First Exam

Modern Algebra II, Dave Bayer, October 5, 2010

Name: __

[1] (6	pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.

[1] Define a maximal ideal, and give an example of a maximal ideal. Define a prime ideal, and give an example of a prime ideal. Give an example of three prime ideals $I \subset J \subset K$, each strictly contained in the next.

[**2**] Compute 5³² mod 77.

[3] A message is represented as an integer a mod 57. You receive the encrypted message $a^{11} \equiv 2 \mod 57$. What is a?

[4] Let A be a 2 \times 2 matrix with entries in $\mathbb R$, satisfying the polynomial relation

$$(x-1)(x-3) = 0$$

Find a formula for A^n as a polynomial expression in A. What is $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}^n$?

[5] Construct the finite field \mathbb{F}_9 as an extension of $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$, by finding an irreducible polynomial of degree 2 with coefficients in \mathbb{F}_3 . Find a generator of the multiplicative group \mathbb{F}_9^* of nonzero elements of \mathbb{F}_9 . Demonstrate that your choice is indeed a generator.