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1. Introduction

(This is based on a project in college joint with Kevin Beuchot and Sanath Devalapurkar.)
There is a famous story of Hardy visiting Ramanujan in the hospital and remarking

that he had arrived in taxicab number 1729, which he found to be a very boring number.
Ramanujan immediately replied that on the contrary it was a very interesting number: it is
the smallest number that can be written in two different ways as the sum of two cubes, i.e.
1729 = 123 + 13 = 103 + 93. Hardy asked him about the same question for fourth powers,
but he did not know off the top of his head.

This is not surprising: the smallest example for fourth powers is 635318657 = 1584+594 =
1344 + 1334. A property like this which first appears for fairly large numbers is interesting,
and you might ask some related questions: are there any other such numbers that can be
written in two ways as the sum of two cubes? If so, how many are there (perhaps infinitely
many)? What about for fourth powers, or fifth powers and so forth? (Lower powers are less
interesting: for 0th or 1st powers the question is trivial, and for squares it is pretty easy to
see using Pythagorean triple-type arguments that there are infinitely many solutions.)

A computer search can quickly find many more examples of the first kind: for example,
4104 = 153 + 93 = 163 + 23, 13832 = 203 + 183 = 243 + 23, 20683 = 273 + 103 = 243 + 193,
. . . . This might lead you to guess that there are infinitely many.

For fourth powers, examples are rarer, but we can still find a few more without too much
work: after 635318657, the next example is 3262811042 = 2274 + 1574 = 2394 + 74, then
8657437697 = 2574 +2564 = 1934 +2924. Again, while these seem to be rarer than for cubes,
we still might guess that there are infinitely many.

What about for fifth powers or higher? In this case, by contrast, there seem to be no
examples at all! At the least, by a computer search I did yesterday I can tell you there are
no examples less than 1015. Since the first example in the case of fourth powers is so much
larger than in the case of cubes, it’s not unreasonable to think that there might be some very
large examples that we can’t find, but there’s heuristic reason to believe that there really
are no examples. I won’t say too much about this heuristic, but basically the idea is we
imagine that nth powers are distributed randomly such that there’s about n

√
N of them less

than N , and so we can estimate the probability of pairs colliding like this; we could then use
that probability to estimate the number of examples less than N , which comes out to be an
increasing function of N as N → ∞ for n = 3 or 4 but bounded for n = 5, so we’d expect
only finitely many examples and all of them to be quite small; the fact that there are no
small examples suggests that there are none at all.

This sounds like a really nice heuristic, and you might wonder why I’m not saying more
about it. The answer is that it actually gives an estimate for the number of solutions to
an+bn = cn+dn for (a, b) and (c, d) distinct (even after switching) when n = 3 or n = 4, but
unfortunately at least in the case n = 4 this estimate is provably wrong! We can find more
examples (in an infinite family) than this estimate predicts should exist. Thus it’s worth
taking with a grain of salt, but since we can’t find any examples and all our methods will
fail with n > 4 it seems pretty safe. Thus we have the following conjecture.
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Conjecture. Let n ≥ 3 be an integer, and consider solutions to N = an + bn = cn + dn with
(a, b) and (c, d) distinct.

(a) If n ≤ 4, there are infinitely many such solutions.

(b) If n ≥ 5, there are no solutions.

It’s actually pretty easy to “prove” part (a) of this conjecture: we can write down explicit
families of solutions. Let r be any integer: then

a = −27r

b = r6 − 9r3 + 27

c = 3r5 − 27r2

d = r6 − 18r3 + 27

(among other families) satisfies a3 + b3 = c3 + d3, and

a = r6 + 3r5 − 2r4 + r2 + 1

b = r7 + r5 − 2r3 − 3r2 + r

c = r6 − 3r5 − 2r4 + r2 + 1

d = r7 + r5 − 2r3 + 3r2 + r

satisfies a4 + b4 = c4 + d4. These can be proved by plugging these formulas into the equation
and doing some algebra.

These are incredibly unsatisfying, though: where did any of this come from? Why should
we care about these particular families? Why would you think to write this down?

To answer these questions, we’ll bring in some tools from algebraic geometry. These will
prove unable to handle the case n ≥ 5, though, and in fact we won’t be able to prove part
(b) of our conjecture (this is an open problem!). What we will do, though, is try to bound
the number of such solutions in the case n ≥ 5: first, we’ll figure out what a “trivial bound”
is, and then we’ll use some sieve theory to improve on that bound.

2. Algebraic geometry

Instead of thinking of solutions to an + bn = cn + dn, we can more straightforwardly think of
the problem as finding at least two (distinct) solutions to N = an + bn for some fixed N : in
particular, are there infinitely many N for which this is possible?

Let’s focus on the case n = 3. In this case, N = a3 + b3 is a smooth cubic curve in a and
b. This sort of thing has another name: it is an elliptic curve. Elliptic curves have a very
useful property: given two points on an elliptic curve, we can add them together to get a
third point, and if the two points we start with have rational coordinates, so will the third
point. (Draw out and explain) These don’t have to be different points: we can start with a
single point P and add it to itself by taking a tangent line, to get a point 2P .

In particular, suppose that we had a point P = (a0, b0) on our curve N = a3 + b3, i.e.
a3
0 + b30 = N for some rational numbers a0, b0. Then we could construct another point

2P = P + P , and a third point 3P = 2P + P , and so on.
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Now, this doesn’t show that N = a3+b3 necessarily has infinitely many integer solutions;
it actually doesn’t necessarily show that it has infinitely many rational solutions either,
because sometimes there may (at least in principle) be no solutions, so we couldn’t start
this process. However, let’s just take the first two points P = (a0, b0) and 2P = (a1, b1), and
write ai = xi

yi
, bi = zi

wi
. We have

N =
x3
0

y3
0

+
z3
0

w3
0

=
x3
1

y3
1

+
z3
1

w3
1

,

so clearing denominators we find

(y0y1w0w1)
3N = (y1w0w1x0)

3 + (y0y1w1z0)
3 = (y0w0w1x1)

3 + (y0y1w0z1)
3.

Thus although it isn’t the number we started with, we’ve found a new number (y0y1w0w1)
3N

which can be written as the sum of two cubes in two different ways.
This was only using the two points P and 2P . We could add in a third point 3P and

do something similar to find a new number which can be written as the sum of two cubes
in three different ways, and in particular take a pair other than this first pair here to find a
new solution; iterating, we find infinitely many solutions. Thus to start with we only need to
find some N for which there is at least one solution; an easy choice is N = 9, with rational
point given by 9 = 13 + 23. (For the experts, technically we need to check that this point
has infinite order, but this is easy to do directly: this elliptic curve actually has rank 1 and
trivial torsion.)

Okay, so we’re done with the n = 3 case! Well, sort of. We did technically find infinitely
many examples, but for example this will miss 1729 (the first solution generated in this
way is 3087 = 73 + 143 = 203 + (−17)3), and it kind of seems like we’re cheating: another
apparently just as good way to get infinitely many solutions would be to start with 1729 =
123 + 13 = 103 + 93 and multiply through by any cube. Our method really is better, though:
by choosing different pairs from the increasingly many we get by taking higher and higher
multiples of P , we get solutions which are not multiples of a lower solution, and the method
works for infinitely many N which need not themselves have two (or indeed any) integer
solutions.

Another method uses a little more geometry, so I’ll describe it in less detail. Instead of
fixing an N , let’s look at the equation an + bn = cn + dn. Up to scalar multiplication, we can
think of all of the coordinates as rational numbers instead of integers and divide by one of
them, so there are only three free coordinates and one equation: this means there are two
degrees of freedom, so this describes an algebraic surface, which we’ll call Hn. If we do a
coordinate change to (x, y, z, w) by

a = x + y, b = z − w, c = x− y, d = z + w

something interesting happens: our equation becomes

(x + y)n + (z − w)n = (x− y)n + (z + w)n,

which in the case n = 3 simplifies to

3x2y + y3 = 3z2w + w3
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and for n = 4 gives
x3y + xy3 = z3w + wz3.

Since we only care about solutions up to scalar multiplication, we can divide through by any
scalar to assume that one of the coordinates, say w, is equal to 1. We have a map given by
sending a tuple (x, y, z, w) to one of the coordinates, say x; this has image in the coordinate
line, which in this case is a projective line P1. If we look at the fibers of this map, i.e. the
equation above where we fix w = 1 and x = x0 as a constant, then in both cases the resulting
equation is degree three in the remaining variables! In other words, the map Hn → P1 gives
Hn as (roughly) a pencil of cubic curves over P1 for either n = 3 or n = 4, which turn out to
be elliptic curves. If we went up to degree 5, though, the curves would be degree 5, which is
too large for us to deal with.

We know that elliptic curves have magical properties that can help us, so this is a good
sign for the case n ≤ 4. We can then do a similar process with this pencil of elliptic curves,
where starting from two rational points we can find a third, and this actually lets us build
whole families of rational points on Hn which we can find explicitly to give solutions like the
expressions given in the introduction.

3. Sieving

That pretty well takes care of the case n ≤ 4; we’ve proven part (a) of the conjecture. As
mentioned, part (b) in the case n ≥ 5 is an open problem which we are not going to solve
today, but hopefully we can say something about it. Let Rn(N) be the number of positive
integers x ≤ N which can be written in at least two different ways as the sum of two nth
powers. We know that Rn(N) → ∞ as N grows for n ≤ 4, and we believe that in fact
Rn(N) = 0 for all N for n ≥ 5, but we don’t know how to prove that; instead we’d like to
bound Rn(N) somehow.

One way to do this would be to ask an easier question: what is the number R∗
n(N) of

positive integers x ≤ N which can be written in at least one way as the sum of two nth
powers? This definitely grows without bound, but certainly we should have Rn(N) ≤ R∗

n(N);
this is the “trivial” bound. Thus we’d at least like to do better than that:

Conjecture. For any n ≥ 5, as N →∞ we have Rn(N)
R∗n(N)

→ 0.

This is the least we could ask for, but at least it’s nontrivial. Even this is surprisingly
hard to prove: a lot of reasonably sophisticated techniques actually give worse bounds for
Rn(N) than the trivial bound (R∗

n(N) is about N2/n, because it depends on the choice of
two integers a and b each of order at most N1/n).

We actually study the number rn(M) of tuples (a, b, c, d) of positive integers bounded
by M such that an + bn = cn + dn and (a, b) and (c, d) distinct; since N = an + bn is then
roughly of order at most Mn, we can bound Rn(N) using bounds on rn(M).

The idea is this. Counting integer solutions to polynomial equations, at least of high
degree, is hard, as we’ve seen. However, if instead we work modulo p, things get much
easier: there’s a whole field of math around giving strong bounds for solutions to algebraic
equations over finite fields. Therefore we can give some sort of restriction on the solutions
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modulo each prime, and then put all this information back together to get a global bound
using a sieve.

The idea of a sieve is exactly this: we have some condition from each prime number, and
we want to say something about how these combine together. The classic example is the
sieve of Erasthotenes, where we use the fact that each prime p rules out 1/p of the numbers
above that from being prime. (Describe) In practice the sieve of Erasthotenes doesn’t give
much in the way of bounds, but there are many ways of modifying it to be very useful. A
classic result along these lines is that there aren’t “too many” twin primes, which I will not
get into but is a good application.

The problem is that in those cases, we rule out only one class for each prime, and in most
applications it’s not more than one or two. Here we actually want to rule out many classes:
the number of allowable classes turns out to be a positive proportion of all of them for many
primes.

To solve this, we use a device called the large sieve, which I could write out as a formula
but I’ll just say is the result of some very clever manipulations by Gallagher in 1973. We
actually want to use a higher-dimensional version of the sieve, which isn’t too bad. The way
this works is this: first, we use some coordinate transformations and algebraic manipulations
to change the form of our equation an + bn = cn + dn, just like for the surface over P1 (we
actually have to assume n is even for this, but there are ways around this). The point of
these manipulations is that if we then hold two of our new variables constant, we get an
equation in the other two variables which describes a certain lattice, so we are sieving on
the lattice for certain conditions modulo many prime numbers. This is the sort of thing the
two-dimensional large sieve can handle, and if we choose our parameters carefully we get
a bound; we then sum back over the variables we fixed, and the best choice of parameters
turns out to give a bound of

rn(M)�M2− 1
20

+ε.

This translates to

Rn(N)� N
2− 1

20
n

+ε.

This is better than the trivial bound R∗
n(N) ∼ N2/n! In particular this means that

Rn(N)

R∗
n(N)

� N− 1
20n

+ε,

which goes to 0 as N →∞.
Finally, let me say a little bit about the state of the art. The initial result of this type is

due (as far as I know) to Hooley, who used a similar method slightly more carefully to get
a slightly better constant. Heath-Brown has a paper from 2002 where he shows that

Rn(N)� N1+ε

for n ≥ 13, and Browning shortly afterwards improved it to

Rn(N)� N2/3+ε

for n ≥ 27; and in 2006 Heath-Brown eliminated the main term to get

Rn(N)� N
3√
n
+ 2

n−1
+ε
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for all n ≥ 2. There may be more recent improvements, but I am not aware of them.
This problem generalizes Fermat’s last theorem, for which the approach is entirely ab-

stract and algebro-geometric rather than sieve-theoretic—although sophisticated methods
combining geometry and sieve theory can give nontrivial bounds, as we’ve seen and as
Heath-Brown and Browning have shown, sieving is still very hard and not well-suited to
proving the nonexistence of any nontrivial solutions. This would probably require a better
understanding of algebraic surfaces over the integers than we currently have, but it is a
fast-moving field and so far as I know no one has tried.

This is also an instance of a more general problem: is there a polynomial f(x, y) of
degree at least 5 which never takes the same value twice? It turns out that the answer to
this is yes if we assume a more general conjecture, the Bombieri-Lang conjecture, which is
a statement about there not being “too many” points on algebraic surfaces, which is an
analogue of Faltings’s theorem and is related to a whole web of conjectures and theorems
about distribution and density of rational points on various kinds of varieties.
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