Dual groups of spherical varieties

January 31, 2024

1. Summary of Sug Woo Shin's talks

The "basic" setup is: let G be a (split) reductive group, $H \subset G$ a subgroup, and consider the G-variety $X=H \backslash G$ over a field F. More generally, we could consider any normal quasi-affine G-variety X on which there is an open dense B-orbit; such varieties are called spherical.

When F is a global field we can formulate the periods and L-functions fairly easily: if Φ is a suitable Schwartz function on $X\left(\mathbb{A}_{F}\right)$, then we can define

$$
\Theta_{\Phi}(g)=\sum_{x \in X(F)} \Phi(x g)
$$

on $[G]=G(F) \backslash G\left(\mathbb{A}_{F}\right)$, and then define the X-period by pairing $\varphi \in L^{2}([G])$ with Θ_{Φ},

$$
\left\langle\varphi, \Theta_{\Phi}\right\rangle=\int_{[G]} \varphi(g) \Theta_{\Phi}(g) d g
$$

In the special case where $X=H \backslash G$, if we define

$$
P_{H}(\varphi)(x)=\int_{[H]} \varphi(h x) d h,
$$

then

$$
\int_{X} P_{H}(\varphi)(x) \Phi(x) d x=\int_{[H \backslash G]} \Phi(x) \int_{[H]} \varphi(h x) d h d x=\int_{[G]} \Theta_{\Phi}(g) \varphi(g)=\left\langle\varphi, \Theta_{\Phi}\right\rangle
$$

so we recover a Φ-weighted H-period. A natural question on this side is: for what φ (i.e. appearing in which subrepresentations π) is this X-period nonzero? Another: per the conjectures that Gyujin sketched last time, this should correspond to some L-value; how do we construct it? The L-value should have an Euler factorization, so ideally so too should the period; how do we get this?

Now say everything is over a local field F. Then $L^{2}(X(F))$ or $C^{\infty}(X(F))$ carry an action of $G(F)$ and so decompose as a sum (integral) of automorphic representations of $G(F)$. Spherical varieties in particular have the following good property: for any admissible irreducible representation π of $G(F)$, the multiplicity $\operatorname{dim} \operatorname{Hom}_{G(F)}\left(\pi, C^{\infty}(X(F))\right)$ is finite. One can think of spherical varieties as generalizations of toric varieties to nonabelian groups.

The main question this construction raises is: which π appear in $C^{\infty}(X(F))$? (and perhaps secondarily what are their multiplicities?)

The local Langlands program tells us that such representations π should be classified by Weil-Deligne representations $\rho_{\pi}: W_{F} \times \mathrm{SL}_{2} \rightarrow \check{G} \rtimes W_{F}$ (we'll neglect the W_{F}-factor on the right). The idea is to construct a group \check{G}_{X} together with a map $\iota_{X}: \check{G}_{X} \times \mathrm{SL}_{2} \rightarrow \check{G}$. Roughly speaking, π should appear in $C^{\infty}(X(F))$ if and only if ρ_{π} factors through ι_{X}, i.e. there is a
$\operatorname{map} \phi_{\pi}: W_{F} \rightarrow \check{G}_{X}$ such that ρ_{π} is the composition $\left.W_{F} \times \mathrm{SL}_{2} \xrightarrow{\phi_{\pi} \times \mathrm{id}} \check{G}\right) X \times \mathrm{SL}_{2} \xrightarrow{\iota_{X}} \check{G}$; a more precise formulation of this I imagine will occur in the next talk.

Also in the next talk (?), we'll see how the numerical picture falls out of this setup: roughly speaking we get a local L-factor from ρ_{π} and a local X-period from π, and when π occurs in $L^{2}(X(F))$ then the local X-period is nonzero and the local L-factor comes from ϕ_{π}. These then give Euler factorizations of the global periods and L-values.

With the data of \breve{G}_{X} and ι_{X} in hand, as well as a certain \check{G}_{X}-representation V_{X}, we can now answer some of the questions in the global case: again, an automorphic representation π should have nonzero X-period if and only if its Arthur parameter factors through ϕ_{π} and ι_{X}; and the corresponding L-value should be $\frac{L\left(\phi_{\pi}, V_{X}\right)}{L\left(\phi_{\pi}, A d\right)}$.

The most classical case is the "group case" where $G=H \times H$ and $H \hookrightarrow H \times H$ is the diagonal embedding. Then $X=H \backslash G \simeq H$, with the action of $H \times H$ by $\left(h_{1}, h_{2}\right) \cdot h=h_{2}^{-1} h h_{1}$. In this case Θ_{Φ} is the usual theta function for H. We have $\check{G}_{X}=\check{H} \subset \check{G}=\check{H} \times \check{H}$; it turns out that this is no longer the diagonal embedding, but (id, c) for c the Chevalley involution; we'll discuss this case a little more in the second section of the talk. The map from SL_{2} is trivial in this case. So an H-distinguished automorphic form of $H \times H$ is one whose L-parameter factors through $\check{H} \xrightarrow{\text { id,c }} \check{H} \times \check{H}$; twisting an L-parameter ρ_{π} by c should give roughly the L-parameter of the contragradient $\rho_{\pi^{\vee}}$, so the distinguished representations $\pi_{1} \otimes \pi_{2}$ should be the $\pi \otimes \pi^{\vee}$.

The other simple homogeneous case to work through is $X=G \backslash G=*$. In this case $\Theta_{\Phi}=\Phi$, so the pairing is just integrating against Schwartz functions. We'll see in the next section that \check{G}_{X} is trivial; this is perhaps unsurprising when X is trivial. The SL_{2}-map is principal and so forms all of ι_{X}.

A less trivial homogeneous case is the "Hecke period" $G=\mathrm{PGL}_{2}$ and $H=\mathbb{G}_{\mathrm{m}}$, embedded as the top-left coordinate. This gives rise to the Hecke period $\int_{[H]} \varphi(h) d h$, which Waldspurger's formula tells us is supposed to be roughly $L(1 / 2, \pi)$; we could also twist by inserting a factor of $|h|^{s}$, which would shift the L-value to $L(1 / 2+s, \pi)$. In this case, \check{G}_{X} should again be \mathbb{G}_{m}, embedded similarly into $\check{G}=\mathrm{SL}_{2}$. Through the formalism of BZSV, which generally we won't discuss until future talks, we should be able to match up these sorts of examples with duals; the dual in this case is $\breve{G}=\mathrm{SL}_{2}$ acting on its standard representation \mathbb{A}^{2}.

Finally, we include an example of a non-homogeneous spherical variety: $X=\mathbb{A}^{1}$ with the natural action of $G=\mathbb{G}_{\mathrm{m}}$. In this case an automorphic form φ on $[G]$ is just a Hecke character χ, and its X-period is

$$
\int_{F^{\times} \backslash \mathbb{A}_{F}^{\times}} \chi(g) \Theta_{\Phi}(g) d g=\int_{F^{\times} \backslash \mathbb{A}_{F}^{\times}} \chi(g) \int_{F} \Phi(x g) d x d g=\Phi(0) \int_{\left[\mathbb{G}_{\mathrm{m}}\right]} \chi(g) d g+\int_{\mathbb{A}_{F}^{\times} \chi(g) \Phi(g) d g}
$$

and by Tate's thesis the second term is (for a suitable choice of Φ) essentially the L-value $L(0, \chi)$. Here $\check{G}_{X}=\mathbb{G}_{\mathrm{m}}=\check{G}$ with identity map.

2. Construction of the dual group

Shin omits the details of the construction, and for good reason: in general it is quite complicated. We will try to flesh it out a little though beyond the material of the videos.

The main idea is this: first, via a classification theorem, we can associate to a spherical G-variety X a root datum Φ_{X}. We could then construct an algebraic group G_{X} with this root datum, and hope for a map $G_{X} \rightarrow G$ to relate G_{X}-representations to G-representations; but it turns out that such a map does not always exist. Instead, the idea of Gaitsgory-Nadler is to look at the Langlands duals, and hope for a map $\breve{G}_{X} \rightarrow \mathscr{G}$; then we can study the same problem as an instance of Langlands functoriality. Of course we've also seen that the Arthur parameters for \check{G}_{X} naturally govern the X-distinguishedness of G-representations, making this idea concrete in a way.

This gives the construction of \check{G}_{X}, as the algebraic group with root system Φ_{X}^{\vee}. What remains unclear is the map $\check{G}_{X} \rightarrow \check{G}$, which in fact should extend to $\check{G}_{X} \times \mathrm{SL}_{2} \rightarrow \check{G}$.

If $A \subset B \subset G$ is the maximal torus and $P_{X} \supset B$ is the stabilizer of the open B-orbit $X^{\circ} \subset X$ with unipotent radical N_{X}, the action of the Levi subgroup $L_{X}=P_{X} / N_{X}$ acts on X° / N_{X} through the faithful action of a torus quotient A_{X}, giving a composition

$$
A \hookrightarrow B \hookrightarrow P_{X} \rightarrow L_{X} \rightarrow A_{X}
$$

which turns out to be surjective. Taking duals then gives an injection $A_{X}^{*} \hookrightarrow A^{*}$. As A is our fixed maximal torus for G, A^{*} is the maximal torus for \check{G}; the group \check{G}_{X} should have maximal torus A_{X}^{*}, with $A_{X}^{*} \rightarrow A^{*}$ extending to $\check{G}_{X} \rightarrow \check{G}$. The existence of this extension is actually conjectural in SV, but is proven by Knop-Schalke; we will otherwise neglect it and focus on the description of the group \check{G}_{X}. (The extension to SL_{2} is by computing the centralizer of the image of \check{G}_{X}, which we will also neglect.)

One can study spherical varieties via combinatorial data. In particular, we can embed them into "wonderful varieties," i.e. proper smooth G-varieties with an open G-orbit whose complement is the union of finitely many irreducible divisors D_{1}, \ldots, D_{r} with certain technical properties. One can then proceed via two steps: first, we can classify wonderful varieties by certain combinatorial data (spherical G-systems); classify G-equivariant open embeddings $X \hookrightarrow \bar{X}$ of spherical varieties into wonderful varieties; and combine these to produce a combinatorial description of spherical varieties.

However, we don't actually need our combinatorial data to determine the spherical variety; so a weaker collection of data suffices, which in fact we can associate to any G-variety. This is a weak spherical datum: it consists of a subgroup $\Xi \subset X^{*}(G)$ of the character group together with two finite subsets $\Sigma \subset \Xi, S^{p} \subset \Xi$ satisfying certain compatibility relations, designed to mimic the properties of the data which do in fact come from spherical varieties. These are produced as follows:

Let $k(X)^{(B)} \subset k(X)^{*}$ be the subgroup consisting of rational functions on X such that there exists $\chi_{f} \in X^{*}(G)$ such that $b \cdot f=\chi_{f}(b) f$ all $b \in B$. This produces a map $k(X)^{(B)} \rightarrow$ $X^{*}(G)$ sending $f \mapsto \chi_{f}$; its image is our subgroup Ξ.

In fact, the "multiplicity free" property of spherical varieties is that the space of f with $\chi_{f}=\chi$ for any fixed χ is one-dimensional, so up to a scalar we can also associate to χ a function f_{χ}. This lets us view the space W of G-invariant discrete valuations v on X as living inside Ξ^{*} : for every $\chi \in \Xi$, fix f_{χ} and set $\langle v, \chi\rangle=v\left(f_{\chi}\right)$. Then we can fix a set $\Sigma \subset \Xi$ such that $W \subset \Xi^{*}$ can be written as $\left\{v \in \Xi^{*} \mid\langle v, \sigma\rangle \geq 0 \forall \sigma \in \Sigma\right\}$.

Finally, we define $S^{p} \subset \Xi$ as the fixed simple roots for G inside Ξ spanning the root system for the Levi L_{X}; this is not as key for our construction so we won't elaborate. One
can show various properties of $\left(\Xi, \Sigma, S^{p}\right)$, e.g. that Σ is linearly independent; the key fact is that $\left(\Xi, \Sigma, \Xi^{\vee}, \Sigma^{\vee}\right)$ is a root datum Φ_{X} when X is spherical. In particular, we can take the dual root datum Φ_{X}^{\vee} to construct the algebraic group with this root datum \check{G}_{X}.

By considering the divisors in the complement of the open orbit, we can take the discrete valuations associated to them, which as above gives elements of Ξ^{*}, among which we can take the dominant coroots; then in nice cases we define the \breve{G}_{X}-representation S_{X} to be the representation with highest weights given by these coroots. (In general we need a more complicated construction.) At least conjecturally this representation is symplectic.

What is of more interest is the representation $V_{X}=S_{X} \oplus\left(\mathfrak{g}_{X}^{\perp} \cap \check{\mathfrak{g}}_{e}\right)$ where $\check{\mathfrak{g}}_{e}$ is apparently the centralizer of a principal nilpotent e; hopefully the naturality of this definition will become clearer later on, but it is (apparently) the right thing to plug into our L-value machine.

We can now return to some of our examples earlier to justify our claims about \check{G}_{X}.
In the group case $G=H \times H$, the Borel subgroup is $B \times B$ for B a Borel of H. Its open dense orbit on $H \backslash G \simeq H$ is $B w B$ for w (a lift of) the longest Weyl group element; $P_{X}=B \times B$ and so $L_{X}=A \times A$, with action on $X^{\circ}=B w B$ having kernel $\left\{\left(a_{1}, a_{2}\right) \mid a_{1} w a_{2}=w\right\}$, i.e. the image of $A \rightarrow A \times A$ sending $a \mapsto\left(a, w a^{-1} w^{-1}\right)$. Thus we have the embedding $\check{A}_{X}=\check{A} \hookrightarrow \check{A}_{G}=\check{A} \times \check{A}$ via this same map above, whose extension to $\check{H} \hookrightarrow \check{G}=\check{H} \times \check{H}$ is exactly the identity on the first factor and the Chevalley involution on the second.

In the case $X=G \backslash G=*$, the stabilizer of the orbit is the full group $P_{X}=L_{X}=G$; since the torus quotient A_{X} of P_{X} is supposed to act faithfully, A_{X} must be trivial. Looking at our construction above, $k(X)=k(*)=F$ is a one-dimensional trivial G-representation, so the image of $f \mapsto \chi_{f}$ is trivial; thus $\Xi=\{0\}$ is trivial and so so must \breve{G}_{X} be.

There is an alternative construction of \check{G}_{X} via the Tannakian formalism due to GaitsgoryNadler; the details seem quite difficult but it may be useful as heuristic, although the equivalence of the two constructions is highly nontrivial. If X is a spherical variety, they construct a space Z which morally can be thought of as an avatar of the loop space of X, modified to be finite-dimensional and algebraic (specifically it is an ind-stack). As P_{X} is the stabilizer of X°, we can write $X^{\circ}=G / P_{X}$ so that $G \rightarrow X^{\circ}$ is a P_{X}-torsor; as X° is an open dense orbit, this means that there is a "generic P_{X}-torsor" on X. Thus for every loop in X we get a P_{X}-torsor on the loop by restriction, so for a suitable base curve we get a map $Z \rightarrow \operatorname{Bun}_{G}$; so modifications, which act by Hecke correspondences on Bun_{G}, act similarly on Z. (Very unsure about all this, it's my attempt to read Gaitsgory-Nadler while sleep-deprived.) One can use this to give an action of sheaves on the affine Grassmannian (via intersection cohomology of a certain subspace of Z), i.e. a functor from Hecke-equivariant perverse sheaves on Gr_{G} to Hecke-equivariant perverse sheaves on Z; we define a category Q to be the full subcategory of Hecke-equivariant perverse sheaves on Z whose objects are isomorphic to subquotients of the image of this functor.

One can show that this is a tensor category (related to the fusion product, and factorization structures) equivalent to $\operatorname{Rep}\left(\check{G}_{X}\right)$ for some group $\check{G}_{X} \subset \check{G}$, which turns out to be the same group we constructed. This is reminiscent of the Tannakian construction of \check{G} via geometric Satake; I don't trust my intuition with these objects enough to try and work out the group case, but it's left as an exercise for the interested reader.

