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1. Summary of Sug Woo Shin’s talks

The “basic” setup is: let G be a (split) reductive group, H ⊂ G a subgroup, and consider
the G-variety X = H\G over a field F . More generally, we could consider any normal
quasi-affine G-variety X on which there is an open dense B-orbit; such varieties are called
spherical.

When F is a global field we can formulate the periods and L-functions fairly easily: if Φ
is a suitable Schwartz function on X(AF ), then we can define

ΘΦ(g) =
∑

x∈X(F )

Φ(xg)

on [G] = G(F )\G(AF ), and then define the X-period by pairing φ ∈ L2([G]) with ΘΦ,

⟨φ,ΘΦ⟩ =
∫
[G]

φ(g)ΘΦ(g) dg.

In the special case where X = H\G, if we define

PH(φ)(x) =

∫
[H]

φ(hx) dh,

then ∫
X

PH(φ)(x)Φ(x) dx =

∫
[H\G]

Φ(x)

∫
[H]

φ(hx) dh dx =

∫
[G]

ΘΦ(g)φ(g) = ⟨φ,ΘΦ⟩

so we recover a Φ-weighted H-period. A natural question on this side is: for what φ (i.e.
appearing in which subrepresentations π) is this X-period nonzero? Another: per the con-
jectures that Gyujin sketched last time, this should correspond to some L-value; how do we
construct it? The L-value should have an Euler factorization, so ideally so too should the
period; how do we get this?

Now say everything is over a local field F . Then L2(X(F )) or C∞(X(F )) carry an
action of G(F ) and so decompose as a sum (integral) of automorphic representations of
G(F ). Spherical varieties in particular have the following good property: for any admissible
irreducible representation π of G(F ), the multiplicity dimHomG(F )(π,C

∞(X(F ))) is finite.
One can think of spherical varieties as generalizations of toric varieties to nonabelian groups.

The main question this construction raises is: which π appear in C∞(X(F ))? (and
perhaps secondarily what are their multiplicities?)

The local Langlands program tells us that such representations π should be classified by
Weil–Deligne representations ρπ : WF × SL2 → Ǧ⋊WF (we’ll neglect the WF -factor on the
right). The idea is to construct a group ǦX together with a map ιX : ǦX×SL2 → Ǧ. Roughly
speaking, π should appear in C∞(X(F )) if and only if ρπ factors through ιX , i.e. there is a

1



2 CONSTRUCTION OF THE DUAL GROUP

map ϕπ : WF → ǦX such that ρπ is the composition WF × SL2
ϕπ×id−−−→ Ǧ)X × SL2

ιX−→ Ǧ; a
more precise formulation of this I imagine will occur in the next talk.

Also in the next talk (?), we’ll see how the numerical picture falls out of this setup:
roughly speaking we get a local L-factor from ρπ and a local X-period from π, and when π
occurs in L2(X(F )) then the local X-period is nonzero and the local L-factor comes from
ϕπ. These then give Euler factorizations of the global periods and L-values.

With the data of ǦX and ιX in hand, as well as a certain ǦX-representation VX , we can
now answer some of the questions in the global case: again, an automorphic representation
π should have nonzero X-period if and only if its Arthur parameter factors through ϕπ and
ιX ; and the corresponding L-value should be L(ϕπ ,VX)

L(ϕπ ,Ad)
.

The most classical case is the “group case” where G = H ×H and H ↪→ H ×H is the
diagonal embedding. ThenX = H\G ≃ H, with the action ofH×H by (h1, h2)·h = h−1

2 hh1.
In this case ΘΦ is the usual theta function forH. We have ǦX = Ȟ ⊂ Ǧ = Ȟ×Ȟ; it turns out
that this is no longer the diagonal embedding, but (id, c) for c the Chevalley involution; we’ll
discuss this case a little more in the second section of the talk. The map from SL2 is trivial
in this case. So an H-distinguished automorphic form of H ×H is one whose L-parameter

factors through Ȟ
id,c−−→ Ȟ × Ȟ; twisting an L-parameter ρπ by c should give roughly the

L-parameter of the contragradient ρπ∨ , so the distinguished representations π1 ⊗ π2 should
be the π ⊗ π∨.

The other simple homogeneous case to work through is X = G\G = ∗. In this case
ΘΦ = Φ, so the pairing is just integrating against Schwartz functions. We’ll see in the next
section that ǦX is trivial; this is perhaps unsurprising when X is trivial. The SL2-map is
principal and so forms all of ιX .

A less trivial homogeneous case is the “Hecke period” G = PGL2 and H = Gm, em-
bedded as the top-left coordinate. This gives rise to the Hecke period

∫
[H]

φ(h) dh, which

Waldspurger’s formula tells us is supposed to be roughly L(1/2, π); we could also twist by
inserting a factor of |h|s, which would shift the L-value to L(1/2 + s, π). In this case, ǦX

should again be Gm, embedded similarly into Ǧ = SL2. Through the formalism of BZSV,
which generally we won’t discuss until future talks, we should be able to match up these sorts
of examples with duals; the dual in this case is Ǧ = SL2 acting on its standard representation
A2.

Finally, we include an example of a non-homogeneous spherical variety: X = A1 with
the natural action of G = Gm. In this case an automorphic form φ on [G] is just a Hecke
character χ, and its X-period is∫

F×\A×
F

χ(g)ΘΦ(g) dg =

∫
F×\A×

F

χ(g)

∫
F

Φ(xg) dx dg = Φ(0)

∫
[Gm]

χ(g) dg +

∫
A×
F χ(g)Φ(g) dg

and by Tate’s thesis the second term is (for a suitable choice of Φ) essentially the L-value
L(0, χ). Here ǦX = Gm = Ǧ with identity map.

2. Construction of the dual group

Shin omits the details of the construction, and for good reason: in general it is quite com-
plicated. We will try to flesh it out a little though beyond the material of the videos.
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The main idea is this: first, via a classification theorem, we can associate to a spherical
G-variety X a root datum ΦX . We could then construct an algebraic group GX with this
root datum, and hope for a map GX → G to relate GX-representations to G-representations;
but it turns out that such a map does not always exist. Instead, the idea of Gaitsgory–Nadler
is to look at the Langlands duals, and hope for a map ǦX → Ǧ; then we can study the same
problem as an instance of Langlands functoriality. Of course we’ve also seen that the Arthur
parameters for ǦX naturally govern the X-distinguishedness of G-representations, making
this idea concrete in a way.

This gives the construction of ǦX , as the algebraic group with root system Φ∨
X . What

remains unclear is the map ǦX → Ǧ, which in fact should extend to ǦX × SL2 → Ǧ.
If A ⊂ B ⊂ G is the maximal torus and PX ⊃ B is the stabilizer of the open B-orbit

X◦ ⊂ X with unipotent radical NX , the action of the Levi subgroup LX = PX/NX acts on
X◦/NX through the faithful action of a torus quotient AX , giving a composition

A ↪→ B ↪→ PX ↠ LX ↠ AX

which turns out to be surjective. Taking duals then gives an injection A∗
X ↪→ A∗. As A is

our fixed maximal torus for G, A∗ is the maximal torus for Ǧ; the group ǦX should have
maximal torus A∗

X , with A∗
X → A∗ extending to ǦX → Ǧ. The existence of this extension

is actually conjectural in SV, but is proven by Knop–Schalke; we will otherwise neglect it
and focus on the description of the group ǦX . (The extension to SL2 is by computing the
centralizer of the image of ǦX , which we will also neglect.)

One can study spherical varieties via combinatorial data. In particular, we can em-
bed them into “wonderful varieties,” i.e. proper smooth G-varieties with an open G-orbit
whose complement is the union of finitely many irreducible divisors D1, . . . , Dr with certain
technical properties. One can then proceed via two steps: first, we can classify wonderful
varieties by certain combinatorial data (spherical G-systems); classify G-equivariant open
embeddings X ↪→ X of spherical varieties into wonderful varieties; and combine these to
produce a combinatorial description of spherical varieties.

However, we don’t actually need our combinatorial data to determine the spherical vari-
ety; so a weaker collection of data suffices, which in fact we can associate to any G-variety.
This is a weak spherical datum: it consists of a subgroup Ξ ⊂ X∗(G) of the character group
together with two finite subsets Σ ⊂ Ξ, Sp ⊂ Ξ satisfying certain compatibility relations,
designed to mimic the properties of the data which do in fact come from spherical varieties.
These are produced as follows:

Let k(X)(B) ⊂ k(X)∗ be the subgroup consisting of rational functions on X such that
there exists χf ∈ X∗(G) such that b · f = χf (b)f all b ∈ B. This produces a map k(X)(B) →
X∗(G) sending f 7→ χf ; its image is our subgroup Ξ.

In fact, the “multiplicity free” property of spherical varieties is that the space of f with
χf = χ for any fixed χ is one-dimensional, so up to a scalar we can also associate to χ a
function fχ. This lets us view the space W of G-invariant discrete valuations v on X as
living inside Ξ∗: for every χ ∈ Ξ, fix fχ and set ⟨v, χ⟩ = v(fχ). Then we can fix a set Σ ⊂ Ξ
such that W ⊂ Ξ∗ can be written as {v ∈ Ξ∗| ⟨v, σ⟩ ≥ 0∀σ ∈ Σ}.

Finally, we define Sp ⊂ Ξ as the fixed simple roots for G inside Ξ spanning the root
system for the Levi LX ; this is not as key for our construction so we won’t elaborate. One
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can show various properties of (Ξ,Σ, Sp), e.g. that Σ is linearly independent; the key fact is
that (Ξ,Σ,Ξ∨,Σ∨) is a root datum ΦX when X is spherical. In particular, we can take the
dual root datum Φ∨

X to construct the algebraic group with this root datum ǦX .
By considering the divisors in the complement of the open orbit, we can take the discrete

valuations associated to them, which as above gives elements of Ξ∗, among which we can
take the dominant coroots; then in nice cases we define the ǦX-representation SX to be
the representation with highest weights given by these coroots. (In general we need a more
complicated construction.) At least conjecturally this representation is symplectic.

What is of more interest is the representation VX = SX⊕(g⊥X ∩ ǧe) where ǧe is apparently
the centralizer of a principal nilpotent e; hopefully the naturality of this definition will become
clearer later on, but it is (apparently) the right thing to plug into our L-value machine.

We can now return to some of our examples earlier to justify our claims about ǦX .
In the group case G = H ×H, the Borel subgroup is B×B for B a Borel of H. Its open

dense orbit onH\G ≃ H isBwB for w (a lift of) the longest Weyl group element; PX = B×B
and so LX = A × A, with action on X◦ = BwB having kernel {(a1, a2)|a1wa2 = w},
i.e. the image of A → A × A sending a 7→ (a, wa−1w−1). Thus we have the embedding
ǍX = Ǎ ↪→ ǍG = Ǎ× Ǎ via this same map above, whose extension to Ȟ ↪→ Ǧ = Ȟ × Ȟ is
exactly the identity on the first factor and the Chevalley involution on the second.

In the case X = G\G = ∗, the stabilizer of the orbit is the full group PX = LX = G;
since the torus quotient AX of PX is supposed to act faithfully, AX must be trivial. Looking
at our construction above, k(X) = k(∗) = F is a one-dimensional trivial G-representation,
so the image of f 7→ χf is trivial; thus Ξ = {0} is trivial and so so must ǦX be.

There is an alternative construction of ǦX via the Tannakian formalism due to Gaitsgory–
Nadler; the details seem quite difficult but it may be useful as heuristic, although the equiva-
lence of the two constructions is highly nontrivial. If X is a spherical variety, they construct
a space Z which morally can be thought of as an avatar of the loop space of X, modified to
be finite-dimensional and algebraic (specifically it is an ind-stack). As PX is the stabilizer
of X◦, we can write X◦ = G/PX so that G → X◦ is a PX-torsor; as X◦ is an open dense
orbit, this means that there is a “generic PX-torsor” on X. Thus for every loop in X we get
a PX-torsor on the loop by restriction, so for a suitable base curve we get a map Z → BunG;
so modifications, which act by Hecke correspondences on BunG, act similarly on Z. (Very
unsure about all this, it’s my attempt to read Gaitsgory–Nadler while sleep-deprived.) One
can use this to give an action of sheaves on the affine Grassmannian (via intersection coho-
mology of a certain subspace of Z), i.e. a functor from Hecke-equivariant perverse sheaves
on GrG to Hecke-equivariant perverse sheaves on Z; we define a category Q to be the full
subcategory of Hecke-equivariant perverse sheaves on Z whose objects are isomorphic to
subquotients of the image of this functor.

One can show that this is a tensor category (related to the fusion product, and factor-
ization structures) equivalent to Rep(ǦX) for some group ǦX ⊂ Ǧ, which turns out to be
the same group we constructed. This is reminiscent of the Tannakian construction of Ǧ via
geometric Satake; I don’t trust my intuition with these objects enough to try and work out
the group case, but it’s left as an exercise for the interested reader.
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