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The main geometric objects of interest in [1] are hyperspherical varieties, which are
supposed to be (at least a version of) the “right” geometric setting for the relative Langlands
program; the prototypical example is M = T ∗(H\G) for a suitable subgroup H ⊂ G. This
in many ways carries more structure than the quotient alone; in particular hyperspherical
varieties conjecturally have a very good notion of duality, pairing (G,M) with the “relative
Langlands dual” (Ǧ, M̌).

Our goal for today is to build up to the definition of hyperspherical varieties, which
naturally arise as the unification of various examples of interest; in particular, we can view
them as unifying the cases of spherical varieties of interest to typical relative Langlands-type
questions with the symplectic vector spaces which we need to incorporate things like the
theta correspondence. We’ll see how these simultaneously generalize, and give a structure
theorem for spherical varieties; this, together with some varia on polarizations and rational
forms, takes us through §1, which is the bulk of the new material for the day. In §2,
we’ll see how the duality we developed for spherical varieties implies a duality for polarized
hyperspherical varieties, which arise in a certain way from spherical ones; and we’ll speculate
in §3 about general hyperspherical duality. Today’s talk will be light on proofs, but I’ll try
to communicate which results are known and which are conjectural.

Except where stated otherwise, we will always work over an algebraically closed field F.

1. Hyperspherical varieties

1.1 Motivating examples

In [2], the initial main area of interest for relative Langlands is spherical subgroups H ↪→ G,
where we study X = H\G as a G-variety. We generalize this to the situation of spherical
G-varieties X, which are nice G-varieties satisfying certain nice properties about the orbits.

It turns out that many of the nice properties of spherical varieties X can be interpreted
usefully, for our purposes, by instead studying the cotangent spaces T ∗X. These carry the
structure of Hamiltonian G-spaces : in other words it is a smooth symplectic G-variety M
equipped with a moment map µ :M → g∗.

We will often want our Hamiltonian G-spaces to be graded, i.e. equipped with a Gm-
action commuting with the G-action; following [1], we’ll write Ggr for this Gm to avoid
confusion with groups related to G. The moment map should be Ggr-equivariant for the
squaring action on g∗, with action on the symplectic form by squaring. In the caseM = T ∗X
above, the Ggr-action is by squaring on the fibers.

A related case is the “Whittaker-type case,” which can be viewed as twisting T ∗(U\G)
by a character of the unipotent radical ψ : U → Ga. Explicitly, we take the fiber of
T ∗G → u∗ over dψ ∈ u∗, and then take the quotient by U . (The Ggr-action is by squaring
on fibers, precomposed with left translation by λ2ρ̌.) We’ll say a lot more about this kind
of construction in the following sections; it is related to Whittaker induction, which we can
use more generally to construct all hyperspherical varieties (Theorem 1).
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This can be reinterpreted as a “ψ-twisted” version of the cotangent complex example
as follows. Let U0 = kerψ, and set Ψ = U0\G. This is naturally a Ga-torsor over U\G,
and is equipped with a moment map T ∗Ψ → g∗a; roughly the Ga-quotient of the fiber at
1 ∈ g∗a is defined to be the twisted cotangent bundle T ∗

Ψ(U\G), which is the same as the
twisted construction of the previous paragraph: T ∗

ψ(U\G) = T ∗
Ψ(U\G). When Ψ is the trivial

Ga-torsor we recover the usual T ∗(U\G).
Both of these cases are under the umbrella of [2]. However, we also want to take into

account theta-type cases: take M to be a vector space, equipped with a symplectic form ω,
and G ⊂ SpM , so the moment map µ :M → g∗ factors through M → sp∗M , sending m ∈M
to spM ∋ X 7→ 1

2
⟨Xm,m⟩, with linear scaling action of Ggr.

In particular, we see that the framework of (graded) Hamiltonian G-spaces incorporates
both spherical varieties and symplectic vector spaces. In the next two sections, we’ll build up
general machinery (“Whittaker induction”) which produces examples of the second (“Whit-
taker”) type above, and then define hyperspherical varieties as certain Hamiltonian G-spaces
which give a good setting for relative Langlands which includes (almost) all of our examples
of interest. We’ll then see that all such varieties arise via Whittaker induction.

1.2 Hamiltonian reduction and induction

For spherical G-varieties X, we can produce the Hamiltonian G-space T ∗X. If we want
to produce something that preserves the symplectic structure but in some sense “quotients
out” the G-action, there is a natural construction: rather than directly taking the quotient
on T ∗X (which would destroy a lot of the structure), we form X/G (assuming it exists in a
suitable category) and then take the cotangent space T ∗(X/G).

We would like to generalize this to Hamiltonian G-spaces M not necessarily of the form
T ∗X. One way of rephrasing the above process is to take the fiber of the moment map
over 0: this is a subbundle of T ∗X and carries a G-action, and one can show that in fact
µ−1(0)/G ≃ T ∗(X/G). Thus we can give a formula for this reduction which applies to all
Hamiltonian G-spaces M : the Hamiltonian reduction of M by G is

M///G := µ−1
M (0)/G.

More generally, for any f ∈ g∗ with G-orbit Of , we can define

M///fG :=M ×Gg∗ Of .

In general, this is a derived symplectic stack, but in cases of interest the action is free and
so it is a symplectic variety. For example, we can now define the twisted cotangent complex
more precisely: T ∗

Ψ(U\G) = T ∗Ψ///1Ga.
In the other direction, suppose we have an inclusion (or indeed any morphism) H ↪→ G of

algebraic groups and a HamiltonianH-spaceM . IfM = T ∗X then we define the Hamiltonian
induction of M to G to be simply T ∗(X ×H G), where G is considered to be a right H-space
via g · h = h−1g. Again, we’d like to have a version of this that works for arbitrary M , i.e.
that depends only on T ∗X.

The above construction gives us an idea for how to do this: we have

(T ∗X × T ∗G)///H = T ∗(X ×G)///H = µ−1
T ∗(X×G)(0)/H ≃ T ∗(X ×H G).
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This suggests the following construction: the Hamiltonian induction of M from H to G is

h-IndGH(M) := (M × T ∗G)///H.

If we instead took the left action of H on G, this works out to be

h-IndGH(M) =M ×Hh∗ T ∗G ≃ (M ×h∗ g
∗)×H G.

This description makes clear that the Hamiltonian induction is equipped with a projection
to ∗ ×H G = H\G, making h-IndGH(M) a fiber bundle over the homogeneous space G\H.
If M is graded, then so is h-IndGH(M) via the diagonal action of Ggr on M × T ∗G, which
commutes with H.

One last thing worth mentioning here is the symplectic normal bundle to a G-orbit O in
a symplectic manifold M : this is a vector bundle S over O with fiber at x given by

S = TxO⊥/(TxO⊥ ∩ TxO),

which carries an action of the stabilizer H = Gx of x and thus has a moment map S →
h∗. In particular, if S is a symplectic H-representation, applying this construction to the
Hamiltonian induction recovers S: if H = Gx, then S is the fiber at x of the symplectic
normal bundle to the G-orbit of x in h-IndGH(S).

1.3 Whittaker induction

Hamiltonian reduction is already reminiscent of the second class of examples we introduced
at the beginning. To get our full generality, though, we want to construct a more powerful
version of this machinery, Whittaker induction, which depends not only on a subgroup
H ↪→ G but in general on a morphism H × SL2 → G.

We’ll think of the SL2 → G part on Lie algebras. Fixing a basis for sl2 and an (invariant)
identification g ≃ g∗, we can think of this as a triple (h, e, f) of elements of g, given by the
image of the basis of sl2.

More canonically, we can fix f ∈ g∗ and a cocharacter ϖ : Gm → [G,G] → G, which
induces h = dϖ(1) ∈ g, such that after any invariant identification g ≃ g∗ we have (h, f)
elements of an sl2-triple (h, e, f) in g. We call (ϖ, f) an sl2-pair; in particular the centralizer
of any associated triple is independent of the identification g ≃ g∗, and depends only on
(ϖ, f), so it makes sense to require H to be a subgroup of this centralizer to make the H
and SL2-actions commute. We’ll sometimes refer to the triple (h, e, f), implicitly fixing an
identification g ≃ g∗, but in the end everything will only depend on (ϖ, f).

If j is the centralizer of sl2 in g, we have a decomposition

g = j⊕ u⊕ u0 ⊕ u

where u ⊕ u0 ⊕ u is the sum of all the irreducible sl2-subrepresentations in g, decomposed
into weight spaces for the adjoint action of h ∈ g; so for our triple (h, e, f), we have f ∈ u,
or f ∈ u∗. Let U and U be the associated unipotent subgroups. Since the Ggr-action via ϖ
normalizes U , we can consider u as a graded Lie algebra.
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We’ll assume for simplicity that all the weights of h on u are even; this isn’t really
necessary, but simplifies some things. (In general, we let u+ be the subspace with weights
≥ 2, which under this assumption is equal to u; without this assumption, we at various
points have to replace the point ∗ with u/u+.)

Write ∗f for the point ∗ = SpecF viewed as a trivial Hamiltonian HU -space with moment
map sending ∗ 7→ f ∈ u∗. For any Hamiltonian H-space M , we can define a Hamiltonian
HU -space M̃ = M × ∗f with trivial U -action on M ; then we can define the Whittaker
induction of M from H to G to be h-IndGHU(M̃), or explicitly

(M × ∗f )HU(h+u)∗T
∗G.

Note that this is equipped with a natural base point if M is, given by the base point of M
on the left and (f, 1) ∈ T ∗G ≃ g∗ × G. Similar to Hamiltonian induction, one can lift a
grading on M to its Whittaker induction, but the f -shift complicates things; we’ll discuss
this in terms of shearing in a moment.

First, let’s give an example. Suppose M and H are trivial, so its Whittaker induction is
just the Hamiltonian induction of ∗f from U to G. The element f ∈ u∗ defines an additive
character U → Ga, which we call ψ. Then by definition the Hamiltonian induction in this
case is the quotient of the fiber of T ∗G over f = dψ by U . This is precisely the Whittaker-
type example from §1.1! For f trivial, we’d recover the definition of T ∗G///U , which we know
should be the same as T ∗(U\G), so these can indeed be viewed as twists of the cotangent
bundle of U\G.

We now turn to the grading, which arises most naturally via shearing. Suppose more
generally that we have an action ϖ : Ggr → Aut(G) of Ggr on G (say on the right), so G is a
“graded group.” We define a sheared Hamiltonian G-space M to be a Hamiltonian G-space
with Ggr-action compatible with that on G and g∗, in the sense that for x ∈M , g ∈ G, and
λ ∈ Ggr, we have

x · g · λ = x · λ ·ϖ(λ)(g), µ(x · λ) = λ2ϖ(λ)(µ(x))

where we denote the action of Ggr on g∗ induced by ϖ again by ϖ by an abuse of notation.
In particular for the trivial action of Ggr on G, a sheared Hamiltonian space is just a graded
Hamiltonian space, i.e. the actions of G and Ggr on M commute and the moment map µ is
equivariant for the squaring action on g∗.

If M is a graded Hamiltonian space and ϖ : Ggr → G is a cocharacter, composing the
Ggr-action on M with ϖ gives a new Ggr-action on M , such that M is now sheared with
respect to the Ggr-action on G induced by the (right) inner action via ϖ. Indeed if the
Ggr-action on G arises via some ϖ in this way, then every sheared Hamiltonian space arises
from a graded one by twisting through ϖ.

In our situation above, the cocharacter ϖ induces a Ggr-action on U , which for the
squaring action on u∗ makes ∗f a sheared Hamiltonian U -space; putting the trivial Ggr-action
on H, this extends to the structure of a sheared Hamiltonian HU -space, and similarly for
any graded Hamiltonian H-spaceM the product M̃ =M×∗f is then a sheared Hamiltonian
HU -space. Thus the generalization of graded spaces to sheared spaces fixes the issue with
f -shifting. Thus, for a fixed sl2-pair (ϖ, f), we can view Whittaker induction as the following
functor from graded Hamiltonian H-spaces to graded Hamiltonian G-spaces:
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• given a HamiltonianH-spaceM , form the sheared Hamiltonian HU -space M̃ =M×∗f
(which can be thought of as twisting the grading by ϖ and shifting by f);

• via Hamiltonian induction, form the sheared Hamiltonian G-space h-IndGHU(M̃);

• untwist by ϖ to form the graded Hamiltonian G-space h-IndGHU(M̃) (which is the same
as above as a Hamiltonian G-space, but with a different Ggr-action).

Generalizing our example above whereM is trivial, ifM is a vector space, i.e. a symplec-
tic H-representation with the scaling action of Ggr, then one can show that its Whittaker
induction is a vector bundle over H\G. Explicitly, the Whittaker induction in this case
works out to be isomorphic to

V ×H G,

where
V =M ⊕ (h⊥ ∩ ge),

compatibly with the various Ggr-actions. Here ge is the kernel of the action of a principal
nilpotent e on g∗.

You may recall from my last talk that for a spherical G-variety X, we were looking to
construct a dual group ǦX , together with the data of a map ιX : ǦX × SL2 → Ǧ and
a ǦX-representation VX about which we were especially vague except that it is somehow
constructed from a smaller representation SX . Although we’re not yet in quite the right
situation (we haven’t yet said anything about duality), we can begin to see where this will
come from: if we have a duality for Hamiltonian G-spaces, M = T ∗X, and M̌ was also
Whittaker induced from a datum ǦX × SL2 → Ǧ and a ǦX-representation SX , then the
formula for VX from SX is precisely the fiber of the Whittaker induction.

1.4 Hypersphericality

To have a good theory of relative Langlands duality, the generality of Hamiltonian G-spaces
is actually too great; we need to impose some conditions, reflecting our examples of greatest
interest from §1.1.

We say that a graded irreducible (smooth) Hamiltonian G-space M is a hyperspherical
variety if it satisfies the following five conditions:

(1) M is affine;

(2) the field of G-invariant rational functions F(M)G is commutative with respect to the
Poisson bracket (M is “coisotropic”);

(3) the image of the moment map µ :M → g∗ has nonempty intersection with the nilcone
of g∗;

(4) the stabilizer in G of a generic point of M is connected;

(5) the Ggr-action is “neutral.”
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The rest of the section will consist of (unproven) remarks on these conditions.
The neutrality condition is technical, but what it essentially means is the following: the

first four conditions guarantee that there is a unique closed G×Ggr-orbit M0 in M , whose
image under the moment map is a nilpotent orbit Of , which can be associated to sl2-triples
(h, e, f), each of which as above produces another Ggr-action; the neutrality condition means
that on a neighborhood of M0, the Ggr-action agrees with that associated to some sl2-triple
of Of . We’ll return to it after discussing some of the other conditions.

When M is the Whittaker induction of a symplectic H-representation as in the previous
section, it will automatically satisfy conditions (1), (3), and (5). The “coisotropicity condi-
tion” (2) should be thought of as the “sphericality” condition; the final condition (4) is more
auxiliary. In particular, if X is a smooth affine spherical variety, then T ∗X is hyperspherical
if and only if it satisfies condition (4), or equivalently if and only if the B-stabilizers of
points in the unique open B-orbit in X are connected. (Such spaces will turn out to be the
“polarized” hyperspherical varieties.)

In particular let’s say a little bit more about condition (2): it is equivalent to either of
the following:

• the generic G-orbit on M is coisotropic;

• the generic fiber of µ̃G :M → g∗ ↠ g∗//G contains an open G-orbit.

In particular the latter condition in the case M = T ∗X is reminiscent of the sphericality
condition on X, perhaps making some of the claims above more believable. Moreover under
this condition it follows that the GIT quotientM//G is isomorphic to the image of µ̃G. Then
condition (3) implies that 0 is in the image of µ̃G, which together with (2) implies that µ̃G
is surjective. Assuming all conditions (1) through (4), one can show as claimed that there is
a unique G×Ggr-orbit M0 with nilpotent image under µ.

We can now return to the neutrality condition. Choose x in the closed G × Ggr-orbit
M0 ⊂ M with image µ(x) = f ∈ g∗, and let H ⊂ G be the stabilizer of x; all constructions
will be independent of the choice of x. The Ggr-action on M0 ≃ H\G commutes with G and
so is given by left multiplication by a cocharacter ϖ : Ggr → N(H)/H, which acts on f ∈ g∗

by squaring. The neutrality condition (5) is then that (ϖ, f) forms an sl2-pair, together with
certain more technical conditions. In particular, to a hyperspherical varietyM (satisfying all
five conditions) we can associate a subgroup H ⊂ G as well as a commuting sl2-pair, which
was exactly the data we needed to produce Whittaker induction from H-spaces to G-spaces.

1.5 Structure theorem

We are now nearly ready to state the structure theorem for hyperspherical varieties. Recall
that when H = Gx, the symplectic normal bundle construction gave a way to recover a
symplectic H-representation from its Hamiltonian induction. The following theorem can
be viewed as saying that, under the conditions defining hyperspherical varieties, a similar
procedure works for Whittaker induction.

Theorem 1. Let M be a hyperspherical variety, with related notation as in the previous
section, and let S be the fiber of the symplectic normal bundle to M0 at x. Then there
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is a unique G × Ggr-equivariant isomorphism of Hamiltonian G-spaces between M and the
Whittaker induction of S from H to G with respect to the fixed sl2-tuple (f,ϖ), sending x
to the base point of the Whittaker induction.

In particular, every hyperspherical variety is Whittaker induced from a symplectic rep-
resentation. This can be viewed as combining examples of types 2 (Whittaker induction of
the trivial space) and 3 (symplectic vector spaces); keeping in mind that type 2 is a twisted
version of type 1, this means that (under minor restrictions) all our examples are subsumed
by spherical varieties, and in fact in a certain sense generate them.

1.6 Polarization

We maintain the notation as above; in particular we keep S as the symplectic normal bundle
to M0, so M is induced from S. We say that M admits a distinguished polarization if the
weight 1 component u1 ⊂ u vanishes (implied by our even weights assumption) and there is
a Lagrangian H-stable decomposition

S = S+ ⊕ S−,

and we call such a choice a distinguished polarization.
In this situation, as above we can identify f ∈ u∗ with dψ for a character ψ : U → Ga.

Then, letting X = S+×HU G, M is the ψ-twisted cotangent bundle of X. Via the conditions
(1) - (5) on hyperspherical varieties, one can show that in this case X must be a spherical
variety satisfying the analogue of condition (4), i.e. the B-stabilizers of points in the open
B-orbit are connected; and the twisted cotangent bundles of any affine smooth spherical
X satisfying this condition is hyperspherical. In particular, the data of a distinguished
polarization of a hyperspherical variety M can be viewed as an identification M ≃ T ∗

ψ(X)
for a suitable spherical X. In §2 we’ll develop the duality theory for polarized hyperspherical
varieties, and this goes a long way towards showing why this is easier than without the
polarization data: with it, we can essentially reduce to the duality theory for spherical
varieties which we’ve seen before. However, the same failings of that theory apply: we
can’t hope for a completely symmetric duality theory for polarized hyperspherical varieties,
because we don’t have one for spherical varieties! So in §3 we’ll try to say something about
the general case, where we don’t have this structure to rely on.

1.7 Rationality

Before we move on to the duality theory, let’s make some brief remarks about the general
situation when we don’t require everything to be over an algebraically closed field. It is
possible to give a (not entirely satisfactory) definition of hyperspherical data over a ring,
by essentially turning the structure theorem into a definition. There are some interesting
issues of which is the right form to use when not over an algebraically closed field, which we
skip over for the sake of time; the main point is that the most straightforward form is not
always the right one from the point of view of the local Langlands conjectures. (Speculation:
perhaps this is related to the observation in (geometrization of) local Langlands that it’s
better to simultaneously study all inner forms? Not sure but curious if the experts have
thoughts!)

7



2. Polarized hyperspherical duality

2.1 Duality for polarized hyperspherical varieties

Recall from my last talk: for a spherical G-variety X, we want to associate to it a “Lang-
lands dual group” ǦX , together with a morphism ǦX × SL2 → Ǧ. This generalizes the
homogeneous situation X = H\G, where ǦX = Ȟ. We also mentioned the further data
of a representation VX of ǦX , which was related to another representation SX which arises
more naturally in the relative setting, but is less natural for classical applications. (The
constructions in the spherical case require a lot of careful geometry and Lie algebra work,
which truthfully speaking we did not go through in too great detail last time; however we
will pretend we did, and treat the spherical case as completely understood.)

Our goal in the next two sections is to generalize this picture to the hyperspherical case:
for a hyperspherical G-variety M , we want to associate to it a dual hyperspherical Ǧ-variety
M̌ . In the case M = T ∗X, this should reduce in some sense to the spherical case.

With all our machinery built up, the construction is not actually too hard (although
the result will be only conjecturally hyperspherical). The key idea is to use the structure
theorem: each hyperspherical G-varietyM has commuting H ⊂ G, sl2 ⊂ g, and a symplectic
representation S of H, and in turn arises from such data. In the case M = T ∗X, we can
associate to X the data of commuting ǦX ⊂ Ǧ, sl2 ⊂ ǧ, and the self-dual representation SX
of ǦX , which conjecturally should admit a ǦX-invariant symplectic form. Conditional on
this conjecture, this is exactly the data of a hyperspherical Ǧ-variety M̌ , which should be
the dual of M : explicitly M̌ is the Whittaker induction of SX from ǦX to Ǧ for the fixed
(H, sl2)-data. (As previously, the role of ǦX is dual to that of H, but we avoid the notation
Ȟ since this collides with the Langlands dual of H, which may not always be the same as
ǦX outside the homogeneous case.)

For polarized hyperspherical varieties, it would suffice to understand not just the case
of M = T ∗X but the slightly more general twisted cotangent bundle case M = T ∗

ψX. The

construction of ǦX and the commuting sl2 ⊂ Ǧ is very similar; under certain conditions (the
“wavefront property”) theWeyl group of ǦX,Ψ should be theWeyl group associated to theGa-
bundle Ψ viewed as a G-space (recall the construction actually does not require sphericality!).
The construction of SX is just as in the spherical case (which recall is piecemeal via defining
certain weights from the geometry of X and taking SX to be a sum of representations with
highest/lowest weights coming from these), with the twist already built in to ǦX .

In general, the M̌ thus constructed is only conjecturally hyperspherical: one would need
to know that SX was symplectic and to check various conditions on X in order to apply
the structure theorem out-of-the-box. However we can prove the following interesting result
towards condition (4):

Proposition 2. Let X be a smooth affine spherical variety, M = T ∗X, and assume that SX
is symplectic (and satisfies certain technical conditions). Then the image of the dual moment
map M̌ → ǧ∗ contains a regular nilpotent element.

Indeed, this is the element f corresponding to the sl2 ⊂ g arising in the construction of
M̌ . This will be useful in our discussion of rationality below.

8



2.2 Rationality and varia

Once we’ve introduced duality, there are now two fields involved: the base field F, which
we’ve assumed algebraically closed, and the coefficient field k, also assumed algebraically
closed, which the dual side M̌ and its associated data live over. (Classically, this is the
situation of G over a field F, which is often taken to be C in geometric Langlands but could
be a number field or function field for arithmetic applications, and Ǧ over the complex
numbers (though for some arithmetic applications we prefer to take ℓ-adic coefficients).)
Thus there are two natural questions we could ask, given by allowing either F or k to fail
to be algebraically closed: if M (together with its polarization, if present) is defined over a
field F which is not algebraically closed, is there an induced action of Gal(F/F) on M̌ (as
there would be on Ǧ in the classical case, to form LG)? If k is not algebraically closed, is
there a “distinguished” form of M̌ over k?

Recall from Proposition 2 that we have a regular nilpotent element f ∈ ǧ∗ in the image
of the moment map from M̌ ; we take this to correspond to the pinning of Ǧ. The general
principle, related to both questions above, is that at least in the caseM = T ∗X, there should
be an element m ∈ M̌ , which we call a pinning of the hyperspherical variety M̌ , such that
µ(m) = f ; and the Galois action for F should preserve m, and similarly there should be a
distinguished rational form of M̌ such that m is a k-rational point.

Naively, for X over a non-algebraically closed field F one gets a Galois action on the roots
and so could try and construct the Galois action on ǦX , extending it to an L-group LGX ;
but one can find examples where this demonstrably gives the wrong thing! The heuristic
is that one should think of the Galois action as really on M̌ , not on ǦX . Indeed, one can
carefully write down Galois actions on each piece of the hyperspherical datum defined over
F (provided 2 is invertible in F), and then the assembled action on the Whittaker induction
M̌ (conjecturally) gives the right thing; one can confirm that it does preserve a pinning
m ∈ µ−1(f) as per the philosophy above.

3. General hyperspherical duality: speculation

We can now write down the dual hyperspherical variety for any polarized hyperspherical
varietyM ; however since the polarization forcesM to arise from a spherical variety, one might
complain that we haven’t done much new (though what we have done is synthesize these
duals into the language of hyperspherical varieties, at least conjecturally). We would like to
generalize this duality to all hyperspherical varieties, without resorting to polarizations.

In this (speculative) section, we’ll develop a notion of “anomaly” which obstructs quan-
tization; then we’ll work out what the ideal conjecture for hyperspherical duality would be,
and finally give a rational and even integral version.

3.1 Anomaly

The TQFT philosophy is that to each hyperspherical variety (G,M), we should associate
an “automorphic quantization” and “spectral quantization” which give rise to the TQFTs
A(G,M) and B(G,M); the expected overall relative Langlands duality is that the automorphic
quantization of (G,M) should be Langlands dual to the spectral quantization of the dual
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hyperspherical variety (Ǧ, M̌). Under certain circumstances, there is an obstruction to the
automorphic quantization: one instead has to pass to the metaplectic cover, which is not
algebraic and so (since all our objects are algebraic) we’d prefer to avoid. (An example is
G = Sp2n, M = A2n.)

In certain circumstances, we can detect the splitting of the metaplectic cover algebraically:

Proposition 3. Let F be a nonarchimedean local field with residue characteristic different
from 2, V a symplectic F -vector space, and H ⊆ Sp(V ) an algebraic F -subgroup. If there
exists a character θ : H → Gm with

c2(V ) = c1(θ)
2

in the (absolute!) étale cohomology H4
ét(BH,Z/2), then the metaplectic cover of Sp(V ) splits.

We make no direct use of this proposition; but it motivates the following definition. Let
G be a reductive group over C, and M any symplectic G-variety. We set

c2 ∈ H4
G(M,Z)⊗Z Z/2

to be the G-equivariant second Chern class of (the tangent bundle of)M , considered modulo
2. Say that M is strong anomaly free if c2 = 0 (i.e. the equivariant Chern class vanishes
modulo 2), and anomaly free if there exists an integral cohomology class β ∈ H2

G(M,Z) such
that β2 ≡ c2 (mod 2).

The expectation is that if M is anomaly free, it admits an automorphic quantization.
(In fact the anomaly is also related to the spectral quantization, and we have the same
expectation there.) There are also some physics-based motivations.

When M is a hyperspherical variety (with associated notation as above, e.g. H, S, etc.),
we can rephrase this definition in a way more strongly reminiscent of Proposition 3: let c2(S)
be the second Chern class of S as a vector bundle on BH in H4(BH,Z). Then M is strong
anomaly free if and only if c2(S) ≡ 0 (mod 2), and is anomaly free if and only if there exists
a character θ : H → Gm with c2(S) ≡ c1(θ)

2 (mod 2). (This is under our usual evenness
assumption; without it we need to replace S by V = S ⊕ u/u+.)

Spelling out c2(S) in terms of weights, one can check that if M admits a distinguished
polarization, then it is anomaly free. If M = V is a symplectic vector space and G =
Sp(V ), then M is not anomaly free; but it is possible that taking G instead to be certain
subgroups of Sp(V ) may make M anomaly free as a G-variety. For example, if V = W ⊗W ′

where W is an orthogonal vector space of dimension 2n and W ′ is a symplectic vector
space of dimension 2m, so V is symplectic of dimension 4nm, then the induced subgroup
G = SO(W )× Sp(W ′) ↪→ Sp(V ) makes V an anomaly free (hyperspherical) G-variety, even
though it is not anomaly free as a Sp(V )-variety. This recovers the fact that so long as
dimW and dimW ′ are even we don’t need to pass to the metaplectic cover for the Weil
representation.

3.2 Conjectural duality

In this subsection we write down the “ideal” hyperspherical duality conjecture, taking the
anomaly into account: this is not quite a conjecture but an expectation, up to minor modi-
fications of the definitions of “hyperspherical” and “anomaly.”
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Expectation 4. There exists a duality

(G,M)←→ (Ǧ, M̌)

between anomaly free hyperspherical (G,M) over C and hyperspherical (Ǧ, M̌) over C, such
that if M admits a distinguished polarization then M̌ arises via the process described in §2.1.

Some consequences of this expectation are as follows:

• The construction of M̌ when M admits a principal polarization is independent of the
polarization.

• When M admits a distinguished polarization, (Ǧ, M̌) is anomaly free.

• If M and M̌ both admit principal polarizations, then M is constructed from M̌ via
the same process.

Some sort of anomaly vanishing condition is certainly necessary, as is true even in the group
case, but we may be able to extend to anomalous cases by modifying the conjectures. There
is currently (as of [1]) no known example of a dual pair where neither (G,M) nor (Ǧ, M̌)
admits a distinguished polarization, but there is no obvious reason why one couldn’t exist.

3.3 Rationality and varia

We’ve discussed before the question of distinguished models of hyperspherical varieties over
non-algebraically closed fields. Our philosophy is that at least in the anomaly free case,
there is a universal such model of (G,M) over Z, called the “split form.” This should be
compatible with our previous rationality remarks; for example, at least away from a finite
set of bad primes it should be associated to the distinguished hyperspherical datum for the
base change to the algebraic closure. If M and M̌ are a dual pair with M̌ = T ∗X, then
we expect that Z[M̌ ] is the local Plancherel algebra. The split form expectation implies
strong Galois invariance properties, and the Plancherel algebra formula would imply that
the flatness of M̌ over Z is equivalent to certain cohomology groups (I believe H∗(BH, k))
being torsion-free.

For automorphic forms, a better construction would be a duality as in Expectation 3.2
taking into account rational structures on both sides (i.e. allowing both F (for M) and k
(for M̌) to be non-algebraically closed). Following the discussion in §2.2, this should be
a certain mutual Galois equivariance respecting certain pinnings (giving rise to L-groups
and perhaps some sort of “L-duals” M and LM); this picture has not yet been completely
worked out. One can write down a definition of split forms under certain conditions, but
this is sufficiently preliminary that the authors suggest instead hoping that the split form is
obvious or easily determined by its expected properties.
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