First Exam

Modern Algebra II, Dave Bayer, October 5, 2010

Name: \qquad

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] Define a maximal ideal, and give an example of a maximal ideal. Define a prime ideal, and give an example of a prime ideal. Give an example of three prime ideals I $\subset \mathrm{J} \subset \mathrm{K}$, each strictly contained in the next.
[2] Compute $5^{32} \bmod 77$.
[3] A message is represented as an integer $a \bmod 57$. You receive the encrypted message $a^{11} \equiv 2 \bmod 57$. What is a ?
[4] Let A be a 2×2 matrix with entries in \mathbb{R}, satisfying the polynomial relation

$$
(x-1)(x-3)=0
$$

Find a formula for A^{n} as a polynomial expression in A. What is $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]^{n}$?
[5] Construct the finite field \mathbb{F}_{9} as an extension of $\mathbb{F}_{3}=\mathbb{Z} / 3 \mathbb{Z}$, by finding an irreducible polynomial of degree 2 with coefficients in \mathbb{F}_{3}. Find a generator of the multiplicative group \mathbb{F}_{9}^{*} of nonzero elements of \mathbb{F}_{9}. Demonstrate that your choice is indeed a generator.

