
Hodge-Tate and crystalline comparison

Abstract. We briefly review crystalline cohomology and its relationship to prismatic
cohomology, and sketch a proof of the crystalline comparison theorem and of the Hodge-
Tate comparison theorem as a corollary.

1. Introduction

Recall that last time for a fixed prism (A, I), which we assume for simplicity to be bounded
with I = (d), and a smooth A/I-algebra R we get a map of A/I-dgas

η∗R : (Ω∗R/(A/I), ddR)→ (H∗(�R/A), βd)

extending the structure map η : R → H0(�R/A), where βd is the Bockstein differential
induced by the short exact sequence

0→ O�/(d)
·d−→ O�/(d

2)→ O�/(d)→ 0.

Our main goal today is to prove that this is an isomorphism.
Our strategy will be as follows: first, we specialize to the case I = (d) = (p), which from

our general sketch of prismatic cohomology should correspond roughly to the crystalline
setting. To that end we’ll review crystalline cohomology and the crystalline-de Rham com-
parison, and relate crystalline and prismatic cohomology and prove a crystalline-prismatic
comparison theorem. We can then deduce the Hodge-Tate comparison in characteristic p,
and conclude in general by base change.

It should be noted that all proofs today will really just be sketches, and we’ll make a
bunch of simplifying assumptions because we can. For the details and rigor see Bhatt and
Scholze’s paper [2]. The main source for these notes is [1, Lecture VI], which we will follow
quite closely.

2. Crystalline cohomology

We’re taking d = p, so fix a p-torsion-free ring A and a smooth A/p-algebra R. (Bhatt
doesn’t say so, but I think A should also be p-complete.) Instead of working with the site-
theoretic construction, we’ll write down an explicit (cosimplicial) complex that computes
crystalline cohomology; this should be reminiscent of the complex we wrote down last time
to compute prismatic cohomology.

Let P be a(n ind-)smooth A-algebra equipped with a surjection P � R, with kernel
J . (Bhatt is unclear, but it seems to me that for simplicity we’re assuming that A is a
Z(p)-algebra; we can tensor .) Recall that for any ring S and ideal I ⊂ S a PD-structure on
I is a set of maps γn : I → S for every n ≥ 0 satisfying a list of properties that make γn(x)
behave like xn

n!
. In this case we can define a PD-structure on J just by γn(x) = xn

n!
after

inverting p; then we define DJ(P ) to be the p-completion of the subring of P [1
p
] generated by

P and the images of the γn : J → P [1
p
]. Thus DJ(P ) is again p-torsion-free and a surjection

DJ(P )→ R defined on P by the map P � R and on γn(x) for x ∈ J by γn(x) 7→ 0.
This is called the PD-envelope of P � R, i.e. it has the following universal property.
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2 CRYSTALLINE COHOMOLOGY

Lemma 2.1. Let D � R be a surjection of A-algebras with kernel I, where p is nilpotent on
D, and suppose that I has a PD-structure. Then any A-algebra map P → D commuting with
the maps to R extends uniquely to a map DJ(P )→ D compatible with the PD-structures.

In particular this construction is functorial on the category of A-algebras with surjections
to R.

There is a differential dP,J : DJ(P ) → DJ(P )⊗̂PΩ1
P/A extending the usual de Rham

differential dP : P → Ω1
P/A via dP,Jγn(x) = γn−1(x) dx ∈ Ω1

P/A[1
p
]; this is a flat connection

which we’ll use later.

Example 2.2. Take the simplest case R = A/p, and set P = A[x] with the surjection
defined by x 7→ 0 and the canonical surjection A → A/p, so J = (p, x). Therefore DJ(P )
is the p-adic completion in A[1

p
] of A[γ1(x), γ2(x), . . .] (since γ1(x) = x). Since each γn(x) is

the unique element of degree n (up to a scalar) using the grading on P = A[x], we have

DJ(P ) =
⊕̂
n≥0

A · γn(x)

with differential sending aγn(x) 7→ aγn−1(x) for a ∈ A, so it has nontrivial cohomology only
in degree 0, where it is given by the constants A · 1. This is a version of Poincare’s lemma.1

Fix some P as above. Since P is an A-algebra, we get a cosimplicial A-algebra

P • =
(
P P ⊗A P P ⊗A P ⊗A P · · ·

)
.

If we write P n = P⊗A(n+1), we have a multiplication map µ : P n → P , which composes with
the surjection P → R to give a map P n → R for each n. Let Jn be the kernel of this map,
and note that each P n is again (ind-)smooth as an A-algebra. Applying our construction
above, by functoriality we get another cosimplicial A-algebra

C•crys(R/A) := DJ•(P •) =
(
DJ0(P 0) DJ1(P 1) DJ2(P 2) · · ·

)
.

We define crystalline cohomology to be the cohomology of the associated complex

RΓcrys(R/A) := Tot(C•crys(R/A)) ∈ D(A).

By general nonsense this is a commutative algebra object in D(A). (The reason this agrees
with the usual crystalline cohomology is, I think, that for each choice of P DJ•(P •) is a
universal Čech cover of R over A in the crystalline topos.)

Note: it is possible to choose P functorially in R: for example, we can take P to be
the free algebra on the underlying set of A. This makes DJ•(P •) and therefore the crys-
talline cohomology functorial in R, and so the Frobenius of R induces an endomorphism of
RΓcrys(R/A).

Recall the differential dP,J : DJ(P ) → DJ(P )⊗̂PΩ1
P/A. This extends to a differential on

DJ(P )⊗̂PΩ∗P/A making it into a complex. Likewise the same argument as in the prismatic

case last time gives us an A/p-linear Bockstein differential βp on crystalline cohomology.
With these differentials, we have the following.

1For Bhatt’s claim that if we instead used the J-adic completion of P , it seems like we need to be in
characteristic p, which we are not...
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2 CRYSTALLINE COHOMOLOGY

Theorem 2.3 (Crystalline-de Rham comparison). There is a natural quasi-isomorphism
RΓcrys(R/A)→ DJ(P )⊗̂PΩ∗P/A.

Choosing P to be a smooth lift of R so that J = (p), tensoring with A/p gives a com-
parison theorem modulo p.

Corollary 2.4. There is a natural quasi-isomorphism RΓcrys(R/A) ⊗LA A/p → Ω∗R/(A/p) in

D(A/p).

(Note: naturality does not follow from Theorem 2.3, since we have to choose a lift; but
we can get it by reproving the theorem with A/p-coefficients.)

Let φA : A/p→ A/p be the Frobenius, and define the Frobenius twist R(1) = R⊗A/p,φA/p,
i.e. the pushout

A/p A/p

R R(1)

φA

.

By the universal property of the pushout, since the diagram

A/p A/p

R R(1)

R

φA

φR

commutes, where φR : R → R is the Frobenius on R, there exists a unique ring homomor-
phism φ : R1 → R making

A/p A/p

R R(1)

R

φA

φR

φ

commute. Therefore R is an R(1) algebra and so each Ωi
R/(A/p) is an R-algebra, and so so

is the strictly graded commutative ring H∗(Ω∗R/(A/p)). The A/p-linear Bockstein differential

βp on mod p crystalline cohomology gives by Corollary 2.4 a differential on H∗(Ω∗R/(A/p))

(which we will denote in the same way), making it an A/p-dga. Therefore by the universal
property of the de Rham complex the R(1)-algebra structure of H∗(Ω∗R/(A/p)) extends to a

map of A/p-dgas
Cart∗ : (Ω∗R(1)/(A/p), ddR)→ (H∗(Ω∗R/(A/p)), βp).

Theorem 2.5 (Cartier). This map Cart∗ is an isomorphism.
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3 CRYSTALLINE VS PRISMATIC COHOMOLOGY

(Note: using Corollary 2.4 this can also be formulated in terms of crystalline cohomology.
The asymmetry of R(1) on one side and R on the other remains, but will go away once we
switch to prismatic cohomology.)

3. Crystalline vs prismatic cohomology

Recall from last time that if (A, I) is a prism, R is an A/I-algebra, and F0 is an A-algebra
equipped with a surjection to R with kernel J , we can construct the prismatic envelope
(F, IF ) of (F0, J) such that the diagram

A F0 F = F0

{
J
I

}∧
A/I R ' F0/J F/IF

commutes. This gives an object in (R/A)�, and in fact it turns out to be a weakly initial

object so that, letting F n
0 = F

⊗A(n+1)
0 and Jn be the kernel of the composition of the

multiplication map F n
0 → F0 with the map F0 → R, the cosimplicial A-algebra

F0

{
J0

I

}
F 1
0

{
J1

I

}
F 2
0

{
J2

I

}
· · ·

computes prismatic cohomology �R/A.
This is very reminiscent of our complex computing crystalline cohomology DJ•(P •), with

the PD-envelope replaced by the prismatic envelope. (In our case, I = (p).) Fortunately we
can relate these two notions.

Lemma 3.1. Let A be a p-torsion-free δ-ring, and let P be a δ-A-algebra which is p-
completely flat over A. (For example, ind-smooth.) Let x1, . . . , xr ∈ P be such that their
images in P/p form a regular sequence, and set J = (p, x1, . . . , xr) ⊂ P . Then

P

{
φ(J)

p

}∧
= DJ(P ),

where φ is the Frobenius on P associated to the δ-structure.

Note that if we take P free in our construction from section 2, then each Jn ⊂ P n satisfies
this condition.

Proof sketch. We’ll prove this for P = Zp{x}; the general case follows by a base change argu-
ment. Recall that Zp{x} is the free δ-ring over Zp on one variable x, given by Zp[x0, x1, x2, . . .]
with x = x0 and δ(xn) = xn+1. In this case P/p = Fp{x}, so the only nontrivial possibil-
ity for J is J = (p, x). Since φ fixes p, the left-hand side of the desired equality is just

P{φ(x)
p
} ' Zp{x, y}/(py − φ(x)).
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3 CRYSTALLINE VS PRISMATIC COHOMOLOGY

This is defined by the pushout

Zp{z} Zp{z, y}/(py − z)

Zp{x} Zp
{
x, φ(x)

p

}z 7→φ(x) y 7→φ(x)
p .

The left vertical map is essentially the Frobenius on P , and turns out to be flat; it follows that
P{φ(x)

p
} ' Zp{x, y}/(py − φ(x)) is flat over Zp{z, y}/(py − z) and therefore p-torsion-free.

Inverting p everywhere, the top map becomes an isomorphism and therefore so doe the
bottom map, so P [1

p
] ' P{φ(x)

p
}[1
p
]. Therefore the inclusion of P{φ(x)

p
} into the right-hand

side gives an inclusion into P [1
p
], and so we can think of it as a subring of P [1

p
]. We have

φ(x) = xp + pδ(x), so P{φ(x)
p
} = P{xp

p
+ δ(x)} = P{xp

p
} as a subring of P [1

p
]. Thus P{φ(x)

p
}

is the smallest δ-subring of P [1
p
] containing P and xp

p
, which we will call C for convenience.

On the other hand, by a similar argument the right-hand side of the desired inequality is
D := DJ(P ) = P [γ1(x), γ2(x), . . .]. Thus to show D ⊆ C it suffices to show that γn(x) ∈ C
for every n. We have γp(x) = xp

p!
∈ C as above since (p − 1)! is invertible in Zp and

1
(p−1)

xp

p
= γp(x), and for any n and any z ∈ P [1

p
] we have

γn(γp(z)) =
(np)!

n!(p!)n
γnp(z);

we can check that the coefficient will always be invertible in Zp. Therefore γnp(z) is in C
if and only if γn(γp(z)) is. Therefore if we have z ∈ C and γpk(z) ∈ C for all k ≥ 1, we
can prove by induction on n that γn(z) ∈ C for all n: we can reduce as above to the case
where n is coprime to p, in which case the greatest power of p dividing n! is strictly less than∑logp n

k=1
n
pk
≤ n−1

p−1 . Therefore if we write n = pm+ r for some r < p we have

xn

n!
= u

(xp)m

pk
xr

for some unit u ∈ Z×p and some integer k < n−1
p−1 . In particular k ≤ m whenever n > p, and

so this is in C since xp

p
, p, and x are. If n < p then n! is not divisible by p and so γn(x) is

some unit times a power of x and therefore in C.
Thus it suffices to show that γpk(x) ∈ C for all k ≥ 1. This is by induction, since we

know that γp(x) ∈ C. Since C is a δ-ring, it follows that δ(γpk(x)) ∈ C if γpk(x) ∈ C. We
have

δ

(
xp

k

(pk)!

)
=

1

p

(
φ(x)p

k

(pk)!
− (xp

k
)p

((pk)!)p

)
=

1

p

(
(xp + pδ(x))p

k

(pk)!
− xp

k+1

((pk)!)p

)
.

Since (pk)! has 1 + p+ p2 + · · ·+ pk−1 = pk−1
p−1 factors of p, since

(xp + pδ(x))p
k

p1+
pk−1
p−1

= pp
k− p

k−1
p−1
−1
(
xp + pδ(x)

p

)pk
∈ C
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3 CRYSTALLINE VS PRISMATIC COHOMOLOGY

since xp

p
∈ C and δ(x) ∈ C and this differs from the first term above by a unit of Zp,

combined with the fact that the left-hand side is in C by assumption it follows that

xp
k+1

p((pk)!)p
∈ C.

Again this differs by a unit of Zp from γpk+1(x), so this is also in C, and by induction the
claim follows.

It remains only to show that C ⊆ D. Since γp(x) ∈ D and therefore xp

p
∈ D, it suffices to

show that D is a δ-ring, or equivalently that the Frobenius φ of P lifts to an endomorphism
of D. Certainly it lifts to P [1

p
], so we just need to show that it fixes D ⊂ P [1

p
], i.e. that

φ(γn(x)) ∈ D for every n. In particular we need to show that φ(γn(x)) − γn(x)p ∈ pD:
being in D shows that it is an endomorphism, and being in pD shows that it is a lift of
Frobenius. In fact similarly to above we have γnp(x) = γp(γn(x)) = γn(x)p

p
up to a unit of

Zp, so γn(x)p ∈ pD and it suffices to check that φ(γn(x)) ∈ pD for each n; and expanding in
terms of δ this becomes an elementary computation of p-adic valuations.

This allows us to give a more explicit description of the prismatic envelopes.

Corollary 3.2. Let (A, (d)) be a bounded prism, P be a (p, d)-completely flat δ-A-algebra,
and x1, . . . , xr be a (p, d)-completely regular sequence relative to A (which is a technical
condition I don’t want to get into), with J = (p, d, x1, . . . , xr).

1) The (p, d)-adic completion E of P{x1
d
, . . . , xr

d
} in the category of δ-rings is (p, d)-

completely flat over A.
2) This ring E is equal to the prismatic envelope P{J

d
}∧.

3) Prismatic envelopes commute with base change along maps of bounded prisms.

Proof sketch; omit time depending. Base change is easy from the construction of E (appar-
ently), and by flatness E is p-torsion-free and so there is map (A, (d)) → (E, (d)) which is
a map of bounded prisms, and it can be verified that it has the desired universal property.
Therefore it suffices to prove flatness.

When (d) = (p), we can prove flatness from Lemma 3.1 and properties of divided power
algebras; and the more general result is proven by base change.

We’re now more or less ready to prove the crystalline comparison theorem. Set d = p,
and rewrite our complex computing prismatic cohomology with the notation of section 2 as

C•�(R/A) :=

(
P 0
{
J0

I

}
P 1
{
J1

I

}
P 2
{
J2

I

}
· · ·

)
,

so that as last time we have
�R/A ' Tot(C•�(R/A)).

We can again make this functorial by taking P to be e.g. the free δ-A-algebra on W (R).

Theorem 3.3 (Crystalline comparison). There is a canonical isomorphism

(φ∗A�R/A)∧ ' RΓcrys(R/A)

of commutative algebra objects in D(A) compatibly with Frobenius.
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4 PROOF OF HODGE-TATE COMPARISON

Proof sketch. For simplicity we’ll take A = Zp, so that φA is the identity and so the left-hand
side is just �R/Zp . We’ll construct this isomorphism by writing down a homotopy equivalence
between the two cosimplicial A-algebras the compute each side, C•�(R/A) = P •{J•

p
}∧ and

DJ•(P •).
By Čech theory, the structure map A → P • is a homotopy equivalence of cosimplicial

δ-A-algebras since we’ve chosen it to be free. Thus for any cosimplicial P •-algebra Q• (which
is also an A-algebra) the induced map φ∗AQ

• → φ∗P •Q• is also a homotopy equivalence. In
particular we have a homotopy equivalence

φ∗AC
•
�(R/A)→ φ∗P •C•�(R/A).

Since we’re taking A = Zp, the left-hand side is just C•�(R/A); the right-hand side is

φ∗P •P •
{
J•

p

}∧
= P •

{
φP •(J•)

p

}∧
.

But by Lemma 3.1 the right-hand side can be identified with DJ•(P •), which computes
RΓcrys(R/A).

We have not explained the compatibility with Frobenius part of the statement, nor will
we.

4. Proof of Hodge-Tate comparison

We are finally ready to sketch a proof of the Hodge-Tate comparison theorem, as stated last
time and at the beginning.

Let (A, (d)) be a bounded prism, and R be a formally smooth A/(d)-algebra. First,
assume (d) = (p), and that the Frobenius φA on A/p is faithfully flat. Recall our map
η∗R : (Ω∗R/(A/(p)), ddR) → (H∗(�R/A), βd) of A/(d)-dgas. Taking the pullback by φA on both

sides and applying Theorem 3.3 (crystalline comparison) and Corollary 2.4 to the right-hand
side makes this into a map

(Ω∗R(1)/(A/(d)), ddR)→ (H∗(Ω∗R/(A/p)), βp)

since R(1) is the pullback of R by φA, and this agrees with the Cartier isomorphism since
everything in sight is canonical; since it differs from the original map only by isomorphisms,
we conclude that φ∗Aη

∗
R is also an isomorphism. Since φ∗A is faithfully flat it follows that η∗R

is an isomorphism.
In general when (d) = (p) we need a certain étale localization property for prismatic

cohomology which allows us to reduce to the case R = (A/p)[x1, . . . , xn]; then by base
change we can reduce to the case A = Zp, which certainly has faithfully flat Frobenius.

In general, we work at the level of the derived category: we can choose a map

ηR :
⊕
n

Ωn
R/(A/(d)) → �R/A

inducing η∗R on cohomology (since we’ve assumed that R is formally smooth, so each term
is finite projective over R). We want to show that ηR is an isomorphism in D(R); this is
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invariant under (p, d)-completely flat base change, so in particular we can assume d = φ(e)
for some e ∈ A.

We’ll assume that d, or equivalently e, is a non-zero-divisor in A/p. Let D = A{d
p
}∧ =

A{φ(e)
p
}∧. By Lemma ?? this is p-torsion-free and coincides with D(e)(A), the p-adically

completed divided power envelope of A with respect to (e). We have a structure morphism
α : A→ D; since the diagram

A D

A/(d) R

α

commutes, α(d) is in the kernel of the map D → R, which as above is in pD, so α(d) = pu
for some u ∈ D; and by the irreducibility of distinguished elements it follows that u is a
unit, so α gives a map (A, (d)) → (D, (p)) of bounded prisms. Modulo d, this map factors
as A/(d) → A/(p, d) = A/(p, φ(e)) = A/(p, ep) → D/p. Thus for abstract nonsense reasons
(the second map is faithfully flat, the first is well-behaved since we assumed that d is not
a zero divisor in A/p) p-complete base change of derived (p, d)-complete complexes along α
is a conservative functor, i.e. the only morphisms which are mapped to isomorphisms are
themselves isomorphisms. By Corollary 3.2, prismatic envelopes commute with base change
along α, and since these compute prismatic cohomology it follows that

�R/A⊗̂
L

AD ' �R⊗̂AD/D,

and doing the same thing on the de Rham side gives the base changed map

α∗ηR : (Ω∗
R⊗̂AD/(D/p)

, ddR)→ (H∗(�R⊗̂AD/D), βd).

In this case we can apply the above to conclude that α∗ηR is an isomorphism; and since base
change along α is a conservative functor it follows that ηR is also an isomorphism.

The Hodge-Tate comparison allows us to globalize prismatic cohomology using the sheaf
properties of differential forms.

Corollary 4.1. Let X be any formal scheme over Spec(A/(d)). There exists a functorial
(p, d)-complete commutative algebra object �X/A ∈ D(X,A) equipped with a φA-linear endo-
morphism φX such that
• for any affine open U = Spf(R) ⊆ X there is a natural isomorphism between RΓ(U,�X/A)

and �R/A carrying φX to φR, and
• if we set �X/A = �X/A ⊗LA A/(d) ∈ D(X,A/(d)), then �X/A is a perfect complex on X

and we have canonical isomorphisms Ωn
X/A → Hn(�X/A) for each n, compatible with

the Hodge-Tate comparison theorem for the local isomorphisms in the previous part.
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