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1. SUMMARY OF SUG WOO SHIN’S TALKS

The “basic” setup is: let G be a (split) reductive group, H C G a subgroup, and consider
the G-variety X = H\G over a field F. More generally, we could consider any normal
quasi-affine G-variety X on which there is an open dense B-orbit; such varieties are called
spherical.

When F is a global field we can formulate the periods and L-functions fairly easily: if ®
is a suitable Schwartz function on X (Ap), then we can define

Oalg) = Y P(ag)

zeX(F)

on [G] = G(F)\G(AF), and then define the X-period by pairing ¢ € L?([G]) with Og,
(p,Oa) = /[G] ©(9)Oas(g) dg.

In the special case where X = H\G, if we define

then
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so we recover a ®-weighted H-period. A natural question on this side is: for what ¢ (i.e.
appearing in which subrepresentations ) is this X-period nonzero? Another: per the con-
jectures that Gyujin sketched last time, this should correspond to some L-value; how do we
construct it? The L-value should have an Euler factorization, so ideally so too should the
period; how do we get this?

Now say everything is over a local field F. Then L*(X(F)) or C*°(X(F)) carry an
action of G(F) and so decompose as a sum (integral) of automorphic representations of
G(F). Spherical varieties in particular have the following good property: for any admissible
irreducible representation 7 of G/(F'), the multiplicity dim Homegp (7, C*°(X (F'))) is finite.
One can think of spherical varieties as generalizations of toric varieties to nonabelian groups.

The main question this construction raises is: which 7 appear in C*°(X(F'))? (and
perhaps secondarily what are their multiplicities?)

The local Langlands program tells us that such representations 7 should be classified by
Weil-Deligne representations p, : Wg x SLy — G x Wp (we'll neglect the We-factor on the
right). The idea is to construct a group G x together with a map tx : Gx xSLy — G. Roughly
speaking, m should appear in C°(X(F)) if and only if p, factors through ¢y, i.e. there is a
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map ¢, : Wrp — Gy such that pr is the composition Wg x SLy —— G)X x SLy =5 G a
more precise formulation of this I imagine will occur in the next talk.

Also in the next talk (7), we’ll see how the numerical picture falls out of this setup:
roughly speaking we get a local L-factor from p, and a local X-period from 7, and when 7
occurs in L?(X(F)) then the local X-period is nonzero and the local L-factor comes from
¢r. These then give Euler factorizations of the global periods and L-values.

With the data of Gx and tx in hand, as well as a certain G x-representation Vy, we can
now answer some of the questions in the global case: again, an automorphic representation
7 should have nonzero X-period if and only if its Arthur parameter factors through ¢, and
tx; and the corresponding L-value should be %'

The most classical case is the “group case” where G = H x H and H < H x H is the
diagonal embedding. Then X = H\G ~ H, with the action of H x H by (hl, h2) -h = hy'hhy.
In this case O is the usual theta function for H. We have Gx = H ¢ G = H x H; it turns out
that this is no longer the diagonal embedding, but (id, ¢) for ¢ the Chevalley involution; we’ll
discuss this case a little more in the second section of the talk. The map from SL, is trivial

in this case. So an H-distinguished automorphic form of H x H is one whose L-parameter

factors through H 9 g x H ; twisting an L-parameter p, by c should give roughly the
L-parameter of the contragradient p,v, so the distinguished representations m; ® 7y should
be the 7 @ 7.

The other simple homogeneous case to work through is X = G\G = *. In this case
B¢ = P, so the pairing is just integrating against Schwartz functions. We’ll see in the next
section that Gy is trivial; this is perhaps unsurprising when X is trivial. The SLo-map is
principal and so forms all of ¢x.

A less trivial homogeneous case is the “Hecke period” G = PGLy; and H = G,,, em-
bedded as the top-left coordinate. This gives rise to the Hecke period f[H] w(h) dh, which
Waldspurger’s formula tells us is supposed to be roughly L(1/2,7); we could also twist by
inserting a factor of |h|*, which would shift the L-value to L(1/2 + s, 7). In this case, Gx
should again be G,, embedded similarly into G = SL,. Through the formalism of BZSV,
which generally we won'’t discuss until future talks, we should be able to match up these sorts
of examples with duals; the dual in this case is G = SLs acting on its standard representation
A2,

Finally, we include an example of a non-homogeneous spherical variety: X = Al with
the natural action of G = G,. In this case an automorphic form ¢ on [G] is just a Hecke
character y, and its X-period is

/ V(9)O0(g) dg = / (@) / B(g) dz dg = B(0) / \(9)dg + /
FX\A% FX\A% F [Grn] Apx(9)®(g) dg

and by Tate’s thesis the second term is (for a suitable choice of @) essentially the L-value
L(0, x). Here Gx = G,, = G with identity map.

2. CONSTRUCTION OF THE DUAL GROUP

Shin omits the details of the construction, and for good reason: in general it is quite com-
plicated. We will try to flesh it out a little though beyond the material of the videos.
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The main idea is this: first, via a classification theorem, we can associate to a spherical
G-variety X a root datum ®x. We could then construct an algebraic group Gx with this
root datum, and hope for a map Gx — G to relate G x-representations to GG-representations;
but it turns out that such a map does not always exist. Instead, the idea of Gaitsgory—Nadler
is to look at the Langlands duals, and hope for a map Gy — G; then we can study the same
problem as an instance of Langlands functoriality. Of course we’ve also seen that the Arthur
parameters for Gy naturally govern the X-distinguishedness of G-representations, making
this idea concrete in a way.

This gives the construction of Gy, as the algebraic group with root system ®Y.. What
remains unclear is the map Gy — é, which in fact should extend to Gy x SLy — G.

If AC B C (G is the maximal torus and Px D B is the stabilizer of the open B-orbit
X° C X with unipotent radical Ny, the action of the Levi subgroup Lx = Px/Nx acts on
X°/Nx through the faithful action of a torus quotient Ay, giving a composition

A‘—>B‘—>Px—>9Lx—»AX

which turns out to be surjective. Taking duals then gives an injection A% — A*. As A is
our fixed maximal torus for G, A* is the maximal torus for G; the group Gx should have
maximal torus A%, with A% — A* extending to Gx — G. The existence of this extension
is actually conjectural in SV, but is proven by Knop-Schalke; we will otherwise neglect it
and focus on the description of the group G'x. (The extension to SL; is by computing the
centralizer of the image of G x, which we will also neglect.)

One can study spherical varieties via combinatorial data. In particular, we can em-
bed them into “wonderful varieties,” i.e. proper smooth G-varieties with an open G-orbit
whose complement is the union of finitely many irreducible divisors Dy, ..., D, with certain
technical properties. One can then proceed via two steps: first, we can classify wonderful
varieties by certain combinatorial data (spherical G-systems); classify G-equivariant open
embeddings X < X of spherical varieties into wonderful varieties; and combine these to
produce a combinatorial description of spherical varieties.

However, we don’t actually need our combinatorial data to determine the spherical vari-
ety; so a weaker collection of data suffices, which in fact we can associate to any G-variety.
This is a weak spherical datum: it consists of a subgroup = C X*(G) of the character group
together with two finite subsets ¥ C =, SP C = satisfying certain compatibility relations,
designed to mimic the properties of the data which do in fact come from spherical varieties.
These are produced as follows:

Let k(X)® C k(X)* be the subgroup consisting of rational functions on X such that
there exists x; € X*(G) such that b- f = x;(b)f all b € B. This produces a map k(X)) —
X*(G) sending f +— x; its image is our subgroup Z.

In fact, the “multiplicity free” property of spherical varieties is that the space of f with
X¢ = x for any fixed x is one-dimensional, so up to a scalar we can also associate to x a
function f,. This lets us view the space W of G-invariant discrete valuations v on X as
living inside =*: for every x € Z, fix f, and set (v, x) = v(fy). Then we can fix a set ¥ C =
such that W C Z* can be written as {v € Z*| (v,0) > 0Vo € ¥}.

Finally, we define SP C Z as the fixed simple roots for G inside = spanning the root
system for the Levi Lx; this is not as key for our construction so we won'’t elaborate. One
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can show various properties of (=, X, SP), e.g. that 3 is linearly independent; the key fact is
that (Z,%,2Y,%Y) is a root datum ®y when X is spherical. In particular, we can take the
dual root datum ®% to construct the algebraic group with this root datum Gx.

By considering the divisors in the complement of the open orbit, we can take the discrete
valuations associated to them, which as above gives elements of Z*, among which we can
take the dominant coroots; then in nice cases we define the Gy-representation Sy to be
the representation with highest weights given by these coroots. (In general we need a more
complicated construction.) At least conjecturally this representation is symplectic.

What is of more interest is the representation Vx = Sx @ (g3 Ng.) where §,. is apparently
the centralizer of a principal nilpotent e; hopefully the naturality of this definition will become
clearer later on, but it is (apparently) the right thing to plug into our L-value machine.

We can now return to some of our examples earlier to justify our claims about Gx.

In the group case G = H x H, the Borel subgroup is B x B for B a Borel of H. Its open
dense orbit on H\G ~ H is BwB for w (a lift of ) the longest Weyl group element; Py = Bx B
and so Ly = A x A, with action on X° = BwB having kernel {(ai,as)|lajwas = w},
i.e. the image of A — A x A sending a — (a,wa 'w™'). Thus we have the embedding
Ay = A — Ag = A x A via this same map above, whose extension to H — G = H x H is
exactly the identity on the first factor and the Chevalley involution on the second.

In the case X = G\G = *, the stabilizer of the orbit is the full group Px = Lx = G;
since the torus quotient Ax of Py is supposed to act faithfully, Ax must be trivial. Looking
at our construction above, k(X) = k(x) = F is a one-dimensional trivial G-representation,
so the image of f +— x is trivial; thus = = {0} is trivial and so so must Gx be.

There is an alternative construction of G x via the Tannakian formalism due to Gaitsgory -
Nadler; the details seem quite difficult but it may be useful as heuristic, although the equiva-
lence of the two constructions is highly nontrivial. If X is a spherical variety, they construct
a space Z which morally can be thought of as an avatar of the loop space of X, modified to
be finite-dimensional and algebraic (specifically it is an ind-stack). As Py is the stabilizer
of X°, we can write X° = G/Px so that G — X° is a Px-torsor; as X° is an open dense
orbit, this means that there is a “generic Px-torsor” on X. Thus for every loop in X we get
a Px-torsor on the loop by restriction, so for a suitable base curve we get a map Z — Bung;
so modifications, which act by Hecke correspondences on Bung, act similarly on Z. (Very
unsure about all this, it’s my attempt to read Gaitsgory—Nadler while sleep-deprived.) One
can use this to give an action of sheaves on the affine Grassmannian (via intersection coho-
mology of a certain subspace of Z), i.e. a functor from Hecke-equivariant perverse sheaves
on Grg to Hecke-equivariant perverse sheaves on Z; we define a category ) to be the full
subcategory of Hecke-equivariant perverse sheaves on Z whose objects are isomorphic to
subquotients of the image of this functor.

One can show that this is a tensor category (related to the fusion product, and factor-
ization structures) equivalent to Rep(@’ x) for some group Gx C G, which turns out to be
the same group we constructed. This is reminiscent of the Tannakian construction of G via
geometric Satake; I don’t trust my intuition with these objects enough to try and work out
the group case, but it’s left as an exercise for the interested reader.
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