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Note: generally everything is sourced from Bhatt–Scholze [2]
unless otherwise specified.
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Motivation: perfectoid rings

(Integral) perfectoid rings:

• Analogue of perfect rings for Zp-algebras

• p-complete Zp-algebras such that mod p, Frobenius is a
bijection; ∃ pth power dividing p; some other technical
conditions

• Examples: perfect Fp-algebras, Zp[p
1/p∞ ]∧p

• Main interest: tilting correspondence: for R perfectoid,
{perfectoid R-algebras} ↔ {perfectoid R♭-algebras} (where
R♭ = limϕ R/p)

• Example: Fontaine–Winterberger theorem
GalQp(p1/p

∞
)∧p

≃ GalFp((T 1/p∞ ))∧T
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Obstructions

Perfectoid condition is unpleasantly restrictive. Possible solutions:

• Take covers by perfectoid spaces and tilt keeping track of the
covers (leading to theory of diamonds)

• Generalize: if perfectoid spaces are analogous to perfect
Fp-algebras, how can we drop the “perfect”?
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Perfect prisms

Let’s reformulate perfectoid rings using the Ainf functor

Ainf(R) = W (R♭).

Theorem

There exists a surjection θ : Ainf(R) → R with kernel (ξ) principal.

So the data of Ainf(R) (depending only on R♭) and (ξ) together
recover R.
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Perfect prisms

What’s the codomain of this functor?

• Ainf(R) is equipped with a lift of Frobenius ϕ (or better,
δ-structure)

• (ξ) is a principal ideal with “distinguished generator” (δ(ξ) is
a unit, or equivalently p ∈ (ξ, ϕ(ξ))), such that Ainf(R) is
(derived) (p, ξ)-complete.

Further since R♭ is perfect, ϕ is an isomorphism.

Definition

A perfect prism is a pair (A, I ) where A is a δ-ring such that the
Frobenius is an isomorphism and I is a principal ideal such that
p ∈ (I , ϕ(I )) and A is derived (p, I )-complete.
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Perfect prisms

Theorem

The functors R 7→ (Ainf(R), ker(Ainf(R) → R)) and (A, I ) 7→ A/I
are inverse functors defining an equivalence between perfectoid
rings and perfect prisms.

Example

Fp = Zp/(p) 7→ (Zp, (p)); more generally any perfect Fp-algebra R
corresponds to (W (R), (p)).

A mixed-characteristic example is
Zp[p

1/p∞ ]∧p 7→ (Zp[[T
1/p∞ ]]∧p , (T − p)).

To “deperfect” perfectoid rings, we should look for a version
without the “perfect” condition.
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Prisms

The “perfectness” is the condition that ϕ be an isomorphism, and
it’s geometrically better to ask for I locally principal. So:

Definition

A prism is a pair (A, I ) where A is any δ-ring and I is a locally
principal ideal such that p ∈ (I , ϕ(I )) and A is (p, I )-complete.

A morphism of prisms is a map of δ-rings compatible with the
chosen ideals.
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Prisms

Prisms can be:

• perfect if ϕ is an isomorphism (as above);

• bounded if A/I has bounded p∞-torsion (technical
condition);

• orientable if I is principal, or oriented if a generator
(orientation) is given (can usually be assumed for
convenience);

• crystalline if I = (p) (special case).

It turns out (A, (p)) is a prism iff A is p-torsion-free.



Motivation: “deperfecting” Prismatic cohomology Comparison theorems and connections

Prisms

Prisms can be:

• perfect if ϕ is an isomorphism (as above);

• bounded if A/I has bounded p∞-torsion (technical
condition);

• orientable if I is principal, or oriented if a generator
(orientation) is given (can usually be assumed for
convenience);

• crystalline if I = (p) (special case).

It turns out (A, (p)) is a prism iff A is p-torsion-free.



Motivation: “deperfecting” Prismatic cohomology Comparison theorems and connections

Prisms

Prisms can be:

• perfect if ϕ is an isomorphism (as above);

• bounded if A/I has bounded p∞-torsion (technical
condition);

• orientable if I is principal, or oriented if a generator
(orientation) is given (can usually be assumed for
convenience);

• crystalline if I = (p) (special case).

It turns out (A, (p)) is a prism iff A is p-torsion-free.



Motivation: “deperfecting” Prismatic cohomology Comparison theorems and connections

Prisms

Prisms can be:

• perfect if ϕ is an isomorphism (as above);

• bounded if A/I has bounded p∞-torsion (technical
condition);

• orientable if I is principal, or oriented if a generator
(orientation) is given (can usually be assumed for
convenience);

• crystalline if I = (p) (special case).

It turns out (A, (p)) is a prism iff A is p-torsion-free.



Motivation: “deperfecting” Prismatic cohomology Comparison theorems and connections

Prisms

Prisms can be:

• perfect if ϕ is an isomorphism (as above);

• bounded if A/I has bounded p∞-torsion (technical
condition);

• orientable if I is principal, or oriented if a generator
(orientation) is given (can usually be assumed for
convenience);

• crystalline if I = (p) (special case).

It turns out (A, (p)) is a prism iff A is p-torsion-free.



Motivation: “deperfecting” Prismatic cohomology Comparison theorems and connections

Tilting equivalence

We can recover the tilting equivalence from a few lemmas about
prisms:

Lemma (Rigidity)

If (A, I ) → (B, J) is a map of prisms, then J = IB.

Lemma (Lifting)

If (A, I ) is a perfect prism and (B, J) is any prism, then any map
A/I → B/J lifts uniquely to a prism map (A, I ) → (B, J).

Corollary

Let R be a perfectoid ring with tilt R♭. Then the categories of
perfectoid R-algebras and perfectoid R♭-algebras are equivalent.
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Tilting equivalence

Corollary

Let R be a perfectoid ring with tilt R♭. Then the categories of
perfectoid R-algebras and perfectoid R♭-algebras are equivalent.

Proof.

Write R uniquely as A/I for a perfect prism (A, I ). Then maps
R → R ′ lift uniquely to (A, I ) → (A′, I ′) and so induce
A/p = R♭ → A′/p = R ′♭ and similarly in reverse, which gives a
bijection by rigidity.

In fact we have no restriction on (A′, I ′) so actually this is a
stronger version!
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Prismatic site

For the tilting equivalence we study perfectoid algebras over a
perfectoid R, or equivalently perfect prisms (A, I ) together with a
map R → A/I . Now we want to generalize to non-perfectoid rings:

Definition

The (absolute) prismatic site (R)∆ of a ring R is the category of
prisms (A, I ) together with a map R → A/I , equipped with the
[BZZZT ] topology.

There is also a relative version, which is what we’ll mostly use:

Definition

For a fixed prism (A, I ) and an A/I -algebra R, the prismatic site
(R/A)∆ of R over (A, I ) is the category of prisms (B, J) together
with compatible maps (A, I ) → (B, J) and R → B/J, equipped
with the [BZZZT ] topology.
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Aside

Note: these are not really sites, because the arrows are the wrong
way! Really these should be the opposites of these categories,
which works well for replacing R by a scheme (e.g.
SpecA/I → SpecR).



Motivation: “deperfecting” Prismatic cohomology Comparison theorems and connections

Sheaves and cohomology

There are several natural sheaves on the prismatic sites:

• O∆ : (A, I ) 7→ A (the structure sheaf)

• O∆ : (A, I ) 7→ A/I (the Hodge–Tate sheaf)

• I∆ : (A, I ) 7→ I (the Hodge–Tate ideal sheaf)

all of which can be defined on either the absolute or relative
prismatic sites.

Taking cohomology gives

• ∆R/A = RΓ((R/A)∆,O∆), the relative prismatic cohomology;

• ∆R = RΓ((R)∆,O∆), the absolute prismatic cohomology;

• ∆R/A = RΓ((R/A)∆,O∆), relative Hodge–Tate cohomology,
and similarly for the absolute version
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Prismatic cohomology

At least in the relative case,

∆R/A = ∆R/A ⊗A A/I

so prismatic cohomology carries the most information.

Example

Suppose R = A/I . Then

∆R/A = A, ∆R/A = A/I = R.
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Perfectoidization

We’re familiar with perfection of Fp-algebras: Rperf = colimϕ R.
The analogue for mixed-characteristic rings is perfectoidization.

First, there’s a straightforward analogy for δ-rings:
Aperf = (colimϕ A)

∧.

Then we can define the perfectoidization in two ways: first, let R
be an S-algebra for S perfectoid, so we can write S = A/I for a
perfect prism (A, I ). Then

Rperfd := ∆R/A,perf ⊗L
A A/I .
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Perfectoidization

This is sort of a “perfected Hodge–Tate cohomology.” Note that it
is in general a derived ring (in your preferred model, e.g. an
animated ring or a commutative algebra object in D(R)). However
a priori it depends on the choice of a presentation A/I = S → R.

Fortunately we can define this in another way which makes the
independence clear by modifying the site: let (R)perf∆ be the

(absolute) perfect prismatic site of R, consisting of perfect
prisms (A, I ) with maps R → A/I . Then

Rperfd ≃ RΓ((R)perf∆ ,O∆).
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Comparison theorems

The other big motivation for prismatic cohomology is to generalize
and unify various classical p-adic cohomology theories. For
example:

• Crystalline cohomology

• Hodge cohomology

• de Rham cohomology

• p-adic étale cohomology of the generic fiber
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Comparison theorems

This is the origin of the picture motivating the term “prism”
(stolen from [1, Lecture 1]) over SpecZp[[u]] (should really be Σ):

We’ll leave details for future talks, but let’s spell out the
comparison in one example:
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Crystalline comparison

Suppose (A, I ) is crystalline and R is an A/I -algebra. Then ∆R/A is
almost equal to the classical crystalline cohomology RΓcrys(R/A):

RΓcrys(R/A) = ϕ∗∆R/A = ∆R/A⊗̂
L
A,ϕA

A.

When (A, I ) is any perfect prism, we can then think of ∆R/A as
generalizing crystalline cohomology to mixed-characteristic
perfectoids (after correcting by a Frobenius twist).
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Qrsp rings and the Nygaard filtration

There is a site of Zp-algebras called the quasisyntomic site, with a
basis of quasiregular semiperfectoid (qrsp) rings (roughly, those
which are quotients of perfectoid rings by quasiregular ideals).
Prismatic cohomology is well-behaved on these:

Proposition

If R is qrsp, the absolute prismatic site (R)∆ has an initial object
(∆init

R , (d)), and for any prism (A, I ) with a map A/I → R we have

∆R/A = ∆R = ∆init
R .

In particular the prismatic cohomology of R is concentrated in
degree 0, and RΓ((R)∆, I∆) = d∆R is principal.
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Qrsp rings and the Nygaard filtration

Thus we can define a filtration N≥i∆R = ϕ−1(d i∆R), or
(equivalently) N≥i∆R/A = ϕ−1(d i∆R/A).

Then by descent we can define this filtration on the prismatic
cohomology (absolute or relative) of any quasisyntomic ring R.
Write N i∆R , N i∆R/A for the graded pieces, and ∆̂R , ∆̂R/A for the
completion with respect to this filtration.
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Topological connections

Now let’s briefly review topological Hochschild homology: for an
E∞-ring spectrum R (which for us will be a usual discrete ring),
THH(R) can be defined as the universal S1-equivariant E∞-ring
spectrum over R. The S1-action means we can form
TC−(R) := THH(R)hS

1
and TP(R) := THH(R)tS

1
, which come

with a natural map TC−(R) → TP(R). (We take all of these with
Zp-coefficients, i.e. p-completed.)

Bökstedt’s theorem: π2∗ THH(Fp) = Fp, and odd homotopy
groups vanish. There is a generalization to perfectoid rings R:
π2∗ THH(R) = R, and odd groups vanish.

What about qrsp rings?
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Topological connections

The evenness is still true, but the description is more complicated:
π2∗ THH(R) = N n∆̂R{∗}! (Here {∗} is a twist we’ll skim over.)

Moreover, TC−(R) and TP(R) also have even homotopy groups,
and

π2∗ TC
−(R) = N≥∗∆̂R{∗}, π2∗ TP(R) = ∆̂R{∗}.

In particular π0 TC
−(R) = π0 TP(R) = ∆̂R . Since qrsp rings form

a basis for the quasisyntomic site, it follows that the quasisyntomic
sheafification of π0 TC

−(−) = π0 TP(−) is ∆̂−.
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Topological connections

One can use the cyclotomic structure on THH to get Frobenius
maps TC−(R) → TP(R) and take the equalizer to get TC(R);
doing the same sheafification process gives the syntomic
cohomology of R, which previously was not defined in this
generality. One can also expand to even ring spectra other than
THH(R) for R qrsp to get the even and motivic filtrations [4].

In particular, p-locally the cyclotomic trace K (R) → TC(R) is an
equivalence by [3], so we can say something about K-theory as a
consequence: e.g. quasisyntomic locally its homotopy groups are
even, i.e. the quasisyntomic sheafification of πnK (−,Zp) vanishes
for n odd.
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