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1. Hilbert schemes: introduction

We’ll generally work in the setting of varieties over a fixed field k, although most results
hold more broadly; whenever convenient we’ll additionally assume that k is algebraically
closed, and we’ll really have C in mind. Let X be such a variety. We want to study (closed)
subschemes of X. To apply the machinery of algebraic geometry, we need to think of this
as a functor whose k-points are closed subschemes of X; we do this by associating to a test
scheme T the set of T -families of subschemes of X, i.e. subschemes of T ×kX which are flat
over T . Let’s call this functor Hilb(X), i.e.

Hilb(X)(T ) = {Z ⊂ T ×k X|Z flat over T}.

(The action on morphisms sends f : S → T to Hilb(X)(f) sending Z ⊂ T ×k X to (f ×
id)−1(Z) ⊂ S ×k X, so this is a contravariant functor.) For example, for X = Pnk and a
k-scheme T we have T ×k Pnk = PnT , so Hilb(Pnk) classifies closed subschemes of projective
space.

Given a contravariant functor F from a category of schemes to sets, the usual question
is whether this functor is representable: does there exist a scheme Y such that Hom(−, Y )
is equivalent to F?

In our case where F = Hilb(X), it’s not hard to see that no reasonable representing
scheme can exist in general. For example, ifX = P1, there is a surjection sending a subscheme
of P1 to its support, which is either a finite set of points of P1 or all of P1. For each n the
scheme classifying n-tuples of points in P1 is Symn P1 ' Pn, and so the scheme representing
Hilb(P1) would have to surject onto a disjoint union of copies of each Pn (together with
a point). This is infinite-dimensional with infinitely many connected components. More
generally we should expect this functor to in general be “too big” to be representable.

We therefore want to pare it down. To see how to do this, let’s look at the special
case X = Pn. Here, each subscheme Z ⊂ Pn has a finitely generated graded coordinate ring
R =

⊕
i≥0Ri. Each Ri is a finite-dimensional k-vector space, and so we can define a function

i 7→ dimk Ri. For i sufficiently large this is a polynomial in i with integer values (but not
necessarily coefficients), called the Hilbert polynomial of Z.

More generally, for a quasi-coherent sheaf F on a variety X over k we can consider the
function

i 7→ dimkH
0(X,F(i))

where F(i) is the Serre twist. By the Serre vanishing theorem the higher cohomology of F(i)
vanishes for sufficiently large i, and so the above function is equal to

i 7→ χ(F(i))

for i sufficiently large; this latter turns out to be a polynomial in i, which we call the Hilbert
polynomial of F . In particular, a subscheme Z of X gives rise to a quasi-coherent ideal sheaf
OZ (or more accurately its pushforward along the inclusion), by which we can define the
Hilbert polynomial pZ of Z.
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1 HILBERT SCHEMES: INTRODUCTION

For example, suppose that Z is a zero-dimensional subscheme of a projective variety X,
so that its function ring has finite dimension n. We say that n is the length of Z, and that
the dimension of the local ring at each point p in the support of Z is the length of Z at p.
In the special case we considered above where X = P1, each n gives a component Pn; the
remaining component, which for each T gives a unique point corresponding to PnT , classifies
the subschemes with Hilbert polynomial

i 7→ χ(OP1(i)) = i+ 1.

In other words the Hilbert functor decomposes, in this case, into components corresponding
to the Hilbert polynomials.

This suggests the following definition. For each integer-valued polynomial f , set

Hilbf (X)(T ) = {Z ⊂ T ×k X|Z flat over T,∀t ∈ T : pZt = f},

where Zt denotes the fiber of Z over t ∈ T . It turns out that this is the right definition:
for X projective, these functors will be representable by projective (and thus finite type)
schemes over k.

(Remark: there’s an implicit use here of a lemma stating that the Hilbert polynomial
is locally constant in (flat) families, and that we can reduce to the connected case; we’ll
ignore this sort of thing. Note also that although the Hilbert scheme is independent of the
embedding of X into projective space, the Hilbert polynomial is not since it depends on a
choice of OX(1), and so a different choice will relabel the components.)

We will mostly be concerned with the simplest case of zero-dimensional subschemes, for
which the Hilbert polynomial is constant. For each integer n, we abbreviate

X [n] = Hilbn(X).

These can be equivalently thought of as ideals I of OX such that dimOX/I = n. Let’s
examine some cases.

First, suppose that n = 0. This is the most trivial situation: the only subscheme with
Hilbert polynomial identically zero is the empty subscheme, so Hilbn(X) is trivially repre-
sented by a point. Henceforth we assume n > 0.

If n = 1, things are mildly more interesting, but not much: length 1 subschemes cor-
respond to ideals I with dimOX/I = 1, i.e. maximal ideals, or closed points of X. Thus
X [1] is just the scheme classifying points of X, namely X itself. We can also see this more
formally as functors: X [1](T ) is the set of subvarieties Z of T ×k X such that each Zt is a
point of X, and therefore defines a map T → X sending t 7→ Zt. (The condition that Z
be flat over T is essentially just the condition that this map be a morphism.) Therefore as
functors X [1](T ) = Hom(T,X) = X(T ).

The case n = 2 is already interesting enough to be difficult to deal with. A point in
X [2] is an ideal I of OX such that OX/I has length 2. There are two possibilities for this
quotient: either it (equivalently the corresponding subscheme) is supported at two distinct
points x1, x2, or it is supported at only one point. In the first case, at each point the length is
1, and so as in the case n = 1 we’re just classifying points of X. Since we require the points
to be distinct and don’t care about their order, it follows that this part of X [2] looks like
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2 HILBERT SCHEMES OF SMOOTH SURFACES

(X ×X −∆)/S2, where ∆ is the diagonal and S2 is the symmetric group on two elements.
If OX/I is supported at a unique point x, so that we have inclusions m2

x ⊆ I ⊂ mx ⊂ OX .
Such ideals are in natural bijection with maps φ : mx/m

2
x → OX/mx up to scaling; in other

words this part of X [2] looks like P(TanX). Thus X [2] = (X ×X −∆)/S2 t P(TanX).
For general n, we can do a similar decomposition. We have a morphism π : X [n] →

SymnX, sending Z to its support in X, with each point p counted by multiplicity given
by the length of Z at p. This is called the Hilbert-Chow morphism. Although it is not
an isomorphism in general, it is once restricted to subschemes Z which are supported at n
distinct points; this is the big open piece of X [n], given in the case n = 2 by (X×X−∆)/S2.
The opposite end of the spectrum is the case where Z is supported at a single point of X,
which in the case n = 2 is given by P(TanX). More broadly, we have a stratification of
SymnX by partitions λ = (λ1, λ2, . . .) of n,

SymnX =
⊔
λ

SymλX,

where SymλX classifies unordered n-tuples of points (x1, . . . , xn) where x1 = x2 = · · · =

xλ1 , xλ1+1 = · · · = xλ1+λ2 , and so on. This stratification pulls back to X [n] via X
[n]
λ =

π−1(SymλX).

In particular, for λ = (n), X
[n]
λ , the small stratum consisting of subschemes supported at

a single point of X, fibers over X through the Hilbert-Chow morphism π : X
[n]
λ → SymλX =

Sym1X = X. For each p ∈ X, write X
[n]
p for the fiber over p, i.e. the scheme classifying

subschemes of X of length n supported at p, or equivalently ideal sheaves I of OX such that
OX/I is supported at p with length n.

For X a smooth curve, the Hilbert-Chow morphism π : X [n] → SymnX is an iso-
morphism: the local ring at each point p is generated by a uniformizer, and so the only
information that the ideal at p contains is the length at p. Thus each subscheme is fully
determined by its support.

This is generally speaking the only situation where we should expect this to hold. In
general, the Hilbert scheme is not even smooth, and can be arbitrarily horrible. In the case
of smooth surfaces, though, it will turn out that the Hilbert scheme actually is smooth; let’s
say something about this case.

2. Hilbert schemes of smooth surfaces

2.1 Dimension and smoothness

Let X be a smooth surface, and Z be a closed subscheme corresponding to an ideal I of
length n. Suppose that Z is supported at a single point p, so that it corresponds to a point
of X

[n]
p . As in the case n = 2 we examined before, we have dimOX,p/I = n and therefore

(after completing at p) mn
p ⊂ I ⊂ mn−1

p ⊂ OX,p. In particular I is completely determined by

Ī = I/mn
p ⊂ OX,p/mn

p . Therefore the problem of studying X
[n]
p reduces to that of studying

ideals of OX,p/mn
p . But the (completed) local ring and its maximal ideal are independent of

the point p and indeed of X by smoothness: abstractly, OX,p ' k[[T1, T2]]. Therefore we can
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just pick our favorite smooth surface and study the local Hilbert scheme there; we’ll take
the affine plane A2, and set p to be the origin 0.

For n = 2, we already computed that the fibers of X [2] supported at a single point p
are given by the projectivization of the tangent space at p. In particular for A2 it follows
that (A2)

[2]
0 ' P1. In general, it turns out that (A2)

[n]
0 is irreducible of dimension n− 1, and

therefore the same holds for any smooth surface and point.
Assuming this, let’s think about the dimension of the whole Hilbert scheme (A2)[n], or

more generally X [n] for a smooth surface X. At distinct points we can choose components in-
dependently, so if λ = (λ1, . . . , λr) is a partition of n and x = (x1, . . . , x1, x2, . . . , x2, x3, . . . , xr, . . . , xr)
is a point in SymλX, then the preimage of x under the Hilbert-Chow morphism consists of
choices of length λi ideals supported at xi for each i, i.e. elements of (A2)[λi]. Since each has
dimension λi − 1, it follows that the preimage of x has dimension λ1 + · · ·+ λr − r = n− r.
Via the map SymλX → Xr sending x 7→ (x1, . . . , xr), each stratum Symλ has dimension

2r since X has dimension 2, and so the total dimension of X
[n]
λ is n + r. In particular the

unique top-dimensional stratum comes from λ = (1, . . . , 1), the big open piece, and it has
dimension 2n. Thus dimX [n] = 2n.

To check that X [n] is smooth, we then need to compute the dimension of the tangent
space at a given k-point Z of X [n]. A not-too-hard exercise shows that this tangent space
is isomorphic to Hom(I,OX/I) where I is the defining ideal of Z. For homological algebra
reasons plus Hirzebruch-Riemann-Roch plus the fact that dimH0(OX/I) = n by the defini-
tion of I we can conclude that the tangent space has dimension 2n, so X [n] is smooth. (We
can give a slightly less sketchy proof in a bit.)

For general n, the symmetric product SymnX is highly singular even for smooth surfaces
X. In this case the Hilbert-Chow morphism is a resolution of singularities.

Let’s specialize back to our special case X = A2 for a moment. Notice that here we have
an action of the torus T 2 = k × k via scaling the coordinates. This action lifts to the sym-
metric product and thus to the Hilbert scheme; its fixed points correspond to homogeneous
ideals spanned by monomials, which correspond via Young tableauxs to partitions of n. The
singular locus of (A2)[n] is stable under the torus action and closed, and so must contain a
fixed point if it is nonempty; therefore it suffices to check smoothness at the fixed points,
which can be done explicitly via some combinatorics. But since all this is local, this actually
gives a proof of smoothness for all smooth surfaces.

2.2 Cohomology and representation theory

The key idea when looking at cohomology is that we shouldn’t look at the cohomology of a
single Hilbert scheme of points X [n], but rather all of them together. Explicitly, we have a
formula

∞∑
n=0

4n∑
i=0

bi(X
[n])tiqn =

∞∏
m=1

4∏
j=0

(1− (−1)jt2m+j−2qm)−(−1)
jbj(X)
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where bi is the ith Betti number. Setting t = −1, this gives the generating function of the
Euler characteristics as

∞∑
n=0

χ(X [n])qn =
4∏
j=0

(
∞∏
m=1

(1− qm)

)−(−1)jbj(X)

;

in the special case X = A2, we have bi(X) = 0 for i > 0 and so the right-hand side of the
first formula is just

∞∏
m=1

1

1− t2m−2qm
.

Taylor expanding in q, we can compute the Poincaré polynomials of the first few (A2)[n]:

P(A2)[0](t) = 1

P(A2)[1](t) = 1

P(A2)[2](t) = 1 + t2

P(A2)[3](t) = 1 + t2 + t4

P(A2)[4](t) = 1 + t2 + 2t4 + t6

P(A2)[5](t) = 1 + t2 + 2t4 + 2t6 + t8,

and more generally (combinatorically) b2i((A2)[n]) is the number of partitions of n into n−i+1
parts, and all odd Betti numbers are zero.

The “correct” proof of this fact is by viewing the total cohomology as a representation
of the Heisenberg algebra. I won’t go into much detail here, but vaguely the way that
action is built is via certain correspondences on Hilbert schemes. In particular, let X [n,`] ⊂
X [n]×X [n+`] be the scheme classifying subschemes Z1, Z2 of lengths n and n+ ` respectively
such that Z1 ⊂ Z2, and there is a unique point x at which Z1 and Z2 vary. Then we have
projections to X [n], X [n+`], and X. We can use these to build operators on cohomology

H∗(X [n])→ H∗(X [n+`])

by pulling back, taking the cup product with the pullback of an element of the cohomology
of X, and pushing forward; putting a Heisenberg action on H∗(X), this gives the desired
action.

3. Singular curves and knots

Our main remaining goal is to say something about the Oblomkov-Shende conjecture and
its associates, which Alvaro mentioned last time.

Let C be an integral curve over C, with singularities at worst planar. The example we’ll
have in mind is yk = xn.

If there are no singularities, i.e. C is smooth, we know that the Hilbert scheme of points is
also smooth, and indeed isomorphic to SymnC with dimension n. Combining these schemes
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for all n, Macdonald’s formula tells us that

∞∑
n=0

2n∑
i=0

bi(SymnC)tiqn =
(1 + qt)2g

(1− q)(1− t2q)

where g is the genus of C, and setting t = −1 gives

∞∑
n=0

χ(C [n])qn =
∞∑
n=0

χ(SymnC)qn = (1− q)2g−2 = (1− q)−χ(C).

More generally if C is singular at points pi with smooth locus Csm, the Hilbert scheme
decomposes as C [n] =

⊔
a+b1+···+br=nC

[a]
sm × C [b1]

p1 × · · · × C
[br]
pr , and so

∞∑
n=0

χ(C [n])qn =

(
∞∑
n=0

χ(C [n]
sm)qn

)∏
i

∞∑
n=0

χ(C [n]
pi

)qn.

We can treat the first factor as above; the tricky thing is to evaluate the local factors at the
singularities.

At each singularity p of C, which is locally embedded in the plane C2, we can consider a
small 3-sphere around p in C2. The intersection of this sphere with C is a one-dimensional
submanifold of S3, and therefore a link; we call this the link of C at p, and write Lp for it.
In a certain sense this captures the topology of C near p. In particular we might hope that
link invariants of Lp can describe the sum over Euler characteristics of χ(C

[n]
p ).

Conjecturally, this is possible. The invariant we need is the HOMFLY polynomial, which
we discussed last time, defined by the rules

tP ( ) + t−1P ( ) = (q − q−1)P ( )

and
P ( ) = 1.

Then the desired connection is

∞∑
n=0

χ(C [n]
p )q2n = lim

t→0
(q/t)µP (Lp)

where µ is the Milnor number of the singularity at p. Thus in all we conjecture

∞∑
n=0

χ(C [n])q2n = (1− q2)−χ(Csm)
∏
i

lim
t→0

(q/t)µiP (Lpi).

This is the Oblomkov-Shende conjecture (or one of them).

More generally, if we want to recover the whole HOMFLY polynomial, we write C
[n]
p,m for

the subscheme of the Hilbert scheme classifying ideals whose minimal number of generators
is m. Then we have

P (Lp) = (t/q)µ(1− q2)
∑
n,m

χ(C [n]
p,m)(1− t2)m−1q2n.
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Let’s verify these conjectures for the curve y2 = xn for n = 1, 2, 3. The link of the
singularity at the origin is the (2, n) torus knot T2,n [draw: unknot, linked circles, trefoil],
whose HOMFLY polynomials satisfy

P (T2,n) = −t(q − q−1)P (T2,n−1) + t2P (T2,n−2),

and for n = 1 the curve is smooth and T2,1 is the unknot. Therefore P (T2,1) = 1, P (T2,2) =

−t(q − q−1) + t3−t
q−q−1 , and P (T2,3) = t2(q2 + q−2)− t4.

For n = 1, the local ring at the origin is C[[x]] with ideals (xn), and so C
[n]
p,m is empty

unless m = 1, in which case it is a point. Therefore the right-hand side is

(t/q)0(1− q2)
∑
n≥0

q2n = 1,

verifying the conjecture in this case.
If n = 2, the local ring is C[[x, y]]/(x2−y2) = C[[X, Y ]]/(XY ) where X = x+y, Y = x−y.

The finite colength ideals are either the whole ring, the principle ideals (X i +λY j) of length

i + j for λ ∈ C×, and (X i, Y j) of length i + j − 1. Therefore C
[n]
p,m is trivial for m > 2. For

m = 0, there is only the length 0 ideal (1); for m = 1, there are C×’s worth of ideals of each
length n, and therefore the Euler characteristic is 0; and for m = 2 there are n, and so the
Euler characteristic is n. Therefore the right-hand side is

t

q
(1− q2)

(
1 +

∑
n≥0

n(1− t2)q2n
)

= −t(q − q−1) + t(t2 − 1)
q

q2 − 1
,

which is the desired formula.
For n = 3, we have µ = 2 and the local ring is C[[x2, x3]], whose ideals are (1), (xi+λxi+1)

for λ ∈ C, and (xi+1, xi+2), the latter two with length i. Each of the middle type has Euler
characteristic 1 and the last type are points, and so the right-hand side is

t2

q2
(1− q2)

(
1 +

∑
n≥0

q2n +
∑
n≥0

(1− t2)q2n
)

= t2(q2 − q−2)− t4

as desired.
These conjectures are known in a variety of special cases, including the limit as t→ −1

where we recover the Alexander polynomial, but not in general.
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