K) is an irreducible (g, K)-module.

Corollary. Schur’s lemma holds for admissible representations, i.e. if V is an admissible
irreducible G-representation then EndG(V ) ≃ C.

Indeed, the functor above gives a map EndG(V ) → End(g,K)(V
∞,(K)), which is injective

by density, and V ∞,(K) is by assumption and the above result an irreducibleK-representation
of countable dimension and therefore has only scalar K-endomorphisms.
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1 REAL REPRESENTATION THEORY AND (g, K)-MODULES

We now return to the question of parabolic induction. Let P = MAN be a parabolic
subgroup of G (so for our example of GL2, M is trivial, A = R× × R×, and N is as
above; or slightly better M = {±1} × {±1}, A = R×

>0 × R×
>0), with the torus A acting

on N with weight 2ρ. If (σ, V ) is a representation of M and λ ∈ a∗ = (LieA)∗C, then
IndG

P (σ, λ) = IndG
P (σ ⊠ (λ+ ρ)⊠ 1) is (the completion of) the space of continuous functions

f : G → V such that
f(gman) = e−⟨λ+ρ,log a⟩σ(m)−1f(g).

Writing λ(X) = χ(exp(X)) for X ∈ a we recover in the GL2-case the formula f(gan) =
χ(a)f(g). More generally if M is compact we can take σ to be finite-dimensional irreducible
and get something that looks fairly similar to what we expect from parabolic induction.

This gives better results for (g, K)-modules, for which purposes we look at IndG
P (σ, λ)

∞,(K).
In particular we have the following result towards classification, due to Casselman:

Theorem. Any irreducible (g, K)-module appears as a submodule of some IndG
P (σ, λ)

∞,(K)

as above.

There is a similar classification due to Langlands in terms of quotients instead: any
irreducible (g, K)-module is the unique irreducible subquotient of the parabolic induction
of a tempered representation. In fact, by adding a temperedness condition one can reduce
to the induction of discrete series; in this sense the archimedean case is simpler than the
nonarchimedean case in that there are no (other) supercuspidals.

Since we have passed from G-representations to (g, K)-modules, a remaining question
is how to go in the reverse direction: can we find “globalizations” of (g, K)-modules, i.e.
representations in their preimage under the above functor, in a natural way? Are they
unique?

In fact there are (at least) two natural ways to go in the reverse direction. Abstractly,
this is the statement that the functor V 7→ V ∞,(K) from G-representations to (g, K)-modules
has both a left adjoint m and a right adjoint M , resulting in unit and counit maps

m(V ∞,(K)) → V → M(V ∞,(K))

for any G-representation V . Indeed since V 7→ V ∞,(K) is faithful both maps are injective,
so any G-representation V lives between a minimal and maximal globalization of its (g, K)-
module; in other words, for any (g, K)-module W and globalization V , we have inclusions

m(W ) ↪→ V ↪→ M(W ),

justifying calling m(W ) and M(W ) the minimal and maximal globalizations generally. Ex-
plicitly, letW∨ = W ∗,(K) be the admissible dual, i.e. the locallyK-finite piece of the algebraic
dual. Then

M(W ) = Hom(g,K)(W
∨, C∞(G))

(we could replace smooth functions with analytic functions or distributions and get the same
thing up to isomorphism) for the left action of (g, K) via right translation. Dually, we can
look at the space of compactly supported functions C∞

c (G) with right (g, K)-action and take
m(W ) to be (the largest separated quotient of) C∞

c (G)⊗(g,K) W .
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In a few weeks, we’ll replace (g, K)-modules by quasi-coherent sheaves on ∗/Gla, which
again admit a functor from a category whose objects are more literally G-representations
and which can be understood more geometrically; we can then interpret these minimal and
maximal globalizations as left and right adjoints of this functor.

The g-action is equivalent to the action of the universal enveloping algebra U(g). In
particular for “nice” representations the center Z(U(g)) should act simply; we say that a G-
representation V is quasi-simple if Z(U(g)) acts on V ∞ by scalars, which occurs in particular
if we have a version of Schur’s lemma (as above!).

Choose a Cartan subalgebra h of g with Weyl group W . By Chevalley’s theorem h∗//W ≃
g∗//G, so in particular both sides are independent of the choice of W .

By the Harish-Chandra isomorphism we can identify Z(U(g)) with Sym(h)W ≃ Sym(g)G,
so the central character given by the action on V ∞ is equivalent to a class ξ in h∗//W ≃ g∗//G;
this is the infinitesimal character of V . Explicitly, for a Borel b containing h with sum of
roots 2ρ, λ ∈ h∗, and representation V with highest weight λ, the infinitesimal character of
V is (the W -orbit of) λ+ ρ.

Let’s focus on the example of GL2(R). In fact it is often easier to work with SL2(R) and
then add a parameter (a familiar approach from the theory of automorphic forms for GL2

vs. SL2).
If G = SL2(R), its maximal compact subgroup is K = SO2(R) ≃ S1. We can choose

a basis {e, h, f} for sl2 with Lie(K)C spanned by h and standard relations [h, e] = 2e,
[f, h] = 2f , and [e, f ] = h. Setting ∆ = 1

2
h2 + fe + ef gives Z(U(sl2)) ≃ C[∆]. For

Z(U(gl2)), we (freely) adjoin an extra variable.
Fix a line L ⊂ R2, determining a Borel subgroup B ⊂ G = SL2(R) and inducing a

decomposition R2 ≃ L ⊕ L′. We have a decomposition B = MAN where M ≃ {±1},
A = R×

>0, and N = AutG(L
′). The relevant characters are then (ϵ, λ) : M × A → C×

sending (m, a) 7→ mϵaλ for ϵ ∈ {0, 1} and λ ∈ C×. The parabolic induction IndG
B(ϵ, λ)

can then be understood as the space of continuous functions f : R2 − {0} → C such that
f(av) = |a|−λ−1sign(a)ϵf(v) for any a ∈ R× and nonzero v ∈ R2. We can calculate that
Z(U(sl2)) acts by ∆ 7→ λ2−1

2
.

If we further ask that K ≃ S1 acts by weight n, i.e. for k = kθ and a > 0 we have
f(akv) = a−λ−1e−inθf(v), this cuts out a 1-dimensional subspace of IndG

B(ϵ, λ), spanned by
some function we call fn (up to scalars). If V (ϵ, λ) = IndG

B(ϵ, λ)
∞,(K), then one can show

that V (ϵ, λ) is the span of {fn}n≡ϵ (mod 2).
To modify things for GL2(R), we get two factors of each of {±1} and R×

>0 and proceed
similarly with ϵ1, ϵ2, λ1, λ2.

We next want to classify the irreducible (g, K)-modules. For any (g, K)-module V the
K-action gives a weight decomposition

V =
⊕
n

V (n).

The elements e, f ∈ g change the weights: e : V (n) → V (n + 2) and f : V (n) → V (n − 2)
such that [e, f ] = h acts by n (i.e. the derivative of the K-action of weight n).

If V is irreducible with infinitesimal character ∆ 7→ ξ, we say its parity is given by the sign
of the action of −1 ∈ K; if V is odd then V (n) vanishes for n even and vice versa. The parity
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ϵ = ϵ(V ) together with the infinitesimal character ξ classify the irreducible (g, K)-modules,
up to some subtleties:

• If ξ = 1
2
ℓ(ℓ + 1) for some integer ℓ ≥ 0 congruent to ϵ modulo 2, then there are three

possibilities: V ≃ Symℓ StdC, V ≃ D+
ℓ = V>ℓ =

⊕
n>ℓ

n≡ϵ (mod 2)
V (n), or V ≃ D−

ℓ = V<ℓ.

We call D+
ℓ and D−

ℓ the holomorphic and antiholomorphic discrete series respectively,
corresponding to (anti)holomorphic modular forms of weight ℓ+2. These fit into short
exact sequences

0 → D+
ℓ ⊕D−

ℓ → V (ϵ, ℓ+ 1) → Symℓ Std → 0,

0 → Symℓ Std → V (ϵ,−ℓ− 1) → D+
ℓ ⊕D−

ℓ → 0.

We can realize them on the two connected components of P1(C) − P1(R) as global
sections of O(−ℓ− 2) ≃ ωP1(−ℓ).

• If ξ = −1
2
and ϵ = 1 we have either V ≃ D+

0 = V≥1 or V ≃ D−
0 = V≤−1, the limits of

discrete series representations. In this case we have a decomposition

D+
0 ⊕D−

0 ≃ V (1, 0).

• If neither of the above conditions hold, there is a unique (g, K)-module with parity ϵ
and infinitesimal character ξ, given by V (ϵ, λ) for any λ with (λ+ 1)2 = ξ.

In the case G = GL2(R), we have a similar classification with an extra parameter in the
central character and some modifications to which of the above are irreducible.

In particular, in both cases: everything is either a principle series V (ϵ, λ), a discrete
series D±

ℓ , a limit of a discrete series D±
0 , or finite-dimensional. This is notably simpler than

the p-adic case, where we also have “special” and supercuspidal representations. (Strictly
speaking we should put some conditions on λ, namely either λ ∈ iR>0 or λ ∈ (0, 1).)

There is a more general way of understanding this sort of classification via Beilinson–
Bernstein localization, which we touch on briefly and will return to in a few weeks. Fix a
character ξ corresponding to λ+ ρ ∈ h∗//W ≃ g∗//G as before, and let (g, K) -Modξ be the
category of (g, K)-modules with infinitesimal character ξ. There is a localization functor

(g, K) -Modξ → Dλ -Mod(FlG)
KC

to KC-invariant λ-twisted D-modules for a suitable flag variety FlG. For the case SL2, the
flag variety is P1

C, which has three KC-orbits given by two fixed points {0}, {∞} and their
complement U = P1 − {0,∞}. For each fixed ℓ, the two points correspond to the discrete
series representations; the complement U corresponds to Symℓ Std when ℓ ≡ ϵ (mod 2) and
to the principal series representation otherwise.

2. Real local Langlands

Our goal is to have some parametrization of admissible G-representations, modulo infinitesi-
mal equivalence, in terms of L-parameters, which should be certain representations of a Weil
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group closely related to the absolute Galois group of our archimedean local field. The first
thing to do is to say what this Weil group is.

We only have two possible archimedean local fields, R and C, and so we can define the
Weil groups by hand: WC = C× and WR = C× ⊔ jC× with the relations j2 = −1, jzj−1 = z.
For either F = R or F = C the Weil groups WF fit into short exact sequences

0 → F
× → WF → Gal(F/F ) → 0.

These are notably more interesting than the unmodified absolute Galois groups, which
are rather trivial for archimedean fields. Moreover they fit well into the expectations of local
class field theory: in both cases W ab

F ≃ F× (trivial for F = C, and for F = R we can
compute that the commutator subgroup is {z1jz2z−1

1 z−1
2 j−1} = {z1jz−1

1 j−1} = {z/z} = S1

and so W ab
R ≃ (C× ⋊ Z/2)/S1 ≃ R×

>0 × Z/2 ≃ R×).
This is the special case of G = Ǧ = GL(1) of the following more general correspondence.

A Langlands parameter for F ∈ {R,C} is a continuous homomorphism φ : WF → LG =
Ǧ ⋊ Gal(F/F ), which in the real case we require to take j to the nontrivial connected
component and C× to semisimple elements in the trivial connected component. In general,
we should also impose a “relevance” condition, but for quasi-split groups this is trivial and
we’ll ignore it. Let Φ(G) be the set of Langlands parameters modulo Ǧ-conjugacy, and
observe that for GL(1) these are just characters of WF .

Write Π(G) for the set of irreducible admissible (g, K)-modules. Then there is a local
Langlands map Π(G) → Φ(G) with various properties:

• it should have finite nonempty fibers;

• for GL(1) it should recover local class field theory;

• it should be compatible in suitable senses with products and parabolic induction;

• it should be compatible with infinitesimal characters in the following sense: if V is a
(g, K)-module with infinitesimal character ξ, the restriction of the Langlands parameter
of V to C× should be of the form z 7→ zξzµ for some µ ≡ ξ ∈ X∗(T )C/X∗(T ).

This is far from exhaustive, but gives enough conditions to check to informally have a good
sense of whether a “naturally constructed” map is likely to be the “right” one.

We’ll ultimately want to recover Φ(G) as functions on a moduli space of Langlands
parameters Z1

Ǧ
/Ǧ and Π(G) as certain sheaves on a classifying stack for G.

Very very vaguely, the construction is via parabolic induction from the discrete case: a
Langlands parameter φ is discrete if its image is not contained in (the Langlands dual of)
any proper parabolic. Its restriction to C× ⊂ WR is a cocharacter of Ǧ and thus a character
ξ of G; the fiber of the local Langlands correspondence over φ is given by the discrete series
with infinitesimal character ξ.

If φ is not discrete, then it factors through some parabolic LP in LG; take the smallest
such parabolic. By semisimplicity, the image of φ actually lands in the Levi LM , and by
minimality viewing φ as a Langlands parameter for M it is discrete, and so we can attach to
it an L-packet of discrete series for M . We then take the parabolic induction of these discrete
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series to G. These need not be irreducible, but as above should have a unique irreducible
quotient, the Langlands quotient; these roughly form the L-packet over φ.

The main result of the seminar that we’ll ultimately want to prove is “nonabelian real
Lubin–Tate theory” for GL(2), describing how we can think of the combination of the local
Langlands correspondence and Jacquet–Langlands as the action of a Hecke operator on a
suitable stack BunGL2 . Thus we also want to say something about Jacquet–Langlands in
the classical case. This is a bijection between irreducible discrete series representations of
GL2(R) (i.e. unitary subrepresentations of L2(GL2(R))) and irreducible smooth representa-
tions of H×, preserving central characters (and satisfying various other compatibilities, e.g.
on trace distributions). After complexification H× ≃ GL2 and so it has a standard repre-
sentation on C2, as well as its symmetric powers; meanwhile discrete series representations
of GL2(R) with central character ω = signϵω+ for ω+ the restriction to R>0 and ϵ ∈ {0, 1}
are of the form ω+ ⊠ (D+

n ⊕ D−
n ) for n ≥ 2 congruent to ϵ modulo 2 and D±

n the holo-
morphic/antiholomorphic discrete series representation of weights ±n,±(n + 2), . . . . The
Jacquet–Langlands correspondence then takes ω+ ⊠ (D+

n ⊕D−
n ) to ω+ ⊠ Symn−2(C2).

Ultimately, we’ll want to think of GL2(R)-representations as roughly sheaves on ∗/GL2(R)
and similarly for H×-representations; so we might hope that this correspondence arises by
pull-push from some correspondence between the two classifying stacks. Following the p-adic
version and noting that H× is an inner form of GL2(R), we expect that there should be a
Hecke stack classifying a GL2(R)-torsor E , an H×-torsor E ′, and in some sense a modifica-
tion between them of prescribed type. In fact this modification should occur at some degree
1 divisor on a mysterious archimedean analogue of the Fargues–Fontaine curve, and so we
imagine that we should actually get a correspondence

Hkµ

∗/GL2(R) ∗/H× ×Div1

.

Thus for a representation of GL2(R) we should get not only an H×-representation (corre-
sponding to the Jacquet–Langlands image) but also a sheaf on Div1, which we will see is the
right analogue of a Langlands parameter and is given by the local Langlands correspondence.
Making this precise and giving a purely local proof is one of the main goals of the seminar.
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