Hodge-Tate and crystalline comparison

Abstract. We briefly review crystalline cohomology and its relationship to prismatic cohomology, and sketch a proof of the crystalline comparison theorem and of the Hodge-Tate comparison theorem as a corollary.

1. Introduction

Recall that last time for a fixed prism (A, I), which we assume for simplicity to be bounded with I = (d), and a smooth A/I-algebra R we get a map of A/I-dgas

$$\eta_R^*: (\Omega_{R/(A/I)}^*, d_{\mathrm{dR}}) \to (H^*(\overline{\mathbb{A}}_{R/A}), \beta_d)$$

extending the structure map $\eta: R \to H^0(\overline{\mathbb{A}}_{R/A})$, where β_d is the Bockstein differential induced by the short exact sequence

$$0 \to \mathcal{O}_{\mathbb{A}}/(d) \xrightarrow{\cdot d} \mathcal{O}_{\mathbb{A}}/(d^2) \to \mathcal{O}_{\mathbb{A}}/(d) \to 0.$$

Our main goal today is to prove that this is an isomorphism.

Our strategy will be as follows: first, we specialize to the case I = (d) = (p), which from our general sketch of prismatic cohomology should correspond roughly to the crystalline setting. To that end we'll review crystalline cohomology and the crystalline-de Rham comparison, and relate crystalline and prismatic cohomology and prove a crystalline-prismatic comparison theorem. We can then deduce the Hodge-Tate comparison in characteristic p, and conclude in general by base change.

It should be noted that all proofs today will really just be sketches, and we'll make a bunch of simplifying assumptions because we can. For the details and rigor see Bhatt and Scholze's paper [2]. The main source for these notes is [1, Lecture VI], which we will follow quite closely.

2. Crystalline cohomology

We're taking d = p, so fix a p-torsion-free ring A and a smooth A/p-algebra R. (Bhatt doesn't say so, but I think A should also be p-complete.) Instead of working with the site-theoretic construction, we'll write down an explicit (cosimplicial) complex that computes crystalline cohomology; this should be reminiscent of the complex we wrote down last time to compute prismatic cohomology.

Let P be a(n ind-)smooth A-algebra equipped with a surjection P woheadrightarrow R, with kernel J. (Bhatt is unclear, but it seems to me that for simplicity we're assuming that A is a $\mathbb{Z}_{(p)}$ -algebra; we can tensor .) Recall that for any ring S and ideal $I \subset S$ a PD-structure on I is a set of maps $\gamma_n : I \to S$ for every $n \geq 0$ satisfying a list of properties that make $\gamma_n(x)$ behave like $\frac{x^n}{n!}$. In this case we can define a PD-structure on I just by $\gamma_n(x) = \frac{x^n}{n!}$ after inverting p; then we define $D_J(P)$ to be the p-completion of the subring of $P[\frac{1}{p}]$ generated by P and the images of the $\gamma_n : J \to P[\frac{1}{p}]$. Thus $D_J(P)$ is again p-torsion-free and a surjection $D_J(P) \to R$ defined on P by the map $P \to R$ and on $\gamma_n(x)$ for $x \in J$ by $\gamma_n(x) \mapsto 0$.

This is called the PD-envelope of P woheadrightarrow R, i.e. it has the following universal property.

Lemma 2.1. Let D oup R be a surjection of A-algebras with kernel I, where p is nilpotent on D, and suppose that I has a PD-structure. Then any A-algebra map P oup D commuting with the maps to R extends uniquely to a map $D_J(P) oup D$ compatible with the PD-structures.

In particular this construction is functorial on the category of A-algebras with surjections to R.

There is a differential $d_{P,J}: D_J(P) \to D_J(P) \widehat{\otimes}_P \Omega^1_{P/A}$ extending the usual de Rham differential $d_P: P \to \Omega^1_{P/A}$ via $d_{P,J}\gamma_n(x) = \gamma_{n-1}(x) dx \in \Omega^1_{P/A}[\frac{1}{p}]$; this is a flat connection which we'll use later.

Example 2.2. Take the simplest case R = A/p, and set P = A[x] with the surjection defined by $x \mapsto 0$ and the canonical surjection $A \to A/p$, so J = (p, x). Therefore $D_J(P)$ is the p-adic completion in $A[\frac{1}{p}]$ of $A[\gamma_1(x), \gamma_2(x), \ldots]$ (since $\gamma_1(x) = x$). Since each $\gamma_n(x)$ is the unique element of degree n (up to a scalar) using the grading on P = A[x], we have

$$D_J(P) = \widehat{\bigoplus}_{n \ge 0} A \cdot \gamma_n(x)$$

with differential sending $a\gamma_n(x) \mapsto a\gamma_{n-1}(x)$ for $a \in A$, so it has nontrivial cohomology only in degree 0, where it is given by the constants $A \cdot 1$. This is a version of Poincare's lemma.¹

Fix some P as above. Since P is an A-algebra, we get a cosimplicial A-algebra

$$P^{\bullet} = \left(P \Longrightarrow P \otimes_{A} P \Longrightarrow P \otimes_{A} P \otimes_{A} P \Longrightarrow \cdots \right).$$

If we write $P^n = P^{\otimes_A(n+1)}$, we have a multiplication map $\mu: P^n \to P$, which composes with the surjection $P \to R$ to give a map $P^n \to R$ for each n. Let J^n be the kernel of this map, and note that each P^n is again (ind-)smooth as an A-algebra. Applying our construction above, by functoriality we get another cosimplicial A-algebra

$$C_{\operatorname{crys}}^{\bullet}(R/A) := D_{J^{\bullet}}(P^{\bullet}) = \left(D_{J^{0}}(P^{0}) \Longrightarrow D_{J^{1}}(P^{1}) \Longrightarrow D_{J^{2}}(P^{2}) \Longrightarrow \cdots \right).$$

We define crystalline cohomology to be the cohomology of the associated complex

$$R\Gamma_{\operatorname{crys}}(R/A) := \operatorname{Tot}(C_{\operatorname{crys}}^{\bullet}(R/A)) \in D(A).$$

By general nonsense this is a commutative algebra object in D(A). (The reason this agrees with the usual crystalline cohomology is, I think, that for each choice of P $D_{J^{\bullet}}(P^{\bullet})$ is a universal Čech cover of R over A in the crystalline topos.)

Note: it is possible to choose P functorially in R: for example, we can take P to be the free algebra on the underlying set of A. This makes $D_{J^{\bullet}}(P^{\bullet})$ and therefore the crystalline cohomology functorial in R, and so the Frobenius of R induces an endomorphism of $R\Gamma_{\text{crys}}(R/A)$.

Recall the differential $d_{P,J}: D_J(P) \to D_J(P) \widehat{\otimes}_P \Omega^1_{P/A}$. This extends to a differential on $D_J(P) \widehat{\otimes}_P \Omega^*_{P/A}$ making it into a complex. Likewise the same argument as in the prismatic case last time gives us an A/p-linear Bockstein differential β_p on crystalline cohomology. With these differentials, we have the following.

¹For Bhatt's claim that if we instead used the J-adic completion of P, it seems like we need to be in characteristic p, which we are not...

Theorem 2.3 (Crystalline-de Rham comparison). There is a natural quasi-isomorphism $R\Gamma_{\text{crys}}(R/A) \to D_J(P) \widehat{\otimes}_P \Omega_{P/A}^*$.

Choosing P to be a smooth lift of R so that J = (p), tensoring with A/p gives a comparison theorem modulo p.

Corollary 2.4. There is a natural quasi-isomorphism $R\Gamma_{\text{crys}}(R/A) \otimes_A^L A/p \to \Omega_{R/(A/p)}^*$ in D(A/p).

(Note: naturality does not follow from Theorem 2.3, since we have to choose a lift; but we can get it by reproving the theorem with A/p-coefficients.)

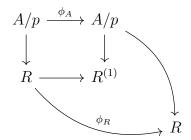
Let $\phi_A: A/p \to A/p$ be the Frobenius, and define the Frobenius twist $R^{(1)} = R \otimes_{A/p,\phi} A/p$, i.e. the pushout

$$A/p \xrightarrow{\phi_A} A/p$$

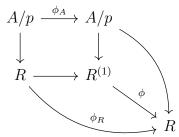
$$\downarrow \qquad \qquad \downarrow$$

$$R \longrightarrow R^{(1)}$$

By the universal property of the pushout, since the diagram



commutes, where $\phi_R: R \to R$ is the Frobenius on R, there exists a unique ring homomorphism $\phi: R^1 \to R$ making



commute. Therefore R is an $R^{(1)}$ algebra and so each $\Omega^i_{R/(A/p)}$ is an R-algebra, and so so is the strictly graded commutative ring $H^*(\Omega^*_{R/(A/p)})$. The A/p-linear Bockstein differential β_p on mod p crystalline cohomology gives by Corollary 2.4 a differential on $H^*(\Omega^*_{R/(A/p)})$ (which we will denote in the same way), making it an A/p-dga. Therefore by the universal property of the de Rham complex the $R^{(1)}$ -algebra structure of $H^*(\Omega^*_{R/(A/p)})$ extends to a map of A/p-dgas

$$Cart^* : (\Omega^*_{R^{(1)}/(A/p)}, d_{dR}) \to (H^*(\Omega^*_{R/(A/p)}), \beta_p).$$

Theorem 2.5 (Cartier). This map Cart* is an isomorphism.

(Note: using Corollary 2.4 this can also be formulated in terms of crystalline cohomology. The asymmetry of $R^{(1)}$ on one side and R on the other remains, but will go away once we switch to prismatic cohomology.)

3. Crystalline vs prismatic cohomology

Recall from last time that if (A, I) is a prism, R is an A/I-algebra, and F_0 is an A-algebra equipped with a surjection to R with kernel J, we can construct the prismatic envelope (F, IF) of (F_0, J) such that the diagram

commutes. This gives an object in $(R/A)_{\triangle}$, and in fact it turns out to be a weakly initial object so that, letting $F_0^n = F_0^{\otimes_A(n+1)}$ and J^n be the kernel of the composition of the multiplication map $F_0^n \to F_0$ with the map $F_0 \to R$, the cosimplicial A-algebra

$$F_0\left\{\frac{J^0}{I}\right\} \Longrightarrow F_0^1\left\{\frac{J^1}{I}\right\} \Longrightarrow F_0^2\left\{\frac{J^2}{I}\right\} \Longrightarrow \cdots$$

computes prismatic cohomology $\Delta_{R/A}$.

This is very reminiscent of our complex computing crystalline cohomology $D_{J^{\bullet}}(P^{\bullet})$, with the PD-envelope replaced by the prismatic envelope. (In our case, I = (p).) Fortunately we can relate these two notions.

Lemma 3.1. Let A be a p-torsion-free δ -ring, and let P be a δ -A-algebra which is p-completely flat over A. (For example, ind-smooth.) Let $x_1, \ldots, x_r \in P$ be such that their images in P/p form a regular sequence, and set $J = (p, x_1, \ldots, x_r) \subset P$. Then

$$P\left\{\frac{\phi(J)}{p}\right\}^{\wedge} = D_J(P),$$

where ϕ is the Frobenius on P associated to the δ -structure.

Note that if we take P free in our construction from section 2, then each $J^n \subset P^n$ satisfies this condition.

Proof sketch. We'll prove this for $P = \mathbb{Z}_p\{x\}$; the general case follows by a base change argument. Recall that $\mathbb{Z}_p\{x\}$ is the free δ -ring over \mathbb{Z}_p on one variable x, given by $\mathbb{Z}_p[x_0, x_1, x_2, \ldots]$ with $x = x_0$ and $\delta(x_n) = x_{n+1}$. In this case $P/p = \mathbb{F}_p\{x\}$, so the only nontrivial possibility for J is J = (p, x). Since ϕ fixes p, the left-hand side of the desired equality is just $P\{\frac{\phi(x)}{p}\} \simeq \mathbb{Z}_p\{x,y\}/(py-\phi(x))$.

This is defined by the pushout

$$\mathbb{Z}_{p}\{z\} \longrightarrow \mathbb{Z}_{p}\{z,y\}/(py-z)$$

$$\downarrow_{z \mapsto \phi(x)} \qquad \qquad \downarrow_{y \mapsto \frac{\phi(x)}{p}} .$$

$$\mathbb{Z}_{p}\{x\} \longrightarrow \mathbb{Z}_{p}\left\{x,\frac{\phi(x)}{p}\right\}$$

The left vertical map is essentially the Frobenius on P, and turns out to be flat; it follows that $P\{\frac{\phi(x)}{p}\} \simeq \mathbb{Z}_p\{x,y\}/(py-\phi(x))$ is flat over $\mathbb{Z}_p\{z,y\}/(py-z)$ and therefore p-torsion-free.

Inverting p everywhere, the top map becomes an isomorphism and therefore so doe the bottom map, so $P[\frac{1}{p}] \simeq P\{\frac{\phi(x)}{p}\}[\frac{1}{p}]$. Therefore the inclusion of $P\{\frac{\phi(x)}{p}\}$ into the right-hand side gives an inclusion into $P[\frac{1}{p}]$, and so we can think of it as a subring of $P[\frac{1}{p}]$. We have $\phi(x) = x^p + p\delta(x)$, so $P\{\frac{\phi(x)}{p}\} = P\{\frac{x^p}{p} + \delta(x)\} = P\{\frac{x^p}{p}\}$ as a subring of $P[\frac{1}{p}]$. Thus $P\{\frac{\phi(x)}{p}\}$ is the smallest δ -subring of $P[\frac{1}{p}]$ containing P and $\frac{x^p}{p}$, which we will call C for convenience.

On the other hand, by a similar argument the right-hand side of the desired inequality is $D := D_J(P) = P[\gamma_1(x), \gamma_2(x), \ldots]$. Thus to show $D \subseteq C$ it suffices to show that $\gamma_n(x) \in C$ for every n. We have $\gamma_p(x) = \frac{x^p}{p!} \in C$ as above since (p-1)! is invertible in \mathbb{Z}_p and $\frac{1}{(p-1)} \frac{x^p}{p} = \gamma_p(x)$, and for any n and any $z \in P[\frac{1}{p}]$ we have

$$\gamma_n(\gamma_p(z)) = \frac{(np)!}{n!(p!)^n} \gamma_{np}(z);$$

we can check that the coefficient will always be invertible in \mathbb{Z}_p . Therefore $\gamma_{np}(z)$ is in C if and only if $\gamma_n(\gamma_p(z))$ is. Therefore if we have $z \in C$ and $\gamma_{p^k}(z) \in C$ for all $k \geq 1$, we can prove by induction on n that $\gamma_n(z) \in C$ for all n: we can reduce as above to the case where n is coprime to p, in which case the greatest power of p dividing n! is strictly less than $\sum_{k=1}^{\log_p n} \frac{n}{p^k} \leq \frac{n-1}{p-1}$. Therefore if we write n = pm + r for some r < p we have

$$\frac{x^n}{n!} = u \frac{(x^p)^m}{p^k} x^r$$

for some unit $u \in \mathbb{Z}_p^{\times}$ and some integer $k < \frac{n-1}{p-1}$. In particular $k \leq m$ whenever n > p, and so this is in C since $\frac{x^p}{p}$, p, and x are. If n < p then n! is not divisible by p and so $\gamma_n(x)$ is some unit times a power of x and therefore in C.

Thus it suffices to show that $\gamma_{p^k}(x) \in C$ for all $k \geq 1$. This is by induction, since we know that $\gamma_p(x) \in C$. Since C is a δ -ring, it follows that $\delta(\gamma_{p^k}(x)) \in C$ if $\gamma_{p^k}(x) \in C$. We have

$$\delta\left(\frac{x^{p^k}}{(p^k)!}\right) = \frac{1}{p}\left(\frac{\phi(x)^{p^k}}{(p^k)!} - \frac{(x^{p^k})^p}{((p^k)!)^p}\right) = \frac{1}{p}\left(\frac{(x^p + p\delta(x))^{p^k}}{(p^k)!} - \frac{x^{p^{k+1}}}{((p^k)!)^p}\right).$$

Since $(p^k)!$ has $1+p+p^2+\cdots+p^{k-1}=\frac{p^k-1}{p-1}$ factors of p, since

$$\frac{(x^p + p\delta(x))^{p^k}}{p^{1 + \frac{p^k - 1}{p - 1}}} = p^{p^k - \frac{p^k - 1}{p - 1} - 1} \left(\frac{x^p + p\delta(x)}{p}\right)^{p^k} \in C$$

since $\frac{x^p}{p} \in C$ and $\delta(x) \in C$ and this differs from the first term above by a unit of \mathbb{Z}_p , combined with the fact that the left-hand side is in C by assumption it follows that

$$\frac{x^{p^{k+1}}}{p((p^k)!)^p} \in C.$$

Again this differs by a unit of \mathbb{Z}_p from $\gamma_{p^{k+1}}(x)$, so this is also in C, and by induction the claim follows.

It remains only to show that $C \subseteq D$. Since $\gamma_p(x) \in D$ and therefore $\frac{x^p}{p} \in D$, it suffices to show that D is a δ -ring, or equivalently that the Frobenius ϕ of P lifts to an endomorphism of D. Certainly it lifts to $P[\frac{1}{p}]$, so we just need to show that it fixes $D \subset P[\frac{1}{p}]$, i.e. that $\phi(\gamma_n(x)) \in D$ for every n. In particular we need to show that $\phi(\gamma_n(x)) - \gamma_n(x)^p \in pD$: being in D shows that it is an endomorphism, and being in pD shows that it is a lift of Frobenius. In fact similarly to above we have $\gamma_{np}(x) = \gamma_p(\gamma_n(x)) = \frac{\gamma_n(x)^p}{p}$ up to a unit of \mathbb{Z}_p , so $\gamma_n(x)^p \in pD$ and it suffices to check that $\phi(\gamma_n(x)) \in pD$ for each n; and expanding in terms of δ this becomes an elementary computation of p-adic valuations.

This allows us to give a more explicit description of the prismatic envelopes.

Corollary 3.2. Let (A, (d)) be a bounded prism, P be a (p, d)-completely flat δ -A-algebra, and x_1, \ldots, x_r be a (p, d)-completely regular sequence relative to A (which is a technical condition I don't want to get into), with $J = (p, d, x_1, \ldots, x_r)$.

- 1) The (p,d)-adic completion E of $P\{\frac{x_1}{d},\ldots,\frac{x_r}{d}\}$ in the category of δ -rings is (p,d)-completely flat over A.
- 2) This ring E is equal to the prismatic envelope $P\{\frac{J}{d}\}^{\wedge}$.
- 3) Prismatic envelopes commute with base change along maps of bounded prisms.

Proof sketch; omit time depending. Base change is easy from the construction of E (apparently), and by flatness E is p-torsion-free and so there is map $(A,(d)) \to (E,(d))$ which is a map of bounded prisms, and it can be verified that it has the desired universal property. Therefore it suffices to prove flatness.

When (d) = (p), we can prove flatness from Lemma 3.1 and properties of divided power algebras; and the more general result is proven by base change.

We're now more or less ready to prove the crystalline comparison theorem. Set d = p, and rewrite our complex computing prismatic cohomology with the notation of section 2 as

$$C^{\bullet}_{\underline{\mathbb{A}}}(R/A) := \left(P^0 \left\{ \frac{J^0}{I} \right\} \Longrightarrow P^1 \left\{ \frac{J^1}{I} \right\} \Longrightarrow P^2 \left\{ \frac{J^2}{I} \right\} \Longrightarrow \cdots \right),$$

so that as last time we have

$$\triangle_{R/A} \simeq \operatorname{Tot}(\mathbb{C}^{\bullet}_{\mathbb{A}}(R/A)).$$

We can again make this functorial by taking P to be e.g. the free δ -A-algebra on W(R).

Theorem 3.3 (Crystalline comparison). There is a canonical isomorphism

$$(\phi_A^* \triangle_{R/A})^{\wedge} \simeq R\Gamma_{\operatorname{crys}}(R/A)$$

of commutative algebra objects in D(A) compatibly with Frobenius.

Proof sketch. For simplicity we'll take $A = \mathbb{Z}_p$, so that ϕ_A is the identity and so the left-hand side is just Δ_{R/\mathbb{Z}_p} . We'll construct this isomorphism by writing down a homotopy equivalence between the two cosimplicial A-algebras the compute each side, $C^{\bullet}_{\mathbb{A}}(R/A) = P^{\bullet}\{\frac{J^{\bullet}}{p}\}^{\wedge}$ and $D_{J^{\bullet}}(P^{\bullet})$.

By Čech theory, the structure map $A \to P^{\bullet}$ is a homotopy equivalence of cosimplicial δ -A-algebras since we've chosen it to be free. Thus for any cosimplicial P^{\bullet} -algebra Q^{\bullet} (which is also an A-algebra) the induced map $\phi_A^*Q^{\bullet} \to \phi_{P^{\bullet}}^*Q^{\bullet}$ is also a homotopy equivalence. In particular we have a homotopy equivalence

$$\phi_A^* C_{\wedge}^{\bullet}(R/A) \to \phi_{P^{\bullet}}^* C_{\wedge}^{\bullet}(R/A).$$

Since we're taking $A = \mathbb{Z}_p$, the left-hand side is just $C^{\bullet}_{\mathbb{A}}(R/A)$; the right-hand side is

$$\phi_{P^{\bullet}}^* P^{\bullet} \left\{ \frac{J^{\bullet}}{p} \right\}^{\wedge} = P^{\bullet} \left\{ \frac{\phi_{P^{\bullet}}(J^{\bullet})}{p} \right\}^{\wedge}.$$

But by Lemma 3.1 the right-hand side can be identified with $D_{J^{\bullet}}(P^{\bullet})$, which computes $R\Gamma_{\text{crys}}(R/A)$.

We have not explained the compatibility with Frobenius part of the statement, nor will we. $\hfill\Box$

4. Proof of Hodge-Tate comparison

We are finally ready to sketch a proof of the Hodge-Tate comparison theorem, as stated last time and at the beginning.

Let (A,(d)) be a bounded prism, and R be a formally smooth A/(d)-algebra. First, assume (d)=(p), and that the Frobenius ϕ_A on A/p is faithfully flat. Recall our map $\eta_R^*: (\Omega_{R/(A/(p))}^*, d_{\mathrm{dR}}) \to (H^*(\overline{\mathbb{A}}_{R/A}), \beta_d)$ of A/(d)-dgas. Taking the pullback by ϕ_A on both sides and applying Theorem 3.3 (crystalline comparison) and Corollary 2.4 to the right-hand side makes this into a map

$$(\Omega^*_{R^{(1)}/(A/(d))}, d_{dR}) \to (H^*(\Omega^*_{R/(A/p)}), \beta_p)$$

since $R^{(1)}$ is the pullback of R by ϕ_A , and this agrees with the Cartier isomorphism since everything in sight is canonical; since it differs from the original map only by isomorphisms, we conclude that $\phi_A^* \eta_R^*$ is also an isomorphism. Since ϕ_A^* is faithfully flat it follows that η_R^* is an isomorphism.

In general when (d) = (p) we need a certain étale localization property for prismatic cohomology which allows us to reduce to the case $R = (A/p)[x_1, \ldots, x_n]$; then by base change we can reduce to the case $A = \mathbb{Z}_p$, which certainly has faithfully flat Frobenius.

In general, we work at the level of the derived category: we can choose a map

$$\eta_R: \bigoplus_n \Omega^n_{R/(A/(d))} \to \overline{\mathbb{A}}_{R/A}$$

inducing η_R^* on cohomology (since we've assumed that R is formally smooth, so each term is finite projective over R). We want to show that η_R is an isomorphism in D(R); this is

REFERENCES

invariant under (p, d)-completely flat base change, so in particular we can assume $d = \phi(e)$ for some $e \in A$.

We'll assume that d, or equivalently e, is a non-zero-divisor in A/p. Let $D = A\{\frac{d}{p}\}^{\wedge} = A\{\frac{\phi(e)}{p}\}^{\wedge}$. By Lemma ?? this is p-torsion-free and coincides with $D_{(e)}(A)$, the p-adically completed divided power envelope of A with respect to (e). We have a structure morphism $\alpha: A \to D$; since the diagram

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & D \\
\downarrow & & \downarrow \\
A/(d) & \longrightarrow & R
\end{array}$$

commutes, $\alpha(d)$ is in the kernel of the map $D \to R$, which as above is in pD, so $\alpha(d) = pu$ for some $u \in D$; and by the irreducibility of distinguished elements it follows that u is a unit, so α gives a map $(A,(d)) \to (D,(p))$ of bounded prisms. Modulo d, this map factors as $A/(d) \to A/(p,d) = A/(p,\phi(e)) = A/(p,e^p) \to D/p$. Thus for abstract nonsense reasons (the second map is faithfully flat, the first is well-behaved since we assumed that d is not a zero divisor in A/p) p-complete base change of derived (p,d)-complete complexes along α is a conservative functor, i.e. the only morphisms which are mapped to isomorphisms are themselves isomorphisms. By Corollary 3.2, prismatic envelopes commute with base change along α , and since these compute prismatic cohomology it follows that

$$\overline{\mathbb{A}}_{R/A}\widehat{\otimes}_A^L D \simeq \overline{\mathbb{A}}_{R\widehat{\otimes}_A D/D},$$

and doing the same thing on the de Rham side gives the base changed map

$$\alpha_* \eta_R : (\Omega^*_{R \widehat{\otimes}_A D/(D/p)}, d_{\mathrm{dR}}) \to (H^*(\overline{\mathbb{A}}_{R \widehat{\otimes}_A D/D}), \beta_d).$$

In this case we can apply the above to conclude that $\alpha_*\eta_R$ is an isomorphism; and since base change along α is a conservative functor it follows that η_R is also an isomorphism.

The Hodge-Tate comparison allows us to globalize prismatic cohomology using the sheaf properties of differential forms.

Corollary 4.1. Let X be any formal scheme over $\operatorname{Spec}(A/(d))$. There exists a functorial (p,d)-complete commutative algebra object $\Delta_{X/A} \in D(X,A)$ equipped with a ϕ_A -linear endomorphism ϕ_X such that

- for any affine open $U = \operatorname{Spf}(R) \subseteq X$ there is a natural isomorphism between $R\Gamma(U, \Delta_{X/A})$ and $\Delta_{R/A}$ carrying ϕ_X to ϕ_R , and
- if we set $\overline{\triangle}_{X/A} = \triangle_{X/A} \otimes_A^L A/(d) \in D(X, A/(d))$, then $\overline{\triangle}_{X/A}$ is a perfect complex on X and we have canonical isomorphisms $\Omega^n_{X/A} \to H^n(\overline{\triangle}_{X/A})$ for each n, compatible with the Hodge-Tate comparison theorem for the local isomorphisms in the previous part.

References

[1] Bhargav Bhatt. Samuel Eilenberg Lectures at Columbia University, lecture notes: prismatic cohomology, 2018. URL: http://www-personal.umich.edu/~bhattb/teaching/prismatic-columbia/lecture6-hodge-tate-and-crystalline-comparison.pdf.

REFERENCES REFERENCES

[2] Bhargav Bhatt and Peter Scholze. Prisms and prismatic cohomology. $arXiv\ preprint\ arXiv:1905.08229,\ 2019.$