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1. Introduction

Let’s start by recalling some notation: F is a totally real number field with ring of integers
O, I is the set of embeddings σ : F ↪→ Q with |I| = [F : Q] = n, G = ResO/Z GL(2), i.e.
G(R) = GL2(R⊗Z O), and S = ResC/RGm is the Deligne torus.

Let h0 : S→ GL(2) = G/R be the homomorphism of real algebraic groups defined on real

points by S(R) 3 a+ bi 7→
(
a b
−b a

)
. We define X to be the conjugacy class of h0 under the

action of G(R) ' GL2(R)I , with a corresponding action of G(R) on X by conjugation. The
stabilizer of h0 for this action is the centralizer of h0 in G(R), which is just the product of
the maximal compact subgroup K(R)+ of the connected component G(R)+ of the identity
(isomorphic to SO2(R)I) with its center Z(R) ' (R×)I , so the connected component X+

of h0 is isomorphic to G(R)+/(Z × K(R)+) ' (GL2(R)/(R× × SO2(R)))I ' HI , with the
action of g = (gσ)σ ∈ G(R) ' GL2(R)I on HI given by a copy of the fractional linear
action for each σ ∈ I. Explicitly, we can give this isomorphism by gh0g

−1 7→ g · i where
i = (i, . . . , i) ∈ HI via this action. Therefore the whole space X is some finite disjoint union
of spaces isomorphic to HI , so for each arithmetic subgroup Γ ⊂ G(Q) the quotient Γ\X is
a finite disjoint union of connected Hilbert modular varieties.

The pair (G,X) is then a Shimura datum, and admits a Shimura variety Sh(G,X) =
lim←−K ShK(G,X) for every compact open subgroup K of G(Af ) with complex points

Sh(G,X)(C) = lim←−
K

G(Q)\(X ×G(Af ))/K

where Af are the finite adeles. There is an obvious action of G(Af ) on Sh(G,X)(C) by right
multiplication. In fact Sh(G,X) has a unique canonical model defined over Q, which has an
interpretation as a moduli space of abelian varieties.

Our goal for today is first to explain this moduli interpretation. We will then look at the
Igusa tower again and derive a q-expansion principle from its irreducibility. Finally, we will
interpret the Hecke operators as correspondences on the Shimura varieties.

2. Abelian varieties up to isogeny

Let V = F 2, and write V (Af ) = V ⊗Q Af , which is a free module of rank 2 over AF,f =
Af ⊗Q F .

Consider the category AQ
F (fibered over SchQ) of abelian schemes with real multiplication

byO, with morphisms HomQ
F (A,A′) = HomO(A,A′)⊗ZQ, so that isogenies are isomorphisms.

For an abelian scheme A over S and a geometric point s ∈ S, we consider the Tate module
T (A) = Ts(A) = lim←−N A[N ](k(s)), and define V (A) = Vs(A) = T (A) ⊗Z Af . This latter

module V (A) is a free AF,f -module of rank 2, with an Ô =
∏

`O`-stable lattice T (A). A full

level structure on A is an isomorphism of AF,f -modules η : V (Af )
∼−→ V (A), after picking a

geometric point s in each connected component of S.
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For a closed subgroup K ⊂ G(Af ), we can define a level K-structure to be a K-orbit
η = ηK, where g ∈ G acts on η by precomposition.

We can also consider polarizations A → A∨. We consider two polarizations λ, λ′ to be
equivalent if they agree up to some totally positive a ∈ F×, i.e. λ = λ′ ◦ a. Note that we
need our category AQ

F with the extra morphisms given by tensoring with Q in order for this
to be well-defined for non-integral a. Write λ for the equivalence class of λ.

For a fixed closed subgroup K, we define the functor EK : SchQ → Set sending S to the
set of isomorphism classes of triples (A, λ, η) where A is an abelian variety over S, λ is an
equivalence class of polarizations defined over S, and η is a level K-structure defined over
S, satisfying a further condition (that the characteristic polynomial of α ∈ O on the sheaf
of Lie algebras over A is given by the image of the obvious product in OS[t]) that we will
generally ignore.

It turns out that the canonical model of Sh(G,X) over Q represents the functor E1,
i.e. EK in the case where K is the trivial group. Since G(Af ) acts naturally on V (Af ), it
also acts on the level structure by precomposition and thus acts on the right on Sh(G,X).
For a sufficiently small open subgroup K (such that the test objects have no nontrivial
automorphisms), we can define ShK(G,X) = Sh(G,X)/K (for the canonical Q-model),
which then represents EK . Indeed, we can define Sh(G,X) and ShK(G,X) as representing
these functors, up to showing that they are representable, and the description above follows.

The proof of representability proceeds roughly by showing that the moduli problem is
equivalent to another which decomposes as the disjoint union of (modifications of) the moduli
problem for Γ(N), which we know is representable for N sufficiently large over Q(µN); we
then assemble all the conjugates to get something defined over Q.

We could also ask for an integral model of Sh(G,X) or ShK(G,X). We can find one by
altering the moduli problem slightly: fix a set of primes Σ, and define the category AΣ

F to
have the same objects as AQ

F with morphisms given by tensoring with Z(Σ) instead of Q,
i.e. we invert all primes except those in Σ, and define the moduli problem EΣ

K in the same
way as EK by suitably adding the phrase “prime to Σ.” We get corresponding representing
schemes ShΣ

K(G,X) and ShΣ(G,X), defined over Z(Σ). In particular, we are interested in the
case where Σ = {p}, so that ShpK(G,X) and Shp(G,X) are defined over Z(p). We can check
that test objects over R/p lift to R for Z(p)-algebras R, so it follows that Shp(K(G,X) and
Shp(G,X) are smooth over Z(p).

3. Irreducibility of the Igusa tower

LetW be the strict Henselization of Z(p) in Q, which has residue field Fp. We are interested in
the Igusa tower Tα = T1,α/Fp

over the toroidal compactification M of the Hilbert-Blumenthal
moduli M =M(c,Γ(N))/Fp

; write T ◦α = Tα ×MM for its base change to M.
The main result here is that the T ◦α, and therefore also Tα, are irreducible, whenN is prime

to p. The proof however is long and difficult and so I prefer to skip it, apologies to anyone
who was hoping to see it (you can go read Hida). Hida’s proof applies the computation of
the automorphism group of the canonical model of Sh(G,X), which we also skipped.

Instead, let’s prove a corollary, namely a q-expansion principle. Let a, b ⊂ F be fractional
ideals prime to p with ab−1 = c for a fixed choice of polarization ideal c. We have a semi-
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AVRM Tatea,b(q), given by the algebraization of the formal quotient (Ĝm ⊗ Hom(a,Z))/qb,
which away from the cusps coincides with the universal abelian scheme over M restricted
to SpecZ[ 1

N
, µN ]{ab}, which is equipped with a canonical Γ-level structure i, polarization λ,

and differential ω.
Let Wm = W/pmW , and let R be a Wm-algebra. Write Tα/R for the Igusa tower of

M(c,Γ) defined over R. For f ∈ H0(Tα/R, ω
k
/R) for a tuple k ∈ Z[I], which we can view as a

function on the set of quadruples consisting of an AVRM, a polarization, a level structure,
and a differential, we can write

f = aa,b(0, f) +
∑

ξ∈(ab)+

aa,b(ξ, f)qξ.

Theorem (q-expansion principle). With notation as above, let R′ be a Wm-subalgebra of R
over which Tα is defined, and assume p is unramified in F/Q. Then

(1) f = 0 if and only if aa,b(ξ, f) = 0 for every ξ ∈ (ab)+ ∪ {0};

(2) f ∈ H0(Tα/R′ , ω
k
/R′) if and only if aa,b(ξ, f) ∈ R′ for all ξ ∈ (ab)+ ∪ {0}.

Proof. The only way that the first statement can fail is if f decomposes into terms from
different irreducible components such that the coefficients are not simultaneously zero on all
of them; but this is impossible by the irreducibility of Tα. Indeed, the same argument shows
that the statement holds for all f ∈ H0(Tα/R, ω

k
/R ⊗RM).

To see the second statement, observe that we have a short exact sequence

0→ ωk/R′ → ωk/R → ωk/R′ ⊗R (R/R′)→ 0

and taking cohomology we therefore have a short exact sequence

0→ H0(Tα/R′ , ω
k
/R′)→ H0(Tα/R, ω

k
/R)→ H0(Tα/R′ , ω

k
/R′ ⊗R (R/R′)).

Therefore f , which lives in the middle term, is in the image of the first term if and only if
its image vanishes in the third. If f̄ is the image of f , we can write it as

f̄ = ba,b(0, f̄) +
∑

ξ∈(ab)+

ba,b(ξ, f̄)qξ

for some ba,b(ξ, f̄) ∈M , and applying the (generalized) first statement with M = R/R′ shows
that f vanishes in H0(Tα/R′ , ω

k
/R′ ⊗R (R/R′)), and therefore pulls back to H0(Tα/R′ , ω

k
/R′),

if and only if all of the ba,b(ξ, f̄) vanish. But the ba,b(ξ, f̄) are just the images in R/R′ of
aa,b(ξ, f), and so vanish if and only if the aa,b(ξ, f) are in R′.

4. Hecke operators

We return to Shimura varieties. Write ShK for ShK(G,X). For open compact subgroups
K,K ′ ⊂ G(Af ) and g ∈ G(Af ), write Kg for g−1Kg; we have a projection p1 : ShKg∩K′ →
ShK′ induced by the inclusion, i.e. sending ([x, h] mod Kg ∩ K ′) 7→ ([x, h] mod K ′), and a
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second projection pg : ShKg∩K′ → ShK sending ([x, h] mod Kg ∩K ′) 7→ ([x, hg−1] mod K),
which is roughly the projection to Kg twisted by g to land in ShK . These projections give

an algebraic correspondence (KgK ′) := ShKg∩K′
pg×p1−−−→ ShK × ShK′ depending only on the

double coset.
Now suppose that we have a vector bundle L on Sh descending to a vector bundle LK on

ShK such that π∗LK = L for K sufficiently small, where π : Sh→ ShK is the projection (in
practice we will take LK = ωkK), on which an open semi-group ∆ ⊂ G(Af ) acts by pullbacks,
i.e. the diagram

L L

Sh Sh

g∗

g−1

commutes for g ∈ ∆ (where we use g−1 in the bottom map since the action of G(Af ) on Sh
is a right action and we want a left action on L). We also assume we have trace maps on
cohomology

TrK′/K : H•(ShK ,LK)→ H•(ShK′ ,LK′)

for K ⊂ K ′ ⊂ ∆, satisfying the obvious compatibility conditions for towers of subgroups
and TrK′/K ◦ResK′/K is multiplication by the degree of ShK → ShK′ .

The correspondence (KgK ′) defines the Hecke operator [KgK ′] : H•(ShK ,LK)→ H•(ShK′ ,LK′)
by

[KgK ′] = | det g|A · TrK′/(Kg∩K′) ◦[g] ◦ ResK/(K∩gK′),

where gK ′ = gK ′g−1 and [g] : H•(ShK∩gK′ , LK∩gK′) → H•(ShKg∩K′ ,LKg∩K′) is induced by
the pullback of the action g−1 : ShKg∩K′

∼−→ ShK∩gK′ .
In particular, double cosets KgK act on H•(ShK ,LK) by Hecke operators. We can define

R(K,∆) for any compact open subgroup K ⊂ ∆ of G(Af ) to be the free Z-module formally
generated by double cosets KgK for g ∈ ∆, with a multiplication which Hida doesn’t define
and so I won’t either; this is the double coset ring for K ⊂ ∆, and thus acts on H•(ShK ,LK).
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