Practice Final Exam

Modern Algebra II, Dave Bayer, December 2010

Name: \qquad

[1] (4 pts)	$[2](6 \mathrm{pts})$	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] The polynomial

$$
g(a, b)=(a-b)^{4}
$$

is symmetric in a and b. Express g as a polynomial in the elementary symmetric functions

$$
s_{1}=a+b, \quad s_{2}=a b
$$

[2] The polynomial

$$
g(a, b, c)=a^{3}+b^{3}+c^{3}
$$

is symmetric in a, b, and c. Express g as a polynomial in the elementary symmetric functions

$$
s_{1}=a+b+c, \quad s_{2}=a b+a c+b c, \quad s_{3}=a b c
$$

[3] The polynomial

$$
g(a, b, c)=(a-b)^{2}(a-c)^{2}(b-c)^{2}
$$

is symmetric in a, b, and c. Suppose that

$$
s_{1}=a+b+c=0 .
$$

Express g as a polynomial in the remaining elementary symmetric functions

$$
s_{2}=a b+a c+b c, \quad s_{3}=a b c
$$

[4] What is the irreducible polynomial for $\alpha=\sqrt{2}+\sqrt{3}$ over \mathbb{Q} ?
[5] Let $f(x)=x^{3}-12$. What is the degree of the splitting field K of f over \mathbb{Q} ?
What is the Galois group $G=G(K / \mathbb{Q})$ of f ?
List the subfields L of K, and the corresponding subgroups $H=G(K / L)$ of G.
[6] Which of the following cubic polynomials have A_{3} for their Galois group? Which have S_{3} for their Galois group?

$$
x^{3}-21 x+7, \quad x^{3}-3 x^{2}+1, \quad x^{3}+x^{2}+x+1
$$

[7] Let K be the splitting field over \mathbb{Q} of the polynomial $x^{2}-2 x+3$. Find an element $a \in \mathbb{Q}$ such that $K=\mathbb{Q}(\sqrt{\mathfrak{a}})$.
[8] Let K be the splitting field over \mathbb{Q} of the polynomial $x^{3}+p x+q$, where $p, q \in \mathbb{Q}$. When is the degree $[K: \mathbb{Q}]=3$? When is the degree $[K: \mathbb{Q}]=6$? Give an example of a polynomial for each case.
[9] Let K be the splitting field over \mathbb{Q} of the polynomial $x^{5}-81 x+3$. What is the Galois group $G(K / \mathbb{Q})$?
[10] Let F be the splitting field of the polynomial $x^{p}-1$ over \mathbb{Q}, where p is a prime. What is the Galois group $G(F / \mathbb{Q})$?
[11] Let F be the splitting field of the polynomial $x^{n}-1$ over \mathbb{Q}, where n is a positive integer. What is the Galois group $G(F / \mathbb{Q})$?
[12] Give an example of a degree two polynomial $g(x)$ over \mathbb{Q}, whose Galois group is C_{2}.
[13] Give an example of a degree three polynomial $g(x)$ over \mathbb{Q}, whose Galois group is A_{3}.
[14] Give an example of a degree three polynomial $g(x)$ over \mathbb{Q}, whose Galois group is S_{3}.
[15] Give an example of a degree four polynomial $g(x)$ over \mathbb{Q}, whose Galois group is $C_{2} \times C_{2}$.
[16] Give an example of a degree four polynomial $g(x)$ over \mathbb{Q}, whose Galois group is C_{4}.
[17] Give an example of a degree five polynomial $g(x)$ over \mathbb{Q}, whose Galois group is S_{5}.
[18] Give an example of a degree six polynomial $g(x)$ over \mathbb{Q}, whose Galois group is C_{6}.

Proofs

[19] Let $K=F(\alpha, \beta)$ be a finite extension of a field F of characteristic zero. Prove that there is an element $\gamma \in \mathrm{K}$ such that $\mathrm{K}=\mathrm{F}(\gamma)$.
[20] Let F be a subfield of \mathbb{C} that contains all roots of the polynomial $x^{p}-1$, where p is a prime. Let K / F be a Galois extension of degree p. Prove that $K=F(\sqrt[p]{b})$ for some $b \in F$.

