
The Tannakian formalism and the motivic Galois group
Avi Zeff

1. Introduction

Consider a nice group G (in practice an affine algebraic group over a field k). The category
of k-representations Repk(G) has various good properties: it is symmetric monoidal under
the tensor product of representations, abelian, semisimple for G nice enough, and satisfies
some other good properties making it “rigid.” All of these properties are lifted from the
“underlying” category Vectk along the forgetful functor ω : Repk(G)→ Vectk. It turns out
that the data of the abstract category Repk(G) with the various structure associated to it
as above (symmetric monoidal, abelian, rigid) together with the faithful and exact functor
ω : Repk(G)→ Vectk is enough to recover the group G; this is the Tannakian formalism.

One could then ask: suppose we have some arbitrary category C with suitable prop-
erties/structure, and a suitable functor ω : C → Vectk. If we apply the reconstruction
formalism to the pair (C, ω), if they satisfy the necessary formal properties we can hope to
“recover” a group G, even though C did not necessarily originally arise as a representation
category; then C ' Repk(G), by doing the same process to G. When this is possible for
some ω we say that C is Tannakian.

In particular, we know that if we choose the numerical equivalence relation, then the
category of motives Motk over k is semisimple abelian, and so we might hope that in fact it
is Tannakian, corresponding to some interesting group GMotk. We could then hope to use
this to study motives as representations of this group, similar to how Gal(Q/Q) is used in
number theory; indeed GMotk is called the motivic Galois group.

2. Rigid symmetric monoidal categories

I’ll skip much discussion of symmetric monoidal categories on the theory that these are
reasonably familiar by now; if not, the theory mostly consists of writing down obvious
statements in complicated ways with big diagrams, have fun. Let’s say a little bit about
hom objects, though.

Given a symmetric monoidal category, the contravariant functor

T 7→ Hom(T ⊗X, Y )

may be representable, in which case we call its representing object Hom(X, Y ). By definition,
this is right adjoint to the tensor product, since

Hom(T,Hom(X, Y )) = Hom(T ⊗X, Y ).

There is therefore an evaluation map

evX,Y : Hom(X, Y )⊗X → Y

adjoint to the identity Hom(X, Y ) → Hom(X, Y ). If Hom exists for (X, Y ), (Y, Z), and
(X,Z), then there is a composition morphism

Hom(X, Y )⊗ Hom(Y, Z)→ Hom(X,Z)
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2 RIGID SYMMETRIC MONOIDAL CATEGORIES

adjoint to the composition

Hom(X, Y )⊗ Hom(Y, Z)⊗X
evX,Y−−−→ Hom(Y, Z)⊗ Y

evY,Z−−−→ Z.

Observe that there is an isomorphism

Hom(Z,Hom(X, Y )) ∼→ Hom(Z ⊗X, Y )

adjoint to the composition

Hom(Z,Hom(X, Y ))⊗ Z ⊗X
evZ,Hom(X,Y )−−−−−−−→ Hom(X, Y )⊗X

evX,Y−−−→ Y,

since the corresponding functors are

T 7→ Hom(T ⊗ Z,Hom(X, Y )) = Hom(T ⊗ Z ⊗X, Y )

and
T 7→ Hom(T ⊗ Z ⊗X, Y ).

If 1 is the (an) identity object, then

Hom(1,Hom(X, Y )) = Hom(1⊗X, Y ) = Hom(X, Y ).

Define X∨ = Hom(X,1) when it exists. There is then an evaluation map evX : X∨⊗X → 1.
This gives a contravariant functor: if X∨ and Y ∨ exist and f : X → Y is a morphism, there
is a unique morphism f t making the diagram

Y ∨ ⊗X X∨ ⊗X

Y ∨ ⊗ Y 1

f t⊗id

id⊗f evX

evY

commute.
Whenever X∨ and X∨∨ = (X∨)∨ exist, there is a morphism X → X∨∨ adjoint to

X ⊗ X∨ ∼→ X∨ ⊗ X
evX−−→ 1. When this morphism is an isomorphism, we say that X is

reflexive.
There is a morphism

Hom(X1, Y1)⊗ Hom(X2, Y2)→ Hom(X1 ⊗X2, Y1 ⊗ Y2)

adjoint to the morphism

Hom(X1, Y1)⊗ Hom(X2, Y2)⊗X1 ⊗X2 →1 ⊗Y2

given by the tensor of the evaluation maps, whenever all of the hom objects exist. In the
setting of nice symmetric monoidal categories such as Vectk or indeed Repk(G), this turns
out to be an isomorphism; for example, if Y1 = X2 = 1, this is the morphism X∨1 ⊗ Y2 →
Hom(X1, Y2), which we would certainly like to be an isomorphism. Thus if we hope that our
category looks like the representation category of some group we need this isomorphism to
always hold, as well as the above two.
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2 RIGID SYMMETRIC MONOIDAL CATEGORIES

Definition 1. A symmetric monoidal category is called rigid if Hom(X, Y ) exists for ev-
ery pair of objects X, Y , ever object is reflexive, and the above morphism is always an
isomorphism.

In this case, the functor Cop → C given by X 7→ X∨ and (f : X → Y ) 7→ (f t : Y ∨ → X∨)
is an equivalence (of symmetric monoidal categories).

For every object X in a rigid symmetric monoidal category, we have maps

Hom(X,X) ∼→ X∨ ⊗X evX−−→ 1,

where the existence of all objects and the fact that the first map is an isomorphism use the
axioms of rigidity. Applying Hom(1,−) gives a map

TrX : End(X)→ End(1),

called the trace morphism. Applied to the identity, we get the rank: rank(X) = TrX(idX).
One can check that

TrX⊗Y (u⊗ v) = TrX(u) · TrY (v),

since the trace map comes from the tensor product of evaluation maps, which on End(1) is
just multiplication, so in particular rank(X ⊗ Y ) = rank(X) rank(Y ) and rank(1) = id1.

The explanation for the name “rigid” comes from the following fact.

Proposition 2. Suppose that F,G : C → D are functors of symmetric monoidal categories,
and that C and D are rigid. Then any natural transformation of symmetric monoidal func-
tors λ : F → G is an isomorphism.

Proof. Such a natural transformation λ is a collection (λX) of compatible morphisms λX :
F (X)→ G(X). Applying this to X∨, the compatibility of F and G with the tensor structure
implies that F (X∨) ' F (X)∨ and similarly for G, so there exists a unique morphism µtX
making the diagram

F (X∨) G(X∨)

F (X)∨ G(X)∨

λX∨

' '
µt

X

,

and the corresponding family of morphisms (µX) assembles to a natural transformation
µ : G→ X which is inverse to λ.

For categories of representations, we want our underlying categories to also be abelian,
and we can extend the theory in the natural way: since all our functors should respect the
abelian structure, we just require the underlying category to be abelian and ⊗ to be bi-
additive (or over a field k, k-bilinear). This automatically makes it compatible with direct
and inverse limits, and therefore exact (this follows since it has adjoints in both C and its
opposite).

Proposition 3. In a rigid abelian tensor category, 1 is a simple object if its endomorphism
ring is a field.
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Proof. Let U be a subobject of 1, and let V be the cokernel of U ↪→ 1 so that we have an
exact sequence

0→ U → 1→ V → 0.

Since the tensor product is exact, tensoring with U ↪→ 1 gives a commutative diagram

0 U ⊗ U U V ⊗ U 0

0 U 1 V 0

with both rows exact. The composition U → V ⊗ U → V is trivial; since U → V ⊗ U is
surjective, it follows that V ⊗ U → V must be trivial. All of the vertical maps are injective
since they arise from tensoring with an injection, so it follows that V ⊗U = 0, so U ⊗U = U
as a subobject of 1.

Let U⊥ be the kernel of the dual morphism 1→ U∨. Tensoring our exact sequence with
U⊥ gives

0→ U⊥ ⊗ U → U⊥ → U⊥ ⊗ V → 0.

For any object T , the tensor product T ⊗ U is 0 if and only if the map T → U∨ ⊗ T given
by tensoring with 1 → U∨ is zero; this is because T ⊗ U ↪→ T and Hom(T ⊗ U, T ) =
Hom(T, U∨ ⊗ T ), so this injection is mapped to this map T → U∨ ⊗ T . The kernel of
T → U∨ ⊗ T is U⊥ ⊗ T , so in particular since U → U∨ ⊗ U is an isomorphism (adjoint to
U⊗U ' U) we have U⊥⊗U = 0 and therefore the above exact sequence gives U⊥ ' U⊥⊗V .
Similarly since V ⊗ U = 0 and U∨ ⊗ V = Hom(U, V ) = 0, the kernel of V → U∨ ⊗ V is
all of V and so U⊥ ⊗ V ' V and therefore U⊥ ' V . This gives V as both the cokernel of
U ↪→ 1 and the kernel of 1 � U∨, which gives a splitting of our short exact sequence, so
1 = U ⊕ U⊥, so that the endomorphism ring cannot be a field unless U = 0 or U = 1.

Some examples: Vectk is a rigid abelian symmetric monoidal category, with End(1) = k.
For any commutative ring R, this generalizes to ModR, with End(1) = R; this is an

abelian symmetric monoidal category. However it is not always rigid: not every R-module
is necessarily reflexive. If we restrict to projective modules, it is rigid, but only additive, not
abelian.

The main example we are concerned with is Repk(G), where G is an affine group scheme
over a field. In this case Repk(G) is a rigid abelian tensor category with End(1) = k.

3. Tannakian formalism

Let’s explore this example further. In this situation we have a forgetful functor ω : Repk(G)→
Vectk, which preserves all the structure. We can define a functor Aut⊗(ω) sending a
k-algebra R to the set of R-linear automorphisms of ω compatible with the tensor prod-
uct structure, i.e. families of R-linear G-automorphisms λX of X ⊗ R for every object
X ∈ Repk(G), such that λX1⊗X2 = λX1 ⊗ λX2 and λ1 = idR. Every g ∈ G(R) defines an
element of Aut⊗(ω)(R); we can view G as a functor of k-algebras sending R to the image of
G in Aut⊗(ω)(R).

Proposition 4. The inclusion G→ Aut⊗(ω) is an isomorphism of functors of k-algebras.
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In other words, it is possible to recover G from the data of (Repk(G), ω).

Proof. For each X ∈ Repk(G), restricting to representations generated by X and its dual
X∨ gives Aut⊗(ω)(R) restricted to these representations as a subgroup of GL(X ⊗R), with
GX the image of G under this restriction given as a further subgroup. By the G-equivariance
requirement, Aut⊗(ω) restricted to X is just the group fixing the tensors fixed by GX , which
is a determining property of GX , so they are equal; taking the limit over all X gives the
proposition.

This assignment to (Repk(G), ω) of the functor Aut⊗(ω)(R) can be done for any pair
(C, ω) satisfying similar properties, which we can now pin down: we need C to be rigid
abelian symmetric monoidal with End(1) = k, and ω : C → Vectk to be an exact, faithful,
k-linear functor of symmetric monoidal categories. The hope is that this functor Aut⊗(ω)
will be representable by some affine group scheme; this is in fact the case.

Theorem 5. With the notation above, Aut⊗(ω) is representable by an affine group scheme
G over k, and there is an equivalence of categories C → Repk(G).

This is proven by constructing a coalgebra A from the k-linear category C, equip it with
an algebra structure using the tensor structure on C, and show that G = SpecA is a group
scheme (i.e. has inverses in addition to the product from the coalgebra structure) using the
rigidity of C. Once the representability is established, it is clear that the resulting functor is
an equivalence: the map from pairs (C, ω) to the corresponding functor Aut⊗(ω) is injective
up to equivalence.

When C is a rigid abelian symmetric monoidal category for which there exists such a
functor ω, we say that C is a neutral Tannakian category, and ω is a neutralization; thus
we can express Theorem 5 as stating that every neutral Tannakian category is of the form
Repk(G) (possibly in multiple ways), and the category of neutralized Tannakian categories
over k, i.e. pairs (C, ω), is equivalent to the category of affine group schemes G over k (with
inverse G 7→ Repk(G)). The semisimplicity of C corresponds to G being proreductive.

Examples: consider the category of graded vector spaces (Vn) with finite-dimensional
sum V =

⊕
Vn. This is a rigid abelian symmetric monoidal category, and the functor ω

sending (Vn) to V is a fiber functor neutralizing the category, so this is the representation
category of some G. This is easy to describe: it is for G = Gm over k, acting by λ 7→ λn.

Similarly, the category of real Hodge structures is Tannakian and has the same neutral-
ization over R, with representing group the Deligne torus S = ResC/RGm.

Non-example: consider the category of Z/2-vector spaces, with graded commutative ten-
sor product given by a sign. This is a rigid abelian symmetric monoidal category. However,
in this case the categorical trace (i.e. rank) of a vector space is not its dimension but the
graded sum dimV 0 − dimV 1, which may be negative. But the rank of a representation will
always be nonnegative, so this cannot be equivalent to Repk(G) for any G.

4. General theory

In general, we may have Tannakian categories which are not neutral. What does this mean?
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We say that a category is Tannakian if it has a fiber functor C → VectK for any extension
K over k. The neutral case is when K = k.

In general, when C is Tannakian but not neutral, we replace the group G by a gerbe over
the category of affine schemes over k. I don’t understand this very well and won’t spend
time on it, but roughly this is a stack which behaves like a G-torsor. For a suitable fiber
functor H with values in K, taking the fiber of this gerbe at H should give a proreductive
group over K.

5. Motives

Let’s finally come back to motives. We discussed last time how the notion of numerical
equivalence is the best one for these sorts of categorical properties: it uniquely makes the
category of motives Motk into a semisimple abelian category, which is naturally symmetric
monoidal, and it is not too hard to check that it is rigid, with End(1) = Q. We might
therefore hope that it is Tannakian.

However, this fails, fortunately for stupid reasons similar to those we’ve seen before. The
rank (categorical trace) of a motive is its Euler characteristic, which may be negative, e.g.
for curves of genus g > 1; as for superspaces, this is impossible for anything of the form
Repk(G). However, it is easily fixed: we need to change the tensor product structure by a
sign, which makes the rank the sum of the Betti numbers. In order to make this make sense
on the level of motives, we need to assume standard conjecture C. We call this modified

category M̃otk.
The next problem is in finding suitable fiber functors. We have many functors to var-

ious vector space-like categories which respect all the structure of motives: these are Weil
cohomology theories. However, by definition homological equivalence is the finest relation
through which we expect these to nicely factor! Thus to have any hope of being Tannakian at
least in a useful way we also need to assume standard conjecture D, equivalence of numerical
and homological equivalence.

It turns out that this is enough, due to work of Janssen. In particular in the case where

k is algebraic over a finite field, or for abelian varieties, conjecture C is known and so M̃otk
is unconditionally Tannakian.

Let’s also assume conjecture D, so that we can take a Weil cohomology theory with
values in K as our fiber functor. This gives us a proreductive group GMotH,k as a fiber

of the gerbe GMotk associated to the Tannakian category M̃otk. We can also do this for
various (thick rigid) subcategories, which will give various quotients of the motivic Galois
group: for example, taking the category generated by some motive h(X) of finite type gives
the motivic Galois group of X, GMotH,k(X).

For example, we can look at Artin motives, generated by the motives of finite extensions
of k. In this case the motivic Galois group is just the regular absolute Galois group Gk.

We can also look at pure Tate motives GMotk(L), generated by the Tate motive L (or
the projective line); this is an algebraic group, in fact Gm. We could also combine these with
Artin motives, which just gives the product of these groups.

The comparison theorems between different cohomology theories corresponds (assuming
conjecture D) to isomorphisms between various motivic Galois groups for different fiber
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functors.
In characteristic p, the category of motives is still Tannakian, but provably not neutral

so long as k contains Fp2 : if K is contained in either R or Qp, any fiber functor would have
to contain the endomorphisms of a supersingular elliptic curve, which are not contained in
either.

In general, we have a short exact sequence

1→ GMotk̄ → GMotk → Gk → 1,

where Gk = Gal(k̄/k). This last term corresponds to motives of zero-dimensional vari-
eties, i.e. Artin motives, and is discrete, while GMotk̄ is connected and so is the connected
component of GMotk.

Conjecture C gives a weight grading on Motk, i.e. a functor to graded vector spaces; on
the group side of the equivalence, this is a central homomorphism w : Gm → GMotk. On
the other hand, there is a canonical map t : GMotk → Gm corresponding to the Lefschetz
motive, with t ◦ w = 2.

Over finite fields, it turns out that Motk (up to numerical equivalence) is generated by
Artin motives and motives of abelian varieties, so everything is fairly well-behaved. The
essential image of the `-adic realization is the set of `-adic representations of Gk whose
eigenvalues are Weil numbers. In particular the (connected component of the) motivic Galois
group is essentially determined by the Galois action on Weil numbers, and in particular is
abelian, so motives over finite fields should be reasonably manageable.

For the number theorists: the Langlands program relates representations of Gk in some
Lie group to representations of a dual group. One could also expand the Galois side to the
whole motivic Galois group (wildly conjecturally); the corresponding Tannakian group on
the automorphic side is the Langlands group, which is even bigger (so on the motivic side
something even larger may be needed).
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